LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Conceptual Model for the Assessment
- -
- Water for feeding and cleaning purposes was considered as deriving from the drinking water supply system;
- -
- Electricity consumption was considered entirely covered by energy from the grid, as the biogas generation plant was inoperative at the time of the study. The Italian country mix for medium voltage supply included in the Ecoinvent library was selected as representative for the case;
- -
- The processes related to calf growing were excluded from the model, as meat production, i.e., the co-production line, was out of the scope of the present study;
- -
- As manure management consisted in storage and spreading in the farm fields, it was included exclusively in terms of machinery diesel consumption and equipment involved;
- -
- The use of pharmaceuticals could not be included in the present model due to the lack of primary data about the impact of the specific drugs;
- -
- Carcass disposal was excluded from the boundaries of the present study.
- -
- The growing of sorghum and fodder in local sites was included in terms of machinery diesel consumption and equipment involved;
- -
- Purchased animal feed was detailed by typology, source location, and transportation (mean and distance).
3. Results and Discussion
4. Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Process | Amount | Unit | Notes |
---|---|---|---|
Resources | |||
Water, well, in ground, IT | 72,000 | L | |
Materials/fuels | |||
Diesel burned in agricultural machinery | 1,097,763.05 | kWh | consumption for farm processes (both feed production and animal husbandry) |
Tap water {Europe without Switzerland}|market for|APOS, U | 28,035,555.2 | kg | |
Packaging film, low density polyethylene {GLO}|market for|APOS, U | 147,510 | kg | |
Packaging, for fertilizers or pesticides {GLO}|market for packaging, for fertilizers or pesticides|APOS, U | 16,390 | kg | |
Animal feed production | 1 | p | See Table A2 |
Electricity/heat | |||
Electricity, medium voltage {IT}|market for|APOS, U | 141,840 | kWh | |
Animal feed transport | 1 | p | See Table A3 |
Final waste flows | |||
Polyethylene waste | 163,900 | kg | |
Waste to treatment | |||
PE (waste treatment) {GLO}|recycling of PE|APOS, U | 67,199 | kg | 41% of total waste, considering average regional waste disposal |
Waste plastic, mixture {Europe without Switzerland}|treatment of waste plastic, mixture, municipal incineration|APOS, U | 73,755 | kg | 45% of total waste, considering average regional waste disposal |
Waste plastic, mixture {Europe without Switzerland}|treatment of waste plastic, mixture, sanitary landfill|APOS, U | 22,946 | kg | 14% of total waste, considering average regional waste disposal |
Process Detail | Amount | Unit |
---|---|---|
Soybean, feed {GLO}|market for|APOS, U | 9148 | kg |
Maize grain, feed {GLO}|market for|APOS, U | 181,598 | kg |
Sunflower silage {GLO}|market for|APOS, U | 191,094 | kg |
Protein feed, 100% crude {GLO}|market for|APOS, U | 22,042 | kg |
Process Detail | Distance | Unit | Notes |
---|---|---|---|
Transport, freight, sea, transoceanic tanker {GLO}|market for|APOS, U | 519,180.2 | tkm | Sunflowers’ transport—tanker, from Black Sea port (Ukraine) to Ravenna |
Transport, freight, lorry 16–32 metric ton, EURO4 {GLO}|market for|APOS, U | 21,211.43 | tkm | Sunflower—road transport from Ravenna port |
Transport, freight, lorry 16–32 metric ton, EURO4 {GLO}|market for|APOS, U | 493.99 | tkm | Soy—road transport from production site (Modena province) |
Transport, freight, lorry 16–32 metric ton, EURO4 {GLO}|market for|APOS, U | 9806.29 | tkm | Maize—road transport from production site (Modena province) |
Transport, freight, lorry 16–32 metric ton, EURO4 {GLO}|market for|APOS, U | 2997.71 | tkm | Protein feed—road transport from production site (Cremona province) |
Appendix B
Unit | Mean | Median | Standard Deviation | Coefficient of Variation | 2.5% | 97.5% | Standard Error of the Mean | |
---|---|---|---|---|---|---|---|---|
Total Yearly Impact | kg CO2eq/year | 1,669,074 | 1,661,037 | 102,232.5 | 6.125107 | 1,506,532 | 1,887,999 | 3232.877 |
Animal feed production | kg CO2eq/year | 243,847.2 | 242,761.9 | 16,982.24 | 6.964294 | 215,360.6 | 279,755.3 | 537.0255 |
Animal feed transport | kg CO2eq/year | 8883.801 | 8831.835 | 586.796 | 6.605236 | 7890.041 | 10,200.85 | 18.55612 |
References
- Intergovernmental Panel on Climate Change—IPCC. IPCC SPECIAL REPORT: GLOBAL WARMING OF 1.5 °C (2018). Available online: https://www.ipcc.ch/sr15/ (accessed on 12 May 2022).
