The Impact of Fly Ashes from Thermal Conversion of Sewage Sludge on Properties of Natural Building Materials on the Example of Clay
Abstract
:1. Introduction and Literature Review
2. Materials and Methods
2.1. Materials and Preparation of Samples
- 0-i—without additives (pure clay),
- 1-i—with addition of the fly ash from the combustion of sewage sludge from Łodz,
- 2-i—with addition of the fly ash from the combustion of sewage sludge from Cracow,
- 3-i—with addition of the fly ash from the combustion of sewage sludge from Warsaw,
2.2. Research Methods
2.3. Characteristics of the Clay Used in the Research
- -
- silica indicator:
- -
- alumina indicator:
3. Results and Discussion
3.1. Physical and Chemical Properties of Fly Ashes from Thermal Conversion of Sewage Sludge
3.2. Properties of the Clay-Ash Composite with Addition of the Fly Ash
3.3. Statistical Analysis
- df = 6 and α = 0.05 => critical value: t = 2.446912
- df = 5 and α = 0.05 => critical value: t = 2.570582
- df = 4 and α = 0.05 => critical value: t = 2.776445.
4. Conclusions
- -
- The collected results of the investigations enabled a comparison of the properties of clay samples produced with the fly ash from three wastewater treatment plants.
- -
- The obtained test results confirm the possibility of manufacturing clay-ash composites using the fly ash from thermal conversion of sewage sludge.
- -
- The main objective of the investigations is the utilization of wastes coming from the thermal conversion of sewage sludge, and the determination of the possibility of its use in clay-ash composites.
- -
- With large amounts of fly ash addition (above 20%), the firing temperature plays a significant role in achieving the appropriate compressive strength.
- -
- It is proposed to reduce the ash quantity (5, 10, 15, 20%) in the samples, and to re-fire in the temperature of 300 and 700 °C to check an effect of this reduction (positive or negative) on the strength. Such a test should be performed in a temperature of 850–1050 degrees.
- -
- In the next stage, the tests should be repeated with the previously assumed proportions between ash and clay, but with the samples fired at higher temperatures, in the range 950–1050 degrees.
- -
- The assumption of a higher firing temperature for the clay-ash composite samples is justified by the results of the statistical analysis (t-Student test) which showed that the temperature significantly affects the mechanical and physical parameters of the clay-ash composite samples.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MHURD. Ministry of Housing and Urban-rural Development of the People’s Republic of China. Available online: http://www.mohurd.gov.cn/zcfg/jsbwj_0/jsbwjcsjs/201502/t20150217_220335.html (accessed on 6 March 2020).
- Zhang, Z.; Zhang, L.; Yin, Y.; Liang, X.; Li, A. The Recycling of Incinerated Sewage Sludge Ash as a Raw Material for CaO-Al2O3-SiO2-P2O5 Glass-Ceramic Production. Environ. Technol. 2017, 36, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Mininni, G.; Blanch, A.; Lucena, F.; Berselli, S. EU Policy on Sewage Sludge Utilization and Perspectives on New Approaches of Sludge Management. Environ. Sci. Pollut. Res. 2015, 22, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, G.; Wang, H. Current State of Sludge Production, Management, Treatment and Disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Umar, T. Making future floating cities sustainable: A way forward. Proc. Inst. Civ. Eng. Urban Des. Plan. 2020, 173, 214–237. [Google Scholar] [CrossRef]
- The Council of the European Communities. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge is Used in Agriculture; Official Journal of the European Union: Luxembourg, 1986. (In Polish) [Google Scholar]
- The Council of the European Communities. 91/271/EEC Council Directive of 21 May 1991 r. on the Urban Waste-Water Treatment; Official Journal of the European Union: Brussels, Belgium, 1991. (In Polish) [Google Scholar]
- The Council of the European Communities. 2018/851 European Parliament and Council Directive (EC) of 30 May 2018 r. Amending Directive 2008/98/EC on Wastes; Official Journal of the European Union: Strasbourg, Germany, 2018. (In Polish) [Google Scholar]
- The Council of the European Communities. 2018/850 European Parliament and Council Directive (EC) of 30 May 2018 r. Amending Directive 1999/31/WE on the Landfill of Wastes; Official Journal of the European Union: Strasbourg, Germany, 2018. (In Polish) [Google Scholar]
- Office of the Federal Register (United States). Code of Federal Regulations. Protection of Environment. Chapter I—Environmental Protection Agency (Continued), Sub-Chapter O—Sewage Sludge, Part 503—Standards for The Use Or Disposal Of Sewage Sludge, Subpart B—Land Application, Section 503.13—Pollutant L; Office of the Federal Register: Washington, DC, USA, 2010. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2002.
