Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Research on Dynamics and Driving Mechanism of Urban Construction Land
1.2.2. Research on the Effect of Urban Construction Land Change
1.3. Aim and Question
2. Materials and Methods
2.1. Study Area: Yangtze River Delta Urban Agglomeration in China
2.2. Research Methods
2.2.1. Coefficient of Variation (CV) and Gini Index (GI)
2.2.2. Boston Consulting Group Matrix: BCG
2.2.3. Decoupling Model
2.3. Research Steps
2.4. Index Selection and Data Sources
3. Results
3.1. Dynamic of Construction Land Use
3.1.1. Change Trend
3.1.2. Spatial Characteristics
3.1.3. Evolution Model
3.2. Effect of Construction Land Use
3.2.1. Resident Population
3.2.2. Gross Domestic Product
3.2.3. Government Revenue
3.2.4. Final Decoupling Result
4. Discussion
4.1. Research Review and Prospect
4.1.1. The Spatio-Temporal Evolution Has High Expansibility and Heterogeneity
4.1.2. The Population, Economy and Income Effects of Land Use Are Complex
4.2. Differentiated Policy Design of Construction Land Use
4.2.1. Transformation Leading Policy Area
4.2.2. Land Dependent Policy Area
4.2.3. Land Reduction Policy Area
- (1)
- For cities in Expansive negative decoupling, such as Shanghai, Xuzhou, and Yancheng, the supply of urban construction land should be changed from “demand-driven supply” to “supply-adjusted demand” [156] to promote the cities to achieve reduced development early. According to the idea of framing the total amount, revitalizing the stock and improving the quality, the sustainable development of the city should be achieved by revitalizing, optimizing, tapping the potential and upgrading the stock of land under the condition that the total amount of urban construction land remains unchanged or even reduced, and the urban space does not expand or even contract. The cities of such type should accelerate the preparation and implementation of urban renewal and transformation planning, comprehensive environmental improvement planning, transportation improvement and infrastructure upgrading planning, historical district and landscape protection planning, industrial upgrading and park integration planning, land preparation and demolition and resettlement planning. For example, Shanghai has taken the lead in building a comprehensive land quantization management system in China, including introducing a mechanism to link new construction land plans with construction land reduction, setting up special supportive funds for municipal land reduction, and incorporating land reduction into the performance assessment system for leading cadres of district and county governments.
- (2)
- For cities in Recessive Decoupling or Recessive Coupling, such as Lianyungang, Tongling, and Huai’an, priority should be given to promoting cities from negative to positive growth, and promoting the efficiency of urban construction land use in the process. On the one hand, it is necessary to carry out stricter supervision and investigation on “granting, supplying, using, replenishing, and investigating” urban construction land to comprehensively implement the remediation and redevelopment of low-utility land, to import high value-added industries, and to promote industrial upgrading and economic transformation; on the other hand, it is necessary to establish and improve the standards of urban construction land use and supply to set norms for investment and output intensity of urban construction land by level, by industry, and by function, to introduce a catalog of industries that meet the city’s priority and preferential land supply, and to force the transformation of investment through the innovation of urban construction land supply standards, so as to promote the sustainable development of urban economy.
- (3)
- For cities in Weak negative decoupling and Strong negative decoupling state, such as Yangzhou, Zhenjiang, Huainan, Maanshan, Huabei, Anqing, Huangshan, and Chizhou, urban construction land is still in positive growth in the context of population loss and negative economic growth. In these cities, mostly resource-based cities, tourism-based cities and marginal cities, urban construction land has been found to have experienced serious extensive development and even waste of resources, and urban development has been in a period of decline. It is important to carry out a dedicated single case analysis to identify the cruxes and obstacles that prevent the capitalization of urban construction land resources, and accordingly design and synchronize the implementation of multiple measures to promote urban revitalization for them. First of all, measures should be taken to strictly control the conversion of cultivated land and ecological land into urban construction land and limit the development of new towns and new areas, except for the national strategic projects arranged by the central government, urban agglomeration sharing projects and major livelihood and ecological projects of the city. Secondly, development plans for urban construction land reduction should be prepared and implemented, the list of reduction tasks should be refined, the reduction tasks should be decomposed to each subdistrict and included in the government performance assessment, and the total amount of urban construction land should be steadily and continuously promoted to be reduced. Again, efforts should be made to promote the restoration of suburban areas or scattered layout enclave-like urban construction land to arable land for rural revitalization and park city construction needs, implement special treatment actions for urban inefficient and idle land, and transform them into new industrial land or green space to improve economic development and the quality of human living environment [157,158].
5. Conclusions
- (1)
- The urban construction land in the city cluster has a high level of spatial heterogeneity, and in a “swallow” form it is solid in spatial structure, with increasingly diversified trends and patterns of change. According to time series analysis of urban construction land in YRDUA, the change trends are divided into three categories of “Rapid Growth”, “Slow Growth” and “Inverted U-shape”. The spatial difference of urban construction land varies greatly, and its spatial distribution is characterized by “center-periphery” structure. Furthermore, urban construction land in urban agglomerations varies greatly between cities, but the spatial heterogeneity is decreasing. Moreover, the evolution patterns are divided into four types of stars, cows, questions, and dogs based on the BCG model, and different types are geographically distributed in clusters with spatial agglomeration.
- (2)
- Changes in urban construction land in urban agglomerations have not brought about the desired effects on population growth, economic development and income improvement, and changes in decoupling types are becoming increasingly complex, with an increasing number of degraded or recoupled cities. The effect of YRDUA urban construction land change is dominated by Expansive negative decoupling, followed by Weak decoupling, Expansive coupling, and Strong negative decoupling, and the analysis results based on different perspectives of population, economy and finance vary greatly. Cities with decoupling type changes in evolution, degeneration, and unchanged states are distributed in clusters, with the largest number of degenerated cities and the same number of evolved and unchanged cities. The number of cities in Strong negative decoupling is increasing due to the economic transition and the outbreak of COVID-19, and as typical problematic spaces, they have been a major threat to sustainable development of urban agglomerations.