- Raven, P.H.; Lasos, J.B.; Singer, S.R.; Mason Kenneth, A.; Jonson, G.B. Biologia, 9th ed.; Piccinin Nuova Libreria: Padova, Italy, 2011; Volume 59, pp. 1316–1343. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; De Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; p. 390. [Google Scholar]
- FAO. Emissions Due to Agriculture. Global, Regional and Country Trends 2000–2018; FAOSTAT Analytical Brief Series No 18; FAO: Rome, Italy. Available online: https://www.fao.org/3/cb3808en/cb3808en.pdf (accessed on 20 February 2022).
- Taurino, E.; Bernetti, A.; Caputo, A.; Cordella, M.; De Lauretis, R.; D’Elia, I.; Di Cristofaro, E.; Gagna, A.; Gonella, B.; Moricci, F.; et al. Italian Emission Inventory Report 1990–2020 Informative Inventory Report 2022. Available online: https://www.isprambiente.gov.it/files2022/pubblicazioni/rapporti/iir_2022_italy-stampa-rev.pdf (accessed on 12 May 2022).
- OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029; FAO, Rome/OECD Publishing: Paris, France, 2020; Available online: https://doi.org/10.1787/1112c23b-en (accessed on 8 February 2022).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013. [Google Scholar]
- Reisinger, A.; Clark, H. How much do direct livestock emissions actually contribute to global warming? Glob. Chang. Biol. 2017, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- FAO & Global Dairy Platform. Climate Change and the Global Dairy Cattle Sector: The role of the Dairy Sector in a Low-Carbon Future; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/publications/card/en/c/CA2929EN/ (accessed on 10 February 2022).
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Anim. Int. J. Anim. Biosci. 2017, 11, 274–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, B.K.; Eckard, R.J.; Beauchemin, K.A. Review: Adaptation of ruminant livestock production systems to climate changes. Animal 2018, 12, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C.; et al. Agriculture, Forestry and Other Land Use (AFOLU). 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf (accessed on 12 May 2022).
- Thoma, G.; Popp, J.; Shonnard, D.; Nutter, D.; Matlock, M.; Ulrich, R.; Hellogg, W.; Neiderman, Z.; Kemper, N.P.; Adom, F.X.; et al. Regional analysis of greenhouse gas emissions from USA dairy farms: A cradle to farm-gate assessment of the American dairy industry circa 2008. Int. Dairy J. 2013, 31, S29–S40. [Google Scholar] [CrossRef] [Green Version]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef]
- de Vries, M.; de Boer, I.J.M. Comparing Environmental Impacts for Livestock Products: A Review of Life Cycle Assessments. Live Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.J.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A Review of Whole Farm Systems Models of Greenhouse Gas Emissions from Beef and Dairy Cattle Production Systems. Anim. Feed. Sci. Technol. 2011, 166–167, 29–45. [Google Scholar] [CrossRef]
- Hagemann, M.; Hemme, T.; Ndambi, A.; Alqaisi, O.; Sultana, M.N. Benchmarking of Greenhouse Gas Emissions of Bovine Milk Production Systems for 38 Countries. Anim. Feed Sci. Technol. 2011, 166–167, 46–58. [Google Scholar] [CrossRef]
- Milani, F.X.; Nutter, D.; Thoma, G. Invited Review: Environmental Impacts of Dairy Processing and Products: A Review. J. Dairy Sci. 2011, 94, 4243–4254. [Google Scholar] [CrossRef]