- Wrc. Guidelines for the Utilisation and Disposal of Wastewater Sludge: Volume 4 Requirements for the Beneficial Use of Sludge at High Loading Rates; Water Research Commission: Pretoria, South Africa, 2009; Volume 4. [Google Scholar]
- Ministry of Environment. Strategy for Dealing with Municipal Sewage Sludge for 2019–2022; Ministry of Environment: Warsaw, Poland, 2018. (In Polish) [Google Scholar]
- Wichowski, P.; Rutkowska, G.; Nowak, P. Elution of selected heavy metals from concretes containing fly ashes from thermal conversion of sewage sludge (in Polish: Wymywanie wybranych metali ciężkich z betonów zawierających popiół lotny z termicznego przekształcania osadów ściekowych). Acta Sci. Pol. Archit. 2017, 16, 43–51. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mazurkiewicz, M.; Mokrzycki, E. Fly Ash from Energy Production—A Waste, by Product and Raw Material. Gospod. Surowcami Miner. 2015, 31, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Kepys, W.; Piotrowski, Z.; Wisła-Walsh, E. Investigation of impact of agglomerated fly ashes from combustion of municipal wastes on properties of water-ash suspensions (in Polish: Badanie wpływu zbrylowanych popiołów ze spalania odpadów komunalnych na właściwości zawiesin popiołowo-wodnych). Górnictwo I Geoinzynieria 2005, 29, 63–72. [Google Scholar]
- Piotrowski, Z.; Uliasz-Bocheńczyk, A. Possibilities of commercial use of wastes from fluidal boilers (in Polish: Możliwości gospodarczego wykorzystania odpadów z kotłów fluidalnych). Gospod. Surowcami Miner. 2008, 24, 73–85. [Google Scholar]
- European Commission. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). Off. J. Eur. Communities 2005, L269, 1–15. [Google Scholar]
- Wzorek, Z. Recovery of phosphorus compounds from thermally processed wastes and their application as a substitute of natural phosphorus compound (in Polish: Odzysk związków fosforu z termicznie przetworzonych odpadów i ich zastosowanie jako substytutu naturalnych surowców fosforowych). Inżynieria i Technol. Chem. 2008, 1, 7–28. [Google Scholar]
- Xu, H.; He, P.; Gu, W.; Wang, G.; Shao, L. Recovery of Phosphorus as Struvite from Sewage Sludge Ash. J. Environ. Sci. 2012, 24, 1533–1538. [Google Scholar] [CrossRef]
- Donatello, S.; Cheeseman, C.R. Recycling and Recovery Routes for Incinerated Sewage Sludge Ash (ISSA): A Review. Waste Manag. 2013, 33, 2328–2340. [Google Scholar] [CrossRef] [PubMed]
- Weigand, H.; Bertau, M.; Hübner, W.; Bohndick, F.; Bruckert, A. RecoPhos: Full-Scale Fertilizer Production from Sewage Sludge Ash. Waste Manag. 2013, 33, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, P.J.; Cresswell, D.J. Synthetic Aggregates from Combustion Ashes Using an Innovative Rotary Kiln. Waste Manag. 2001, 21, 241–246. [Google Scholar] [CrossRef]
- Borowski, G. Evaluation of applicability of glazing of sewage sludge to its management (in Polish: Ocena przydatności zeszkliwienia osadów ściekowych do ich zagospodarowania). Ochr. Środowiska i Zasobów Nat. 2012, 51, 78–84. [Google Scholar]
- Cyr, M.; Coutand, M.; Clastres, P. Technological and Environmental Behavior of Sewage Sludge Ash (SSA) in Cement-Based Materials. Cem. Concr. Res. 2007, 37, 1278–1289. [Google Scholar] [CrossRef]
- Monzó, J.; Payá, J.; Borrachero, M.V.; Girbés, I. Reuse of Sewage Sludge Ashes (SSA) in Cement Mixtures: The Effect of SSA on the Workability of Cement Mortars. Waste Manag. 2003, 23, 373–381. [Google Scholar] [CrossRef]
- Pietrzyk, J. The role of thermal processes in the disposal of sewage sludge—Rola procesów termicznych w zagospodarowaniu komunalnych osadów ściekowych. In VII Krakowska Konferencja Młodych Uczonych, Proceedings of the Cracow Conference of Young Scientists 2012, Cracow, Poland, 27–29 September 2012; Fundacja dla AGH: Kraków, Poland, 2012. [Google Scholar]
- Kępys, W.; Pomykała, R.; Pietrzyk, J. Study of The Properties of the Ash-Water Suspension of the Incinerated Sewage Sludge Ash (Issa) (in Polish: Badania właściwości zawiesin popiołowo—wodnych z popiołów ze spalania komunalnych osadów ściekowych). Miner. Eng. 2014, 15, 205–212. Available online: https://www.researchgate.net/publication/292105547_Study_of_the_properties_of_the_ash-Water_suspension_of_the_incinerated_sewage_sludge_ash_Issa (accessed on 15 October 2021).