- (3)
- Based on the decoupling types and their changes, coupled with the change trend and evolution pattern of urban construction land, the urban agglomerations are divided into three policy areas of Transformation Leading, Land Dependent and Problem Oriented, with establishment of a differentiated management system of urban construction land in urban agglomerations. For cities in each type of policy area, targeted policy design recommendations are made, which significantly improves the precision of policy design and development planning.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | City | Construction Land Use | Resident Population | Gross Domestic Product | Government Revenue | ||||
---|---|---|---|---|---|---|---|---|---|
2011 | 2015 | 2011 | 2015 | 2011 | 2015 | 2011 | 2015 | ||
1 | Shanghai | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | Nanjing | 0.2256 | 0.2522 | 0.2146 | 0.2408 | 0.2920 | 0.3914 | 0.1744 | 0.1867 |
3 | Wuxi | 0.0919 | 0.0984 | 0.0825 | 0.0875 | 0.1879 | 0.1752 | 0.1150 | 0.0931 |
4 | Xuzhou | 0.0492 | 0.0821 | 0.0627 | 0.0707 | 0.1115 | 0.1172 | 0.0545 | 0.0496 |
5 | Changzhou | 0.0597 | 0.0858 | 0.0513 | 0.0632 | 0.1431 | 0.1826 | 0.0856 | 0.0750 |
6 | Suzhou | 0.1159 | 0.1561 | 0.0889 | 0.1063 | 0.2141 | 0.3017 | 0.1289 | 0.1518 |
7 | Nantong | 0.0741 | 0.0813 | 0.0470 | 0.0471 | 0.0840 | 0.0912 | 0.0553 | 0.0499 |
8 | Lianyungang | 0.0583 | 0.0796 | 0.0321 | 0.0414 | 0.0267 | 0.0477 | 0.0262 | 0.0316 |
9 | Huai’an | 0.0710 | 0.0665 | 0.0542 | 0.0517 | 0.0553 | 0.0659 | 0.0402 | 0.0426 |
10 | Yancheng | 0.0313 | 0.0480 | 0.0316 | 0.0501 | 0.0410 | 0.0698 | 0.0279 | 0.0411 |
11 | Yangzhou | 0.0422 | 0.0478 | 0.0435 | 0.0395 | 0.0920 | 0.1063 | 0.0445 | 0.0427 |
12 | Zhenjiang | 0.0393 | 0.0472 | 0.0336 | 0.0329 | 0.0539 | 0.0634 | 0.0297 | 0.0296 |
13 | Taizhou-JS | 0.0328 | 0.0524 | 0.0263 | 0.0344 | 0.0347 | 0.0617 | 0.0276 | 0.0295 |
14 | Suqian | 0.0242 | 0.0290 | 0.0218 | 0.0280 | 0.0247 | 0.0311 | 0.0152 | 0.0181 |
15 | Hangzhou | 0.1356 | 0.1576 | 0.1172 | 0.1375 | 0.2946 | 0.3512 | 0.2010 | 0.2079 |
16 | Ningbo | 0.1135 | 0.1020 | 0.0617 | 0.0626 | 0.1909 | 0.1964 | 0.1348 | 0.1291 |
17 | Wenzhou | 0.0512 | 0.0625 | 0.0530 | 0.0598 | 0.0716 | 0.0757 | 0.0376 | 0.0344 |
18 | Jiaxing | 0.0364 | 0.0397 | 0.0171 | 0.0189 | 0.0353 | 0.0351 | 0.0228 | 0.0198 |
19 | Huzhou | 0.0502 | 0.0351 | 0.0217 | 0.0219 | 0.0364 | 0.0374 | 0.0151 | 0.0142 |
20 | Shaoxing | 0.0348 | 0.0754 | 0.0224 | 0.0402 | 0.0288 | 0.1066 | 0.0174 | 0.0428 |
21 | Jinhua | 0.0253 | 0.0275 | 0.0198 | 0.0197 | 0.0246 | 0.0260 | 0.0138 | 0.0135 |
22 | Quzhou | 0.0203 | 0.0241 | 0.0123 | 0.0122 | 0.0202 | 0.0197 | 0.0091 | 0.0092 |
23 | Zhoushan | 0.0181 | 0.0198 | 0.0174 | 0.0208 | 0.0297 | 0.0323 | 0.0187 | 0.0171 |
24 | Taizhou-ZJ | 0.0502 | 0.0441 | 0.0409 | 0.0406 | 0.0517 | 0.0522 | 0.0265 | 0.0235 |
25 | Lishui | 0.0112 | 0.0128 | 0.0063 | 0.0064 | 0.0110 | 0.0114 | 0.0065 | 0.0065 |
26 | Hefei | 0.1071 | 0.1506 | 0.0963 | 0.1014 | 0.1255 | 0.1517 | 0.0804 | 0.0817 |
27 | Wuhu | 0.0527 | 0.0578 | 0.0462 | 0.0426 | 0.0525 | 0.0600 | 0.0273 | 0.0305 |
28 | Bengbu | 0.0372 | 0.0472 | 0.0332 | 0.0335 | 0.0214 | 0.0274 | 0.0123 | 0.0147 |
29 | Huainan | 0.0332 | 0.0367 | 0.0452 | 0.0445 | 0.0271 | 0.0222 | 0.0169 | 0.0109 |
30 | Ma’anshan | 0.0361 | 0.0372 | 0.0229 | 0.0244 | 0.0382 | 0.0337 | 0.0182 | 0.0260 |
31 | Huaibei | 0.0291 | 0.0309 | 0.0342 | 0.0326 | 0.0216 | 0.0212 | 0.0089 | 0.0081 |
32 | Tongling | 0.0165 | 0.0250 | 0.0166 | 0.0172 | 0.0256 | 0.0289 | 0.0108 | 0.0096 |
33 | Anqing | 0.0282 | 0.0321 | 0.0264 | 0.0272 | 0.0179 | 0.0170 | 0.0057 | 0.0084 |
34 | Huangshan | 0.0125 | 0.0167 | 0.0130 | 0.0139 | 0.0092 | 0.0099 | 0.0089 | 0.0082 |
35 | Chuzhou | 0.0276 | 0.0397 | 0.0140 | 0.0151 | 0.0112 | 0.0136 | 0.0079 | 0.0101 |
36 | Fuyang | 0.0284 | 0.0400 | 0.0307 | 0.0306 | 0.0154 | 0.0178 | 0.0083 | 0.0112 |
37 | Suzhou | 0.0222 | 0.0255 | 0.0184 | 0.0201 | 0.0173 | 0.0209 | 0.0030 | 0.0097 |
38 | Lu’an | 0.0222 | 0.0255 | 0.0168 | 0.0162 | 0.0112 | 0.0152 | 0.0080 | 0.0087 |
39 | Bozhou | 0.0161 | 0.0215 | 0.0123 | 0.0126 | 0.0116 | 0.0134 | 0.0041 | 0.0078 |
40 | Chizhou | 0.0125 | 0.0128 | 0.0109 | 0.0112 | 0.0103 | 0.0117 | 0.0069 | 0.0111 |
41 | Xuancheng | 0.0165 | 0.0173 | 0.0087 | 0.0099 | 0.0093 | 0.0107 | 0.0037 | 0.0044 |
Number | City | Construction Land Use | Resident Population | Gross Domestic Product | Government Revenue | ||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2020 | 2016 | 2020 | 2016 | 2020 | 2016 | 2020 | ||
1 | Shanghai | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | Nanjing | 0.4024 | 0.4323 | 0.2441 | 0.2656 | 0.3727 | 0.3829 | 0.1784 | 0.2324 |
3 | Wuxi | 0.1498 | 0.1554 | 0.0893 | 0.0978 | 0.1685 | 0.1660 | 0.0837 | 0.0977 |
4 | Xuzhou | 0.1276 | 0.1478 | 0.0731 | 0.0810 | 0.1090 | 0.0960 | 0.0419 | 0.0406 |
5 | Changzhou | 0.1364 | 0.1425 | 0.0640 | 0.0742 | 0.1769 | 0.1736 | 0.0658 | 0.0770 |
6 | Suzhou | 0.2394 | 0.2468 | 0.1087 | 0.1227 | 0.2842 | 0.2443 | 0.1436 | 0.1760 |
7 | Nantong | 0.1285 | 0.1466 | 0.0474 | 0.0614 | 0.0878 | 0.1326 | 0.0411 | 0.0526 |
8 | Lianyungang | 0.1258 | 0.1146 | 0.0413 | 0.0391 | 0.0464 | 0.0502 | 0.0226 | 0.0247 |
9 | Huai’an | 0.1279 | 0.1068 | 0.0543 | 0.0598 | 0.0732 | 0.0697 | 0.0365 | 0.0280 |
10 | Yancheng | 0.0773 | 0.0849 | 0.0502 | 0.0573 | 0.0669 | 0.0618 | 0.0310 | 0.0294 |
11 | Yangzhou | 0.0773 | 0.0953 | 0.0433 | 0.0444 | 0.1029 | 0.0939 | 0.0368 | 0.0321 |
12 | Zhenjiang | 0.0728 | 0.0875 | 0.0329 | 0.0327 | 0.0607 | 0.0493 | 0.0241 | 0.0224 |
13 | Taizhou-JS | 0.0850 | 0.0772 | 0.0347 | 0.0363 | 0.0610 | 0.0589 | 0.0272 | 0.0266 |
14 | Suqian | 0.0449 | 0.0535 | 0.0288 | 0.0309 | 0.0305 | 0.0309 | 0.0158 | 0.0165 |
15 | Hangzhou | 0.2647 | 0.3260 | 0.1404 | 0.1713 | 0.3490 | 0.3901 | 0.2068 | 0.2841 |
16 | Ningbo | 0.1783 | 0.2127 | 0.0739 | 0.0896 | 0.1978 | 0.2040 | 0.1213 | 0.1528 |
17 | Wenzhou | 0.0942 | 0.1043 | 0.0620 | 0.0649 | 0.0729 | 0.0699 | 0.0318 | 0.0399 |
18 | Jiaxing | 0.0621 | 0.0829 | 0.0193 | 0.0213 | 0.0344 | 0.0388 | 0.0194 | 0.0261 |
19 | Huzhou | 0.0549 | 0.0650 | 0.0221 | 0.0228 | 0.0359 | 0.0380 | 0.0137 | 0.0202 |
20 | Shaoxing | 0.1119 | 0.1285 | 0.0407 | 0.0442 | 0.0994 | 0.0922 | 0.0399 | 0.0516 |
21 | Jinhua | 0.0512 | 0.0567 | 0.0232 | 0.0243 | 0.0246 | 0.0236 | 0.0128 | 0.0136 |
22 | Quzhou | 0.0376 | 0.0439 | 0.0123 | 0.0124 | 0.0188 | 0.0198 | 0.0086 | 0.0110 |
23 | Zhoushan | 0.0308 | 0.0295 | 0.0209 | 0.0214 | 0.0322 | 0.0261 | 0.0155 | 0.0188 |
24 | Taizhou-ZJ | 0.0679 | 0.0656 | 0.0407 | 0.0474 | 0.0501 | 0.0496 | 0.0227 | 0.0235 |
25 | Lishui | 0.0202 | 0.0219 | 0.0067 | 0.0100 | 0.0109 | 0.0105 | 0.0061 | 0.0080 |