- Yan, M.-J.; Humphreys, J.; Holden, N.M. An Evaluation of Life Cycle Assessment of European Milk Production. J. Environ. Man. 2011, 92, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Laca, A.; Gómez, N.; Laca, A.; Díaz, M. Overview on GHG Emissions of Raw Milk Production and a Comparison of Milk and Cheese Carbon Footprints of Two Different Systems from Northern Spain. Environ. Sci. Pollut. Res. 2020, 27, 1650–1666. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, É.G.; Dias, A.C.; Arroja, L.; Amaro, R. The Environmental Performance of Milk Production on a Typical Portuguese Dairy Farm. Agri. Sys. 2010, 103, 498–507. [Google Scholar] [CrossRef]
- González-García, S.; Castanheira, E.G.; Dias, A.C.; Arroja, L. Using Life Cycle Assessment Methodology to Assess UHT Milk Production in Portugal. Sci. Total Environ. 2013, 442, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Berton, M.; Bovolenta, S.; Corazzin, M.; Gallo, L.; Pinterits, S.; Ramanzin, M.; Ressi, W.; Spigarelli, C.; Zuliani, A.; Sturaro, E. Environmental impacts of milk production and processing in the Eastern Alps: A “cradle-to-dairy gate” LCA approach. J. Clean Prod. 2021, 303, 127056. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar Choubey, V.; Deepak, A.; Gedam, V.V.; Raut, R.D. Life cycle assessment (LCA) of dairy processing industry: A case study of North India. J. Clean Prod. 2021, 326, 129331. [Google Scholar] [CrossRef]
- O’Brien, D.; Shalloo, L.; Patton, J.; Buckley, F.; Grainger, C.; Wallace, M. A Life Cycle Assessment of Seasonal Grass-Based and Confinement Dairy Farms. Agric. Syst. 2012, 107, 33–46. [Google Scholar] [CrossRef]
- Guerci, M.; Knudsen, M.T.; Bava, L.; Zucali, M.; Schönbach, P.; Kristensen, T. Parameters Affecting the Environmental Impact of a Range of Dairy Farming Systems in Denmark, Germany and Italy. J. Clean Prod. 2013, 54, 133–141. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Fritz, C.; Guggenberger, T.; Steinwidder, A.; Zollitsch, W. Assessing and improving eco-efficiency of multifunctional dairy farming: The need to address farms’ diversity. J. Clean Prod. 2022, 338, 130627. [Google Scholar] [CrossRef]
- Fantin, V.; Buttol, P.; Pergreffi, R.; Masoni, P. Life Cycle Assessment of Italian High Quality Milk Pro-duction. A Comparison with an EPD Study. J. Clean Prod. 2012, 28, 150–159. [Google Scholar] [CrossRef]
- Pirlo, G.; Carè, S. A Simplified Tool for Estimating Carbon Footprint of Dairy Cattle Milk. Ital. J. Anim. Sci. 2013, 4, e81. [Google Scholar] [CrossRef]
- Guerci, M.; Bava, L.; Zucali, M.; Tamburini, A.; Sandrucci, A. Effect of summer grazing on Carbon Footprint of Milk in Italian Alps: A Sensitivity Approach. J. Clean Prod. 2014, 73, 236–244. [Google Scholar] [CrossRef]
- Pirlo, G.; Lolli, S. Environmental Impact of Milk Production from Samples of Organic and Conventional Farms in Lombardy (Italy). J. Clean Prod. 2019, 211, 962–971. [Google Scholar] [CrossRef]
- Famiglietti, J.; Guerci, M.; Proserpio, C.; Ravaglia, P.; Motta, M. Development and testing of the Product Environmental Footprint Milk Tool: A comprehensive LCA tool for dairy products. Sci. Total Environ. 2019, 648, 1614–1626. [Google Scholar] [CrossRef] [PubMed]
- ISO 14044: Environmental Management—Life Cycle Assessment—Requirements and Guidelines. 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 10 October 2021).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess 2016, 21, 1218–1230. Available online: http://link.springer.com/10.1007/s11367-016-1087-8 (accessed on 15 November 2021). [CrossRef]
- Gerber, P.; Vellinga, T.; Opio, C.; Steifeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Syst. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- CLAL.it. Available online: https://www.clal.it/index.php?section=quadro_europa&country=IT (accessed on 12 January 2022).