- Wisniewski, K.; Ziolkowska, M. Impact of addition of fly ashes on properties of clay-ash composites (in Polish: Wpływ dodatku popiołu lotnego na właściwości kompozytu glinowo-popiołowego). Acta Sci. Pol. Archit. 2014, 13, 81–89. [Google Scholar]
- Potrzebowski, H. A Brickyard Worker Guide (In Polish: Poradnik Pracownika Cegielni); Arkady: Warsaw, Poland, 1978. [Google Scholar]
- Kałwa, M.; Ropska, H. Energy industry wastes as a potential raw material base for the ceramic industry (in Polish: Odpady energetyczne potencjalną bazą surowcową dla przemysłu ceramicznego. prace komisji nauk ceramicznych). Ceramika 1986, 35, 59–79. [Google Scholar]
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Possible Applications for Municipal Solid Waste Fly Ash. J. Hazard. Mater. 2003, 96, 201–216. [Google Scholar] [CrossRef]
- Weng, C.-H.; Lin, D.-F.; Chiang, P.-C. Utilization of Sludge as Brick Materials. Adv. Environ. Res. 2003, 7, 679–685. [Google Scholar] [CrossRef]
- Lin, C.-F.; Wu, C.-H.; Ho, H.-M. Recovery of Municipal Waste Incineration Bottom Ash and Water Treatment Sludge to Water Permeable Pavement Materials. Waste Manag. 2006, 26, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Kosior-Kazberuk, M.; Karwowska, J. Selected problems of management of ashes from combustion of sewage sludge in cement technology (in Polish: Wybrane problemy zagospodarowania popiołów pochodzących ze spalania osadów ściekowych w technologii materiałów cementowych). Inżynieria Ekol. 2011, 25, 110–123. [Google Scholar]
- Lin, K.-L.; Chen, B.-Y.; Chiou, C.-S.; Cheng, A. Waste Brick’s Potential for Use as a Pozzolan in Blended Portland Cement. Waste Manag. Res. 2010, 28, 647–652. [Google Scholar] [CrossRef] [PubMed]
- ITB. BN-62/6738-02: 1981 Clay Construction. Clay Masses (in Polish: Budownictwo z gliny. Masy Gliniane); Instytut Techniki Budowlanej: Warsaw, Poland, 1981. [Google Scholar]
- IEC 60584-1:2013 Thermocouples. Part 1: EMF Specifications and Tolerances; International Electrotechnical Committee: Geneva, Switzerland, 2013.
- PKN. PN-EN 450-1:2012 Popiół Lotny Do Betonu—Część 1: Definicje, Specyfikacje i Kryteria Zgodności; Polski Komitet Normalizacyjny: Warsaw, Poland, 2012. [Google Scholar]
- ASTM C379-65T; Specification for Fly Ash for Use as a Pozzolanic Material with Lime; ASTM Stand: West Conshohocken, PA, USA, 1965.
- PKN. PN-EN 451-2:2017-06 Fly Ash Testing Method—Part 2: Determination of Fineness by Wet Sieving (In Polish: Metoda Badania Popiołu Lotnego—Część 2: Oznaczanie Miałkości Przez Przesiewanie na Mokro); Polski Komitet Normalizacyjny: Warsaw, Poland, 2017. [Google Scholar]
- PKN. PN-EN 1097-07:2008 Determination of a Filler Density (in Polish: Oznaczenie Gęstości Wypełniacza); Polski Komitet Normalizacyjny: Warsaw, Poland, 2008. [Google Scholar]
- Rutkowska, G.; Wichowski, P.; Świgoń, K.; Sobieski, P. Testing the properties of concretes with the addition of fly ash from thermal treatment of sewage sludge. Cem. Lime Concr. 2017, 2, 113–119. [Google Scholar]
- Rutkowska, G.; Chalecki, M.; Żółtowski, M. Fly Ash from Thermal Conversion of Sludge as a Cement Substitute in Concrete Manufacturing. Sustainability 2021, 13, 4182. [Google Scholar] [CrossRef]
- Szponder-Kołakowska, D.K.; Trybalski, K. Modern Methods and Measuring Devices in the Study of the Properties of Raw Materials and Mineral Waste; Wydawnictwa AGH: Kraków, Poland, 2014. [Google Scholar]
- Wdowin, M.; Franus, M. Analysis of fly ashes in terms of acquisition of rare earth elements (in Polish: Analiza popiołów lotnych pod kątem uzyskania z nich pierwiastków ziem rzadkich). Polityka Energy 2014, 17, 369–380. [Google Scholar]