26 | Hefei | 0.2378 | 0.2497 | 0.1005 | 0.1139 | 0.1488 | 0.1766 | 0.0737 | 0.0806 |
27 | Wuhu | 0.0923 | 0.1263 | 0.0430 | 0.0574 | 0.0589 | 0.0765 | 0.0301 | 0.0402 |
28 | Bengbu | 0.0745 | 0.0786 | 0.0333 | 0.0341 | 0.0264 | 0.0281 | 0.0145 | 0.0151 |
29 | Huainan | 0.0575 | 0.0631 | 0.0448 | 0.0443 | 0.0209 | 0.0209 | 0.0101 | 0.0092 |
30 | Ma’anshan | 0.0573 | 0.0593 | 0.0243 | 0.0241 | 0.0323 | 0.0324 | 0.0129 | 0.0145 |
31 | Huaibei | 0.0478 | 0.0494 | 0.0281 | 0.0247 | 0.0194 | 0.0162 | 0.0067 | 0.0084 |
32 | Tongling | 0.0420 | 0.0379 | 0.0182 | 0.0181 | 0.0267 | 0.0216 | 0.0113 | 0.0102 |
33 | Anqing | 0.0520 | 0.0778 | 0.0272 | 0.0251 | 0.0162 | 0.0204 | 0.0111 | 0.0099 |
34 | Huangshan | 0.0260 | 0.0299 | 0.0142 | 0.0102 | 0.0095 | 0.0106 | 0.0073 | 0.0074 |
35 | Chuzhou | 0.0446 | 0.0534 | 0.0158 | 0.0166 | 0.0131 | 0.0229 | 0.0102 | 0.0114 |
36 | Fuyang | 0.0621 | 0.0753 | 0.0316 | 0.0394 | 0.0172 | 0.0228 | 0.0098 | 0.0141 |
37 | Suzhou | 0.0406 | 0.0455 | 0.0203 | 0.0224 | 0.0204 | 0.0218 | 0.0088 | 0.0101 |
38 | Lu’an | 0.0398 | 0.0414 | 0.0181 | 0.0184 | 0.0171 | 0.0199 | 0.0092 | 0.0094 |
39 | Bozhou | 0.0359 | 0.0380 | 0.0128 | 0.0142 | 0.0130 | 0.0181 | 0.0075 | 0.0096 |
40 | Chizhou | 0.0194 | 0.0218 | 0.0113 | 0.0114 | 0.0111 | 0.0122 | 0.0070 | 0.0058 |
41 | Xuancheng | 0.0280 | 0.0332 | 0.0109 | 0.0111 | 0.0103 | 0.0113 | 0.0040 | 0.0082 |
References
- Surya, B.; Salim, A.; Hernita, H.; Suriani, S.; Menne, F.; Rasyidi, E.S. Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia. Land 2021, 10, 556. [Google Scholar] [CrossRef]
- Salvati, L.; Ferrara, A.; Tombolini, I.; Gemmiti, R.; Colantoni, A.; Perini, L. Desperately Seeking Sustainability: Urban Shrinkage, Land Consumption and Regional Planning in a Mediterranean Metropolitan Area. Sustainability 2015, 7, 11980–11997. [Google Scholar] [CrossRef] [Green Version]
- Surya, B.; Ahmad, D.N.A.; Sakti, H.H.; Sahban, H. Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia. Land 2020, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Egidi, G.; Cividino, S.; Quaranta, G.; Alhuseen, A.; Salvati, L. Land mismatches, urban growth and spatial planning: A contribution to metropolitan sustainability. Environ. Impact Assess. Rev. 2020, 84, 106439. [Google Scholar] [CrossRef]
- Dong, L.K.; Li, X. Evolution of Urban Construction Land Structure Based on Information Entropy and Shift-Share Model: An Empirical Study on Beijing-Tianjin-Hebei Urban Agglomeration in China. Sustainability 2022, 14, 1244. [Google Scholar] [CrossRef]
- Moreira, F.; Fontes, I.; Dias, S.; Silva, J.B.E.; Loupa-Ramos, I. Contrasting static versus dynamic-based typologies of land cover patterns in the Lisbon metropolitan area: Towards a better understanding of peri-urban areas. Appl. Geogr. 2016, 75, 49–59. [Google Scholar] [CrossRef]
- Kim, J.H. Crossing-over between land cover and land use: Exploring spatially varying relationships in two large US metropolitan areas. Appl. Geogr. 2015, 60, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L.; Tombolini, I.; Ippolito, A.; Carlucci, M. Land quality and the city: Monitoring urban growth and land take in 76 Southern European metropolitan areas. Environ. Plan. B-Urban Anal. City Sci. 2018, 45, 691–712. [Google Scholar] [CrossRef]
- Shrestha, M.K.; York, A.M.; Boone, C.G.; Zhang, S. Land fragmentation due to rapid urbanization in the Phoenix Metropolitan Area: Analyzing the spatiotemporal patterns and drivers. Appl. Geogr. 2012, 32, 522–531. [Google Scholar] [CrossRef]
- Lu, S.S.; Guan, X.L.; He, C.; Zhang, J.L. Spatio-Temporal Patterns and Policy Implications of Urban Land Expansion in Metropolitan Areas: A Case Study of Wuhan Urban Agglomeration, Central China. Sustainability 2014, 6, 4723–4748. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Guldmann, J.M. Landscape ecology, land-use structure, and population density: Case study of the Columbus Metropolitan Area. Landsc. Urban Plan. 2012, 105, 74–85. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N.; Arianoutsou, M. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Sci. Total Environ. 2015, 490, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.P.; Yang, X.J. Drivers of land-use/land-cover changes and dynamic modeling for the Atlanta, Georgia Metropolitan Area. Photogramm. Eng. Remote Sens. 2022, 68, 1073–1082. [Google Scholar]
- Jiang, G.H.; Ma, W.Q.; Wang, D.Q.; Zhou, D.Y.; Zhang, R.J.; Zhou, T. Identifying the internal structure evolution of urban built-up land sprawl (UBLS) from a composite structure perspective: A case study of the Beijing metropolitan area, China. Land Use Policy 2017, 62, 258–267. [Google Scholar] [CrossRef]
- Galimberti, C. Nuevos procesos de expansión metropolitana: Incremento acelerado de suelo urbano en el Área Metropolitana de Rosario (1990–2010). Eure-Rev. Latinoam. Estud. Urbano Reg. 2021, 47, 51–71. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.E.; Zhong, H.D.; Xu, S.Y.; Hu, X.M.; Wang, J.; Wu, J.P. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environ. Monit. Assess. 2011, 177, 609–621. [Google Scholar] [CrossRef]
- Shoman, W.; Korkutan, M.; Alganci, U.; Tanik, A.; Demirel, H. Dynamic Monitoring of Land Cover Change: A Recent Study for Istanbul Metropolitan Area. Fresenius Environ. Bull. 2019, 28, 688–693. [Google Scholar]
- Li, Z.C.; Gurgel, H.; Li, M.M.; Dessay, N.; Gong, P. Urban Land Expansion from Scratch to Urban Agglomeration in the Federal District of Brazil in the Past 60 Years. Int. J. Environ. Res. Public Health 2022, 19, 1032. [Google Scholar] [CrossRef]
- Toure, S.I.; Stow, D.A.; Clarke, K.; Weeks, J. Patterns of land cover and land use change within the two major metropolitan areas of Ghana. Geocarto Int. 2020, 35, 209–223. [Google Scholar] [CrossRef]
- Jagarnath, M.; Thambiran, T.; Gebreslasie, M. Modelling urban land change processes and patterns for climate change planning in the Durban metropolitan area, South Africa. J. Land Use Sci. 2019, 14, 81–109. [Google Scholar] [CrossRef]
- Dai, J.L.; Wang, K.Y.; Gao, X.L. Spatial Structure and Land Use Control in Extended Metropolitan Region of Zhujiang River Delta, China. Chin. Geogr. Sci. 2010, 20, 298–308. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.G.; Wang, W.J.; Lei, X.; Deng, Y. Exploring spatial-temporal change and gravity center movement of construction land in the Chang-Zhu-Tan urban agglomeration. J. Geogr. Sci. 2019, 29, 1363–1380. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.H.; Liu, M.Y.; Cao, Y.D.; Chen, C.; Zhang, D.P. Change pattern and driving mechanism of construction land in China’s undertaking industrial transfer demonstration area: Taking the Wanjiang City Belt along the Yangtze River as an Example. Earth Sci. Res. J. 2020, 24, 215–223. [Google Scholar] [CrossRef]