- Intergovernmental Panel on Climate Change—IPCC. IPCC Fifth Assessment Report. The Physical Science Basis. 2013. Available online: http://www.ipcc.ch/report/ar5/wg1/ (accessed on 20 February 2022).
- PRé. SimaPro Database Manual—Methods Library, 4.15. 2020. Available online: https://simapro.com/wp-content/uploads/2020/06/DatabaseManualMethods.pdf (accessed on 20 September 2021).
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/publications/fofa/en/ (accessed on 12 May 2022).
- ISTAT. 2017. Available online: http://dati.istat.it/Index.aspx (accessed on 21 September 2020).
- CLAL. 2020. Available online: https://teseo.clal.it/?section=produttivita_capi (accessed on 21 September 2020).
- ISTAT. 2016. Available online: http://dati.istat.it/Index.aspx (accessed on 21 September 2020).
- Roma, R.; Corrado, S.; De Boni, A.; Forleo, M.B.; Fantin, V.; Moretti, M.; Palmieri, N.; Vitali, A.; Camillo, D.C. Life cycle assessment in the livestock and derived edible products sector. In Life Cycle Assessment in the Agri-food Sector; Springer: Cham, Switzerland, 2015; pp. 251–332. [Google Scholar]
- Directive (EU) 2019/of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L0904 (accessed on 12 May 2022).
- Foschi, E.; Zanni, S.; Bonoli, A. Combining Eco-Design and LCA as Decision-Making Process to Prevent Plastics in Packaging Application. Sustainability 2020, 12, 9738. [Google Scholar] [CrossRef]
- Pubblicazioni: PlasticsEurope. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf (accessed on 12 May 2022).
- Plastic Fantastic—Solving the Problem We Created for Ourselves|Heinrich Böll Foundation | Southeast 359 Asia Regional Office. Available online: https://th.boell.org/en/2019/10/31/plastic-fantastic-solving-problem-we-created-ourselves (accessed on 12 May 2022).
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic 357 waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Bonoli, A.; Zanni, A.; Awere, E. Organic waste composting and sustainability in low-income communities in Palestine: Lessons from a pilot project in the village. Intl. J. Rec. Org. Waste Agric. 2018, 8, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Mura, M.; Longo, M.; Zanni, S. Circular economy in Italian SMEs: A multi-method study. J. Clear Prod. 2020, 245, 118821. [Google Scholar] [CrossRef]
- Kumar Tarei, P.; Kumar, G.; Ramkumar, M. A Mean-Variance robust model to minimize operational risk and supply chain cost under aleatory uncertainty: A real-life case application in petroleum supply chain. Comp. Ind. Eng. 2022, 166, 107949. [Google Scholar] [CrossRef]
- Anderson, J.D.; Mitchell, J.L.; Maples, J.G. Invited Review: Lessons from the COVID-19 pandemic for food supply chains**Presented as part of the ARPAS Symposium: Building a Resilient Food Production System in the US: What COVID-19 and Other Black Swan Events Have Exposed About Modern Food Production, July 2021. Appl. Animal Sci. 2021, 37, 738–747. [Google Scholar] [CrossRef]
- UN: SHARED RESPONSIBILITY, GLOBAL SOLIDARITY: Responding to the socio-economic impacts of COVID-19 March 2020. Available online: https://unsdg.un.org/sites/default/files/2020-03/SG-Report-Socio-Economic-Impact-of-Covid19.pdf (accessed on 12 May 2022).
- Institut de l’Elevage. Le Consommations d’Energie en Batiment d’Elevage Laitier. Repères de Consommations et Pistes D’économies. Collection: Synthèse, Janvier. 2009. Available online: http://www.bretagne.synagri.com/ca1/PJ.nsf/TECHPJPARCLEF/19296/$File/CONSOMMATION%20BAT%20ELEVAGE%20LAITIER%20ADEME.pdf?OpenElement (accessed on 28 March 2022).
- Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci. 2014, 97, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson Segerkvist, K.; Hansson, H.; Sonesson, U.; Gunnarsson, S. Research on Environmental, Economic, and Social Sustainability in Dairy Farming: A Systematic Mapping of Current Literature. Sustainability 2020, 12, 5502. [Google Scholar] [CrossRef]
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “BRUNO UBERTINI”, Classyfarm. Available online: http://www.classyfarm.it (accessed on 22 April 2022).
Category | Farm-Specific Information | Data |
---|---|---|
Farm size | Site A | 2 ha |
Site B | 0.5 ha | |
Site C | 1 ha | |
Site D | 1.9 ha | |
Cropland | 560 ha | |
Average number of animals | Milking cows | 564 |
Dry cows | 84 | |
Replacements | 622 | |
Calves | 97 | |
Bulls | 1 | |
Animal turnover | Replacement rate | 35% |
Longevity | 2.5 deliveries | |
Adult mortality | 3% | |
Calf mortality | 1.87% | |
Productivity data | Annual milk production | 66,000 quintals |
Bought-in feed (source in brackets) | Sunflower seeds (Black Sea) | 191,094 kg |
Soybean (Modena province) | 9148 kg | |
Maize (Modena province) | 181,598 kg | |
Protein feed (Cremona province) | 22,042 kg | |
Water consumption (annual) | Drinking water | 27,963,555.20 L |
Cooling water | 72,000 L | |
Fuel consumption (annual) | Agricultural e livestock farming machines | 181,995 L |
Electric energy (annual) | Ventilation system | 141,849 kWh |
Other operations | 516,844 kWh | |
Manure management | Palatable slurry storage | 6 tanks (12,667 m3) |
3 cesspits (1001 m3) | ||
Non-palatable slurry storage | 9 open pits (12,229 m3) | |
Plastic waste | Plastic wrapping and cleaning product containers | 163,900 kg |
Process | Total Yearly Impact (kg CO2eq) | Impact (kg CO2eq/1 kg of FPCM) |
---|---|---|
Farm operating machines | 822,797.95 | 19.97 |
Electricity consumption | 61,470.30 | 1.49 |
Water consumption | 10,678.27 | 0.26 |
Animal feed | 244,051.51 | 5.92 |
Transport of animal feed | 8903.68 | 0.22 |
Packaging film, low density polyethylene (LDPE) | 443,183.57 | 10.76 |
Packaging, for fertilizers or pesticides, cleaning products (PE) | 4234.03 | 0.10 |
PE recycling | −108,227.27 | −2.63 |
Incineration of waste plastic | 175,486.47 | 4.26 |
Landfilling of waste plastic | 2337.88 | 0.06 |
Total | 1,664,916.38 | 40.41 |
Process | Total Yearly Impact (kg CO2eq) | Impact (kg CO2eq/1 kg of FPCM) |
---|---|---|
Production | ||
Sunflower | 42,244.29 | 1.025 |
Maize | 128,295.48 | 3.114 |
Soybean | 35,211.73 | 0.855 |
Protein feed | 38,300.00 | 0.930 |
Transport | ||
Sunflower | 6686.42 | 0.162 |
Maize | 1635.06 | 0.040 |
Soybean | 82.37 | 0.002 |
Protein feed | 499.83 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanni, S.; Roccaro, M.; Bocedi, F.; Peli, A.; Bonoli, A. LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study. Sustainability 2022, 14, 6028. https://doi.org/10.3390/su14106028
Zanni S, Roccaro M, Bocedi F, Peli A, Bonoli A. LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study. Sustainability. 2022; 14(10):6028. https://doi.org/10.3390/su14106028
Chicago/Turabian StyleZanni, Sara, Mariana Roccaro, Federica Bocedi, Angelo Peli, and Alessandra Bonoli. 2022. "LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study" Sustainability 14, no. 10: 6028. https://doi.org/10.3390/su14106028
APA StyleZanni, S., Roccaro, M., Bocedi, F., Peli, A., & Bonoli, A. (2022). LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study. Sustainability, 14(10), 6028. https://doi.org/10.3390/su14106028