- Umar, T. Developing Toolkits and Guidelines to Improve Safety Performance in the Construction Industry in Oman. Ph.D. Thesis, London South Bank University, London, UK, 2020. [Google Scholar] [CrossRef]
Chemical Composition | % of Mass |
---|---|
SiO2 | 45–80 |
Al2O3 | 8–28 |
Fe2O3 | 2–15 |
FeO | 2–15 |
CaO | 0.5–20 |
MgO | 0.0–4 |
K2O | 0.0–5 |
Na2O | 0.0–5 |
Loss on ignition | 3–16 |
Pure Clay | Clay with Ash From | ||||||
---|---|---|---|---|---|---|---|
Łodz | Cracow | Warsaw | |||||
No. | Mass [g] | No. | Mass [g] | No. | Mass [g] | No. | Mass [g] |
0-1 | 136.0 | 1-1 | 114.0 | 2-1 | 120.0 | 3-1 | 120.0 |
0-2 | 138.0 | 1-2 | 119.0 | 2-2 | 118.0 | 3-2 | 119.0 |
0-3 | 134.0 | 1-3 | 114.0 | 2-3 | 117.0 | 3-3 | 114.0 |
0-4 | 135.0 | 1-4 | 119.0 | 2-4 | 120.0 | 3-4 | 116.0 |
0-5 | 132.0 | 1-5 | 120.0 | 2-5 | 118.0 | 3-5 | 116.0 |
Chemical Composition | Content [%] |
---|---|
SiO2 | 55.00–67.40 |
Al2O3 | 13.60–17.30 |
TiO2 | 0.70–0.85 |
Fe2O3 | 6.20–7.90 |
MnO | 0.06–0.17 |
MgO | 1.65–2.70 |
CaO | 0.25–0.75 |
Na2O | 0.05–0.30 |
K2O | 2.35–3.40 |
P2O | 0.05–0.15 |
Mineral Composition | Content [%] |
---|---|
Quartz | 17–23 |
Kaolinite | 3–10 |
Illit | 3–10 |
Hematite | 3–5 |
Plagioclase | <3 |
Potassium feldspar | <3 |
Goethite | <2 |
Anataz | 3–5 |
Packaged minerals (vermiculite/chlorite, smectite/illite) | 47–68 |
amorphous phase | - |
T-Test for Independent Samples (Spreadsheet24) Note: Variable Were Treated as Independent Samples | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 vs. Group 2 | Mean Group 1 | Mean Group 2 | t-Value | df | p | Valid N Group 1 | Valid N Group 2 | Std. Dev. Group 1 | Std. Dev. Group 2 | F-Ratio Variances | p Variances |
Cracow vs. Temp. | 1.207273 | 340 | −3.84769 | 21 | 0.000935 | 11 | 12 | 0.358834 | 291.4540 | 659,710.0 | 0 |
Warsaw vs. Temp. | 0.608417 | 340 | −4.03386 | 22 | 0.000555 | 12 | 12 | 0.521950 | 291.4540 | 311,804.4 | 0 |
Clay vs. Temp. | 5.695917 | 340 | −3.97323 | 22 | 0.000644 | 12 | 12 | 2.675164 | 291.4540 | 11,869.7 | 0 |
Lodz vs. Temp. | 1.525917 | 340 | −4.02294 | 22 | 0.000570 | 12 | 12 | 0.863062 | 291.4540 | 114,039.7 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, K.; Rutkowska, G.; Jeleniewicz, K.; Dąbkowski, N.; Wójt, J.; Chalecki, M.; Siwiński, J. The Impact of Fly Ashes from Thermal Conversion of Sewage Sludge on Properties of Natural Building Materials on the Example of Clay. Sustainability 2022, 14, 6213. https://doi.org/10.3390/su14106213
Wiśniewski K, Rutkowska G, Jeleniewicz K, Dąbkowski N, Wójt J, Chalecki M, Siwiński J. The Impact of Fly Ashes from Thermal Conversion of Sewage Sludge on Properties of Natural Building Materials on the Example of Clay. Sustainability. 2022; 14(10):6213. https://doi.org/10.3390/su14106213
Chicago/Turabian StyleWiśniewski, Krzysztof, Gabriela Rutkowska, Katarzyna Jeleniewicz, Norbert Dąbkowski, Jarosław Wójt, Marek Chalecki, and Jarosław Siwiński. 2022. "The Impact of Fly Ashes from Thermal Conversion of Sewage Sludge on Properties of Natural Building Materials on the Example of Clay" Sustainability 14, no. 10: 6213. https://doi.org/10.3390/su14106213
APA StyleWiśniewski, K., Rutkowska, G., Jeleniewicz, K., Dąbkowski, N., Wójt, J., Chalecki, M., & Siwiński, J. (2022). The Impact of Fly Ashes from Thermal Conversion of Sewage Sludge on Properties of Natural Building Materials on the Example of Clay. Sustainability, 14(10), 6213. https://doi.org/10.3390/su14106213