- Mathan, M.; Krishnaveni, M. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices-a case study of Chennai Metropolitan Area, India. Environ. Monit. Assess. 2020, 192, 15. [Google Scholar] [CrossRef]
- Wahyudi, A.; Liu, Y.; Corcoran, J. Combining Landsat and landscape metrics to analyse large-scale urban land cover change: A case study in the Jakarta Metropolitan Area. J. Spat. Sci. 2019, 64, 515–534. [Google Scholar] [CrossRef]
- Sigler, T.; Searle, G.; Martinus, K.; Tonts, M. Metropolitan land-use patterns by economic function: A spatial analysis of firm headquarters and branch office locations in Australian cities. Urban Geogr. 2016, 37, 416–435. [Google Scholar] [CrossRef]
- Sarzynski, A.; Galster, G.; Stack, L. Evolving United States metropolitan land use patterns. Urban Geogr. 2014, 35, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitao, A. Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sandoval, J.S.O.; Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 161–174. [Google Scholar] [CrossRef]
- Wu, K.Y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Keys, E.; Wentz, E.A.; Redman, C.L. The spatial structure of land use from 1970–2000 in the Phoenix, Arizona, Metropolitan Area. Prof. Geogr. 2007, 59, 131–147. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A. Land Cover Change and Flood Risk in a Peri-Urban Environment of the Metropolitan Area of Rome (Italy). Water Resour. Manag. 2020, 34, 4399–4413. [Google Scholar] [CrossRef]
- Marull, J.; Cunfer, G.; Sylvester, K.; Tello, E. A landscape ecology assessment of land-use changes on the Great Plains-Denver (CO, USA) metropolitan edge. Reg. Environ. Change 2018, 18, 1765–1782. [Google Scholar] [CrossRef] [Green Version]
- Rojas, C.; Pino, J.; Basnou, C.; Vivanco, M. Assessing land-use and -cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepcion (Chile). Implications for biodiversity conservation. Appl. Geogr. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- Basnou, C.; Alvarez, E.; Bagaria, G.; Guardiola, M.; Isern, R.; Vicente, P.; Pino, J. Spatial Patterns of Land Use Changes Across a Mediterranean Metropolitan Landscape: Implications for Biodiversity Management. Environ. Manag. 2013, 52, 971–980. [Google Scholar] [CrossRef]
- Qiao, W.Y.; Guan, W.H.; Huang, X.J. Assessing the Potential Impact of Land Use on Carbon Storage Driven by Economic Growth: A Case Study in Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 11924. [Google Scholar] [CrossRef]
- Wang, X.; Che, L.; Zhou, L.; Xu, J.G. Spatio-temporal Dynamic Simulation of Land use and Ecological Risk in the Yangtze River Delta Urban Agglomeration, China. Chin. Geogr. Sci. 2021, 31, 829–847. [Google Scholar] [CrossRef]
- Hu, P.P.; Li, F.; Sun, X.; Liu, Y.L.; Chen, X.C.; Hu, D. Assessment of Land-Use/Cover Changes and Its Ecological Effect in Rapidly Urbanized Areas-Taking Pearl River Delta Urban Agglomeration as a Case. Sustainability 2021, 13, 5075. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Bao, W.K.; Li, Y.H.; Wang, Y.S.; Chen, Z.F. Land Use Transition and Its Eco-Environmental Effects in the Beijing-Tianjin-Hebei Urban Agglomeration: A Production-Living-Ecological Perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- Darvishi, A.; Yousefi, M.; Marull, J. Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy 2020, 99, 105098. [Google Scholar] [CrossRef]
- Akubia, J.E.K.; Ahmed, A.; Bruns, A. Assessing How Land-Cover Change Associated with Urbanisation Affects Ecological Sustainability in the Greater Accra Metropolitan Area, Ghana. Land 2020, 9, 182. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Lu, H.W.; Li, J.; Xia, J. Effects of land use cover change on carbon emissions and ecosystem services in Chengyu urban agglomeration, China. Stoch. Environ. Res. Risk Assess. 2020, 34, 1197–1215. [Google Scholar] [CrossRef]
- Qin, X.C.; Fu, B.H. Assessing and Predicting Changes of the Ecosystem Service Values Based on Land Use/Land Cover Changes with a Random Forest-Cellular Automata Model in Qingdao Metropolitan Region, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6484–6494. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.Y.; Zhao, F.; Yan, H.M.; Zhang, F.; Wei, X.Q. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Mascarenhas, A.; Haase, D.; Ramon, T.B.; Santos, R. Pathways of demographic and urban development and their effects on land take and ecosystem services: The case of Lisbon Metropolitan Area, Portugal. Land Use Policy 2019, 82, 181–194. [Google Scholar] [CrossRef]
- Kim, H.; Hong, S. Relationship between Land-Use Type and Daily Concentration and Variability of PM10 in Metropolitan Cities: Evidence from South Korea. Land 2022, 11, 23. [Google Scholar] [CrossRef]
- Shairsingh, K.K.; Brook, J.R.; Mihele, C.M.; Evans, G.J. Characterizing long-term NO2 concentration surfaces across a large metropolitan area through spatiotemporal land use regression modelling of mobile measurements. Environ. Res. 2021, 196, 111010. [Google Scholar] [CrossRef]
- Dirgawati, M.; Barnes, R.; Wheeler, A.J.; Arnold, A.L.; McCaul, K.A.; Stuart, A.L.; Blake, D.; Hinwood, A.; Yeap, B.B.; Heyworth, J.S. Development of Land Use Regression models for predicting exposure to NO2 and NOx in Metropolitan Perth, Western Australia. Environ. Model. Softw. 2015, 74, 258–267. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yeganeh, B.; Clifford, S.; Knibbs, L.D.; Morawska, L. Development of a land use regression model for daily NO2 and NOx concentrations in the Brisbane metropolitan area, Australia. Environ. Model. Softw. 2017, 95, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Nautiyal, G.; Maithani, S.; Sharma, A. Exploring the Relationship Between Spatio-temporal Land Cover Dynamics and Surface Temperature Over Dehradun Urban Agglomeration, India. J. Indian Soc. Remote Sens. 2021, 49, 1307–1318. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, V.P.; Almesfer, M.K.; Talukdar, S.; Alsubhi, M.; Ahmed, M.; Khan, R.A. Spatio-temporal analysis and simulation of land cover changes and their impacts on land surface temperature in urban agglomeration of Bisha Watershed, Saudi Arabia. Geocarto Int. 2021, 1–27. [Google Scholar] [CrossRef]
- Shen, Z.C.; Xu, X.L. Influence of the Economic Efficiency of Built-Up Land (EEBL) on Urban Heat Islands (UHIs) in the Yangtze River Delta Urban Agglomeration (YRDUA). Remote Sens. 2020, 12, 3944. [Google Scholar] [CrossRef]
- Callejas, I.J.A.; De Oliveira, A.S.; Santos, F.M.D.; Durante, L.C.; Nogueira, M.C.D.A.; Zeilhofer, P. Relationship between land use/cover and surface temperatures in the urban agglomeration of Cuiaba-Varzea Grande, Central Brazil. J. Appl. Remote Sens. 2011, 5, 053569. [Google Scholar] [CrossRef]
- Shahfahad; Naikoo, M.W.; Islam, A.M.T.; Mallick, J.; Rahman, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim. 2021, 41, 101052. [Google Scholar] [CrossRef]
- Chanu, C.S.; Elango, L.; Shankar, G.R. A geospatial approach for assessing the relation between changing land use/land cover and environmental parameters including land surface temperature of Chennai metropolitan city, India. Arab. J. Geosci. 2021, 14, 132. [Google Scholar] [CrossRef]
- Khamchiangta, D.; Dhakal, S. Future urban expansion and local climate zone changes in relation to land surface temperature: Case of Bangkok Metropolitan Administration, Thailand. Urban Clim. 2021, 37, 100835. [Google Scholar] [CrossRef]
- Adulkongkaew, T.; Satapanajaru, T.; Charoenhirunyingyos, S.; Singhirunnusorn, W. Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand. Heliyon 2020, 6, 04485. [Google Scholar] [CrossRef]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018). Sustainability 2019, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Nai, L.L. Analysis on Control Objective of Construction Land in China Based on Decoupling Scene. J. Nan-Jing Agric. Univ. (Soc. Sci. Ed.) 2014, 14, 80–85. [Google Scholar]
- Mao, T.Y.; Pu, L.J. The decoupling of urbanization and economic growth in Jiangsu Province. Resour. Sci. 2017, 39, 1560–1572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.X.; Hu, B.Q.; Shi, K.F.; Su, K.C.; Yang, Q.Y. Exploring the dynamic, forecast and decoupling effect of land natural capital utilization in the hinterland of the Three Gorges Reservoir area, China. Sci. Total Environ. 2020, 718, 134832. [Google Scholar] [CrossRef]
- Shao, J.J.; Ge, J.F. Investigation into Relationship between Intensive Land Use and Urban Heat Island Effect in Shijiazhuang City Based on the Tapio Decoupling Theory. J. Urban Plan. Dev. 2020, 146, 04020043. [Google Scholar] [CrossRef]
- Li, Y.N.; Cai, M.M.; Wu, K.Y.; Wei, J.C. Decoupling analysis of carbon emission from construction land in Shanghai. J. Clean. Prod. 2019, 210, 25–34. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, B.X. Decoupling of carbon emissions from agricultural land utilisation from economic growth in China. Agric. Econ.-Zemed. Ekon. 2020, 66, 510–518. [Google Scholar] [CrossRef]
- Lu, J.; Guldmann, J.M. Employment Distribution and Land-Use Structure in the Metropolitan Area of Columbus, Ohio. J. Urban. Plan. Dev. 2015, 141, 04014040. [Google Scholar] [CrossRef]
- Orcao, A.I.E.; Lopez, E.C.; Garcia, B.S.V.; Robles, A.L. Influence of Land Politics on Firms’ Location in Metropolitan Areas: The Case of Zaragoza. Scripta Nova. Revista Electrónica de Geografía y Ciencias Sociales. 2007. Available online: http://www.ub.edu/geocrit/sn/sn-240.htm (accessed on 14 April 2022).
- Lens, M.C.; Monkkonen, P. Do Strict Land Use Regulations Make Metropolitan Areas More Segregated by Income? J. Am. Plan. Assoc. 2016, 82, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yang, Y.; Guo, T. Measurement of Urban–Rural Integration Level in Suburbs and Exurbs of Big Cities Based on Land-Use Change in Inland China: Chengdu. Land 2021, 10, 474. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Liu, D.D.; Chen, N.C. Satellite Monitoring of Urban Land Change in the Middle Yangtze River Basin Urban Agglomeration, China between 2000 and 2016. Remote Sens. 2017, 9, 1086. [Google Scholar] [CrossRef] [Green Version]
- Valerio, Q.; Anna, B.; Francesco, C.; Diego, G.; Dalila, R.; Piermaria, C. Monitoring land take by point sampling: Pace and dynamics of urban expansion in the Metropolitan City of Rome. Landsc. Urban Plan. 2015, 143, 126–133. [Google Scholar] [CrossRef]
- Pokojska, P. Simulating land use change in the southern part of Warsaw Metropolitan Area with application of Dyna-CLUE model. Geografie 2019, 124, 57–82. [Google Scholar] [CrossRef]
- Sroka, W.; Mikolajczyk, J.; Wojewodzic, T.; Kwoczynska, B. Agricultural Land vs. Urbanisation in Chosen Polish Metropolitan Areas: A Spatial Analysis Based on Regression Trees. Sustainability 2018, 10, 837. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.H.; Yang, Z.Y.; Yu, X.Y.; Ding, W.W. Evaluating Sustainable Development of Land Resources in the Yangtze River Economic Belt of China. J. Glob. Inf. Manag. 2022, 30, 6. [Google Scholar] [CrossRef]
- Airiken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the North Slope of Tianshan, China. Environ. Sci. Pollut. Res. 2021, 29, 12282–12299. [Google Scholar] [CrossRef]
- Benito, P.R.; Cuevas, J.A.; de la Parra, R.B.; Prieto, F.; del Barrio, J.M.G.; Zavala, M.A. Land use change in a Mediterranean metropolitan region and its periphery: Assessment of conservation policies through CORINE Land Cover data and Markov models. For. Syst. 2011, 19, 315–328. [Google Scholar]
- Araki, S.; Shima, M.; Yamamoto, K. Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Sci. Total Environ. 2018, 634, 1269–1277. [Google Scholar] [CrossRef]
- Deslatte, A.; Tavares, A.; Feiock, R.C. Policy of Delay: Evidence from a Bayesian Analysis of Metropolitan Land-Use Choices. Policy Stud. J. 2018, 46, 674–699. [Google Scholar] [CrossRef]
- Jimenez, A.A.; Vilchez, F.F.; Gonzalez, O.N.; Flores, S.M.L.M. Analysis of the Land Use and Cover Changes in the Metropolitan Area of Tepic-Xalisco (1973–2015) through Landsat Images. Sustainability 2018, 10, 1860. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Chen, G.N.; Martinez, L.M.; Silva, J.D.E. Bi-level cellular agent-based model: Simulation of potential impacts of high-speed rail on land cover change in the Lisbon Metropolitan Area, Portugal. J. Transport. Land Use 2015, 8, 151–180. [Google Scholar] [CrossRef]
- Geng, S.Y.; Ma, M.; Hu, X.K.; Yu, H.C. Multi-Scale Geographically Weighted Regression Modeling of Urban and Rural Construction Land Fragmentation-A Case Study of the Yangtze River Delta Region. IEEE Access 2022, 10, 7639–7652. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Li, T. Identifying Driving Forces of Built-Up Land Expansion Based on the Geographical Detector: A Case Study of Pearl River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2020, 5, 1759. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.D.; Wang, F.Y.; Wang, K.Y.; Xu, S.J. Quantifying influences of anthropogenic-natural factors on ecological land evolution in mega-urban agglomeration: A case study of Guangdong-Hong Kong-Macao greater Bay area. J. Clean. Prod. 2021, 283, 125304. [Google Scholar] [CrossRef]
- Jun, M.J. A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: The case of the Seoul metropolitan area. Int. J. Geogr. Inf. Sci. 2021, 35, 2149–2167. [Google Scholar] [CrossRef]
- Rahnama, M.R. Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016–2030. Sustain. Cities Soc. 2021, 64, 102548. [Google Scholar] [CrossRef]
- Al-sharif, A.A.A.; Pradhan, B. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab. J. Geosci. 2014, 7, 4291–4301. [Google Scholar] [CrossRef]
- Osman, T.; Shaw, D.; Kenawy, E. An integrated land use change model to simulate and predict the future of greater Cairo metropolitan region. J. Land Use Sci. 2019, 13, 565–584. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.Y.; Zhang, Z.H.; Wang, X. Built-up land expansion simulation with combination of naive Bayes and cellular automaton model-A case study of the Shanghai-Hangzhou Bay agglomeration. Growth Chang. 2021, 52, 1804–1825. [Google Scholar] [CrossRef]
- Al-shalabi, M.; Billa, L.; Pradhan, B.; Mansor, S.; Al-Sharif, A.A.A. Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: The case of Sana’a metropolitan city, Yemen. Environ. Earth Sci. 2013, 70, 425–437. [Google Scholar] [CrossRef]
- Li, J.Z.; Ouyang, X.; Zhu, X. Land space simulation of urban agglomerations from the perspective of the symbiosis of urban development and ecological protection: A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration. Ecol. Indic. 2021, 126, 107669. [Google Scholar] [CrossRef]
- Han, H.Y.; Huang, C.; Ahn, K.H.; Shu, X.F.; Lin, L.Y.; Qiu, D.R. The Effects of Greenbelt Policies on Land Development: Evidence from the Deregulation of the Greenbelt in the Seoul Metropolitan Area. Sustainability 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.Y.; Wang, S.L.; Gao, Z.Y.; Lv, Y.; Fu, X.J. Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district. Acta Ecol. Sin. 2012, 32, 198–206. [Google Scholar]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, S. Spatial Pattern and Driving Mechanism of Urban–Rural Income Gap in Gansu Province of China. Land 2021, 10, 1002. [Google Scholar] [CrossRef]
- Ruan, B.Q.; Xu, F.R.; Jiang, R.F. Analysis on spatial and temporal variability of groundwater level based on spherical sampling model. J. Hydraul. Eng. 2008, 39, 573–579. [Google Scholar]
- Zhao, S.; Zhao, K.; Zhang, P. Spatial Inequality in China’s Housing Market and the Driving Mechanism. Land 2021, 10, 841. [Google Scholar] [CrossRef]
- Miyamoto, S.; Chacon, A.; Hossain, M.; Martinez, L. Soil salinity of urban turf areas irrigated with saline water I. Spatial variability. Landsc. Urban Plan. 2005, 71, 233–241. [Google Scholar]
- She, D.L.; Shao, M.A.; Yu, S.G. Spatial Variability of Soil Water Content on a Cropland-grassland Mixed Slope Land in the Loess Plateau, China. Trans. Chin. Soc. Agric. Mach. 2010, 41, 57–63. [Google Scholar]
- Li, L.; Zhao, K.; Wang, X.; Zhao, S.; Liu, X.; Li, W. Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi. Land 2022, 11, 415. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development. Indicators to Measure Decoupling of Environmental Pressure and Economic Growth; OECD: Paris, France, 2002.
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Hu, J.; Zhao, K.; Chen, H.; Zhao, S.; Li, W. Dynamics and Decoupling Analysis of Carbon Emissions from Construction Industry in China. Buildings 2022, 12, 257. [Google Scholar] [CrossRef]
- Song, Y.; Sun, J.J.; Zhang, M.; Su, B. Using the Tapio-Z decoupling model to evaluate the decoupling status of China’s CO2 emissions at provincial level and its dynamic trend. Struct. Change Econ. Dyn. 2020, 52, 120–129. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Yan, Y.; Zhu, K.; Guan, C. Spatio-Temporal Evolution Characteristics and Influencing Factors of Urban Service-Industry Land in China. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Longhofer, W.; Jorgenson, A. Decoupling reconsidered: Does world society integration influence the relationship between the environment and economic development? Soc. Sci. Res. 2017, 65, 17–29. [Google Scholar] [CrossRef]
- Wang, H.; Xia, S.; Zhang, Q.; Zhang, P. Has China’s Construction Waste Change Been Decoupled from Economic Growth? Buildings 2022, 12, 147. [Google Scholar] [CrossRef]
- Ouyang, D.; Zhu, X.; Liu, X.; He, R.; Wan, Q. Spatial Differentiation and Driving Factor Analysis of Urban Construction Land Change in County-Level City of Guangxi, China. Land 2021, 10, 691. [Google Scholar] [CrossRef]
- Carruthers, J.I.; Mulligan, G.F. Land absorption in US metropolitan areas: Estimates and projections from regional adjustment models. Geogr. Anal. 2007, 39, 78–104. [Google Scholar] [CrossRef]
- Han, H.L.; Li, H. Coupling Coordination Evaluation between Population and Land Urbanization in Ha-Chang Urban Agglomeration. Sustainability 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Tomao, A.; Mattioli, W.; Fanfani, D.; Ferrara, C.; Quaranta, G.; Salvia, R.; Salvati, L. Economic Downturns and Land-Use Change: A Spatial Analysis of Urban Transformations in Rome (Italy) Using a Geographically Weighted Principal Component Analysis. Sustainability 2021, 13, 11293. [Google Scholar] [CrossRef]
- Du, D.N. The causal relationship between land urbanization quality and economic growth: Evidence from capital cities in China. Qual. Quant. 2017, 51, 2707–2723. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, J.M.; Zhu, D.L.; Zhang, H. Limits of Land Capitalization and Its Economic Effects: Evidence from China. Land 2022, 10, 1346. [Google Scholar] [CrossRef]
- Huang, D.X.; Chan, R.C.K. On ‘Land Finance’ in urban China: Theory and practice. Habitat Int. 2018, 75, 96–104. [Google Scholar] [CrossRef]
- Sperandelli, D.I.; Dupas, F.A.; Pons, N.A.D. Dynamics of Urban Sprawl, Vacant Land, and Green Spaces on the Metropolitan Fringe of Sao Paulo, Brazil. J. Urban Plan. Dev. 2013, 139, 274–279. [Google Scholar] [CrossRef]
- Cutsinger, J.; Galster, G.; Wolman, H.; Hanson, R.; Towns, D. Verifying the multi-dimensional nature of metropolitan land use: Advancing the understanding and measurement of sprawl. J. Urban Aff. 2005, 27, 235–259. [Google Scholar] [CrossRef]
- Geymen, A.; Baz, I. Monitoring urban growth and detecting land-cover changes on the Istanbul metropolitan area. Environ. Monit. Assess. 2008, 136, 449–459. [Google Scholar] [CrossRef]
- Asabere, S.B.; Acheampong, R.A.; Ashiagbor, G.; Beckers, S.C.; Keck, M.; Erasmi, S.; Schanze, J.; Sauer, D. Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy 2020, 96, 104707. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhu, X.; He, Q.Y. Study of Spatio-temporal Pattern and Driving Mechanism of Urban Land Expansion in Urban Agglomeration: A Case Study of the Changsha-Zhuzhou-Xiangtan Urban Agglomeration. Resour. Environ. Yangtze Basin 2020, 29, 1298–1309. [Google Scholar] [CrossRef]
- Li, P.X.; Cao, H. Simulating Uneven Urban Spatial Expansion under Various Land Protection Strategies: Case Study on Southern Jiangsu Urban Agglomeration. ISPRS Int. J. Geo-Inf. 2019, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Li, X.W.; Liang, C.; Shi, J.B.; Li, M.D. Spatiotemporal Dynamics and Urban Land-Use Transformation in the Rapid Urbanization of the Shanghai Metropolitan Area in the 1980s–2000s. J. Environ. Inform. 2012, 20, 103–114. [Google Scholar] [CrossRef]
- Xue, Q.R.; Yang, X.H.; Wu, F.F. A three-stage hybrid model for the regional assessment, spatial pattern analysis and source apportionment of the land resources comprehensive supporting capacity in the Yangtze River Delta urban agglomeration. Sci. Total Environ. 2020, 711, 134428. [Google Scholar] [CrossRef]
- Ren, X.Y.; He, Y.F.; Wang, Z.M. Spatial-temporal characteristics of construction land expansion and occupation of cultivated land in urban agglomeration of central and southern Liaoning Province based on Remote Sensing. Remote Sens. Land Resour. 2020, 32, 98–105. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Feng, Y.F.; Guo, G.H.; Wang, F.; Cai, S.R. The Spatio-temporal Characteristics of Construction Land Expansion in China’s Typical Urban Agglomerations in Recent 30 years: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration and the Guangdong-Hong Kong—Macao Greater Bay Area. J. South. China Norm. Univ. (Nat. Sci. Ed.) 2022, 54, 79–90. [Google Scholar] [CrossRef]
- Akubia, J.E.K.; Bruns, A. Unravelling the Frontiers of Urban Growth: Spatio-Temporal Dynamics of Land-Use Change and Urban Expansion in Greater Accra Metropolitan Area, Ghana. Land 2019, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.C.; Li, Y.P. Geo-information Tupu process of land use/cover change in polycentric urban agglomeration: A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration. Geogr. Res. 2020, 39, 2626–2641. [Google Scholar] [CrossRef]
- Ma, X.; He, S.M.; Huang, T.T.; Wang, Y. Analysis of Spatial-Temporal Pattern Characteristics and Driving Factors of Urban Land Expansion: Taking Central Plains City Cluster as an Example. Ecol. Econ. 2020, 36, 105–111. [Google Scholar]
- Duan, L.Q.; Chen, W.X.; Wang, N.N.; Fan, C.S.; Liang, L.T. Analysis on Difference of Construction Land Expansion Pattern Based on Bayesian Spatio-temporal Model: Taking Yangtze River Delta and Central Plains Urban Agglomeration as Examples. Areal Res. Dev. 2021, 40, 168–174. [Google Scholar] [CrossRef]
- Liu, Y.L.; Cai, E.X.; Jing, Y.; Gong, J.; Wang, Z.Y. Analyzing the Decoupling between Rural-to-Urban Migrants and Urban Land Expansion in Hubei Province, China. Sustainability 2018, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Shi, Y.Y.; Duan, W.K.; Chen, A.Q.; Wang, N.; Hao, J.M. Spatiotemporal Decoupling of Population, Economy and Construction Land Changes in Hebei Province. Sustainability 2019, 11, 6794. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Liu, Y.F.; Kong, X.S.; Li, J.W. Spatiotemporal Decoupling between Population and Construction Land in Urban and Rural Hubei Province. Sustainability 2017, 9, 1258. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Huang, X.; Yu, W.X.; Lin, M.; Zhang, Z.H. Interaction Relationship Between Built-Up Land Expansion and Demographic-Social-Economic Urbanization in Shanghai-Hangzhou Bay Metropolitan Region of Eastern China. Photogramm. Eng. Remote Sens. 2019, 85, 231–240. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhang, Q. Human-environment interactions in China: Evidence of land-use change in Beijing-Tianjin-Hebei Metropolitan Region. Hum. Ecol. Rev. 2014, 20, 26–35. [Google Scholar]
- Hu, H.B.; Wu, L.Y.; Zhan, Y.L.; Zhang, S.H. Spatial and Temporal Pattern Analysis of Land Use in Yangtze River Delta Based on Remote Sensing and GIS in Intelligent Environment. Adv. Civil. Eng. 2021, 2021, 5561977. [Google Scholar] [CrossRef]
- Huang, L.J.; Yang, P.; Zhang, B.Q.; Hu, W.Y. Spatio-Temporal Coupling Characteristics and the Driving Mechanism of Population-Land-Industry Urbanization in the Yangtze River Economic Belt. Land 2021, 10, 400. [Google Scholar] [CrossRef]
- Wu, X.Y.; Yang, S.; Yin, S.G.; Xu, H.Z.Y. Spatial-temporal Dynamic Characteristics and Its Driving Mechanism of Urban Built-Up Area in Yangtze River Delta based on GTWR Model. Resour. Environ. Yangtze Basin 2021, 30, 2594–2606. [Google Scholar] [CrossRef]
- Marshall, J.D. Urban land area and population growth: A new scaling relationship for metropolitan expansion. Urban. Stud. 2007, 44, 1889–1904. [Google Scholar] [CrossRef]
- Zhao, C.J.; Wu, Y.M.; Ye, X.Y.; Wu, B.J.; Kudva, S. The direct and indirect drag effects of land and energy on urban economic growth in the Yangtze River Delta, China. Environ. Dev. Sustain. 2020, 21, 2945–2962. [Google Scholar] [CrossRef]
- Rienow, A.; Kantakumar, L.N.; Ghazaryan, G.; Droge-Rothaar, A.; Sticksel, S.; Trampnau, B.; Thonfeld, F. Modelling the spatial impact of regional planning and climate change prevention strategies on land consumption in the Rhine-Ruhr Metropolitan Area 2017–2030. Landsc. Urban. Plan. 2022, 217, 104284. [Google Scholar] [CrossRef]
- Gao, X.W.; Liu, T.; Cao, G.Z. On the Influencing Factors of Metropolitan and Non-Metropolitan Urban Land Expansion in Yangtze Delta Region. Hum. Geogr. 2012, 126, 88–93. [Google Scholar] [CrossRef]
- Zhu, C.M.; Zhang, X.L.; Wang, K.; Yuan, S.F.; Yang, L.X.; Skitmore, M. Urban-rural construction land transition and its coupling relationship with population flow in China’s urban agglomeration region. Cities 2020, 101, 102701. [Google Scholar] [CrossRef]
- Kinuthia, H.; Majale, C.; Letema, S. Influence of public policy planning on peri-urban land speculation in (Greater) Eastern Bypass in Nairobi Metropolitan. Land Use Policy 2021, 107, 105515. [Google Scholar] [CrossRef]
- Pawe, C.K.; Saikia, A. Unplanned urban growth: Land use/land cover change in the Guwahati Metropolitan Area, India. Geogr. Tidsskr.-Dan. J. Geogr. 2018, 118, 88–100. [Google Scholar] [CrossRef]
- Jain, M.; Pallagst, K. Land Use Beyond Control How fragmented governance created sprawl in the Delhi Metropolitan Area. DISP 2015, 51, 29–43. [Google Scholar] [CrossRef]
- Colavitti, A.M.; Serra, S. The Role Role of Regulation in the Land-Take Control. the Italian Case of the Metropolitan City of Cagliari. Land Use Policy 2019, 83, 270–281. [Google Scholar] [CrossRef]
- Pendall, R.; Wegmann, J.; Martin, J.; Wei, D.H. The Growth of Control? Changes in Local Land-Use Regulation in Major US Metropolitan Areas From 1994 to 2003. Hous. Policy Debate 2018, 28, 901–919. [Google Scholar] [CrossRef]
- Pendall, R.; Puentes, R. Land-use regulations as territorial governance in US metropolitan areas. Boletín de la Asociación de Geógrafos Españoles 2008, 46, 181–206. [Google Scholar]
- Wilson, S.A.; Wilson, C.O. Land Use/Land Cover Planning Nexus: A Space-Time Multi-Scalar Assessment of Urban Growth in the Tulsa Metropolitan Statistical Area. Hum. Ecol. 2017, 44, 731–750. [Google Scholar] [CrossRef]
- Ioja, C.L.; Nita, M.R.; Vanau, G.O.; Onose, D.A.; Gavrilidis, A.A. Using multi-criteria analysis for the identification of spatial land-use conflicts in the Bucharest Metropolitan Area. Ecol. Indic. 2014, 42, 112–121. [Google Scholar] [CrossRef]
- Badia, A.; Cebollada, A.; Vera, A.; Gisbert, M.; Mendizabal, E.; Tulla, A.F. Land occupation in a municipality of the Metropolitan Region of Barcelona: Challenges and opportunities. Boletín de la Asociación de Geógrafos Españoles 2021, 89. [Google Scholar] [CrossRef]
- Shu, H.; Xiong, P.P. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Yangtze River Delta. Land Use Policy 2019, 81, 604–623. [Google Scholar] [CrossRef]
- Abrantes, P.; Fontes, I.; Gomes, E.; Rocha, J. Compliance of land cover changes with municipal land use planning: Evidence from the Lisbon metropolitan region (1990–2007). Land Use Policy 2016, 51, 120–134. [Google Scholar] [CrossRef]
- Lee, J.; Jung, S. Industrial land use planning and the growth of knowledge industry: Location pattern of knowledge-intensive services and their determinants in the Seoul metropolitan area. Land Use Policy 2020, 95, 104632. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.W.; Zhou, Y. Policy Strategies to Revive Rural Land in Peri-Metropolitan Towns: Resource Identification, Capitalization, and Financialization. Land 2021, 10, 132. [Google Scholar] [CrossRef]
- Kline, J.D.; Thiers, P.; Ozawa, C.P.; Yeakley, J.A.; Gordon, S.N. How well has land-use planning worked under different governance regimes? A case study in the Portland, OR-Vancouver, WA metropolitan area, USA. Landsc. Urban. Plan. 2014, 131, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Jun, M.J. Forecasting urban land-use demand using a metropolitan input-output model. Environ. Plan. A 2005, 37, 1311–1328. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, Y.B.; Zhong, Q.Y. Evaluation of Land Comprehensive Carrying Capacity and Spatio-Temporal Analysis of the Harbin-Changchun Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 521. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, Y.; Peng, F.; Li, J.Z.; Yan, X.J. Analog simulation of urban construction land supply and demand in Chang-Zhu-Tan Urban Agglomeration based on land intensive use. J. Geogr. Sci. 2019, 29, 1346–1362. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Liu, Q.H.; Blaschke, T.; Zhang, Z.M.; Liu, Y.X.; Hu, Y.N.; Wang, M.; Xu, Z.H.; Wu, J.S. Integrating land development size, pattern, and density to identify urban-rural fringe in a metropolitan region. Landsc. Ecol. 2020, 35, 2045–2059. [Google Scholar] [CrossRef]
- Tao, Z.; Jiang, G.H.; Li, G.Y.; Zhou, D.Y.; Qu, Y.B. Neglected idle rural residential land (IRRL) in metropolitan suburbs: Spatial differentiation and influencing factors. J. Rural. Stud. 2020, 78, 163–175. [Google Scholar] [CrossRef]
Decoupling Type | Value | ||||
---|---|---|---|---|---|
Decoupling | Strong | ≤0 | ≥0 | ≤0 | Best state, where economic growth is accompanied by reduced carbon emissions, with quantity decrease and quantity increase |
Weak | >0 | >0 | (0,0.8] | Second best, where economic growth is greater than land use growth, with increase in both quantity and quantity | |
Recessive | <0 | <0 | (1.2, +∞) | Negative growth, where the land use deceleration is greater than economic slowdown, with quantitative decrease and optimization | |
Coupling | Expansive | >0 | >0 | (0.8,1.2] | Land use and economic growth are largely synchronized, with incremental expansion |
Recessive | <0 | <0 | (0.8,1.2] | Land use and the economy have largely declined in tandem, with contracting shrinkage | |
Negative Decoupling | Strong | >0 | <0 | <0 | Worst state, where the economy slows down while land use grows, with quantity increase but quality decrease |
Weak | <0 | <0 | (0,0.8] | Second worst, where economic deceleration is greater than that of land use, with decrease in both quantity and quality | |
Expansive | >0 | >0 | (1.2, +∞) | Economic growth is less than that of land use, with incremental inefficiency |
No. | Index | Source |
---|---|---|
1 | Urban Construction Land | China Urban Construction Statistical Yearbook |
2 | Resident Population | China City Statistical Yearbook, and Statistical Yearbooks of Shanghai, Jiangsu, Zhejiang, Anhui provinces |
3 | Gross Domestic Product | |
4 | Government Revenue |
Parameter | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Max | 2900.49 | 2904.25 | 2915.56 | 2915.56 | 2915.56 | 1913.30 | 1910.74 | 1899.04 | 1944.96 | 1944.96 |
Min | 32.46 | 35.32 | 35.36 | 36.69 | 37.18 | 37.18 | 38.55 | 39.54 | 41.46 | 42.35 |
Mean | 215.47 | 220.86 | 230.50 | 236.60 | 239.80 | 221.72 | 226.30 | 227.18 | 233.98 | 242.35 |
CV | 2.08 | 2.03 | 1.96 | 1.91 | 1.88 | 1.40 | 1.37 | 1.36 | 1.36 | 1.32 |
GI | 0.57 | 0.57 | 0.56 | 0.55 | 0.55 | 0.50 | 0.49 | 0.49 | 0.49 | 0.48 |
Indicator | 2011–2015 | 2016–2020 | 2011–2020 |
---|---|---|---|
Relative share (%) | 0.08 | 0.12 | 0.12 |
Growth rate (%) | 4.20 | 2.83 | 3.31 |
Decoupling | Coupling | Negative Decoupling | |||||||
---|---|---|---|---|---|---|---|---|---|
Strong | Weak | Recessive | Expansive | Recessive | Expansive | Weak | Strong | ||
2011–2015 | RP | 3 | 8 | 1 | 4 | 0 | 21 | 0 | 4 |
GDP | 4 | 32 | 0 | 3 | 0 | 2 | 0 | 0 | |
GR | 4 | 32 | 0 | 2 | 0 | 3 | 0 | 0 | |
FDR | 3 | 8 | 1 | 4 | 0 | 21 | 0 | 4 | |
2016–2020 | RP | 4 | 8 | 2 | 5 | 0 | 16 | 0 | 6 |
GDP | 6 | 32 | 0 | 2 | 0 | 1 | 0 | 0 | |
GR | 4 | 24 | 1 | 2 | 1 | 6 | 0 | 3 | |
FDR | 3 | 7 | 2 | 5 | 1 | 15 | 0 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Shao, D.; Zhang, Z. Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China. Sustainability 2022, 14, 6204. https://doi.org/10.3390/su14106204
Zhang B, Shao D, Zhang Z. Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China. Sustainability. 2022; 14(10):6204. https://doi.org/10.3390/su14106204
Chicago/Turabian StyleZhang, Biao, Dian Shao, and Zhonghu Zhang. 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China" Sustainability 14, no. 10: 6204. https://doi.org/10.3390/su14106204
APA StyleZhang, B., Shao, D., & Zhang, Z. (2022). Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China. Sustainability, 14(10), 6204. https://doi.org/10.3390/su14106204