The Balanced Allocation of Medical and Health Resources in Urban Areas of China from the Perspective of Sustainable Development: A Case Study of Nanjing
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area and Potential Data Sources
3.2. Evaluation Index
3.3. Methods
3.3.1. Equity Analysis Method
3.3.2. Efficiency Analysis Method
3.3.3. Balance Evaluation Model
4. Results
4.1. Results of Equity Analysis
4.1.1. Total Theil Index Analysis
4.1.2. Regional Theil Index Analysis
4.2. Results of Efficiency Analysis
4.2.1. Technical Efficiency Analysis
4.2.2. Pure Technical Efficiency and Scale Efficiency Analysis
4.3. Results of Balance Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, D. Sustainability science: An Object-Process-Subject analytical framework. China Popul. Resour. Environ. 2016, 26, 1–9. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2014; p. 18. [Google Scholar]
- Zhang, Y. Analysis of Subjective Reasons and Influence Factors on Sustainable Development of Medical Car e Services. Chin. Health Econ. 2008, 8, 23–25. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2008&filename=WEIJ200808012&uniplatform=NZKPT&v=ztISZyzr_KWAq3ccrcznD_i4x-T3rRyaN6D20jgd_Cb1Ys4TS7HmSfC_6W5FQhKB (accessed on 10 April 2022).
- World Health Organization. Health Topics About Health Equity. 2020. Available online: http://www.who.int/topics/health_equity/en/ (accessed on 11 December 2021).
- Dlouhý, M. Measuring Geographic Inequalities: Dealing with Multiple Health Resources by Data Envelopment Analysis. Front. Public Health 2018, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, W.C.; Hsiao, W.C.; Chen, W.; Hu, S.; Ma, J.; Maynard, A. Early appraisal of China’s huge and complex health-care reforms. Lancet 2012, 379, 833–842. [Google Scholar] [CrossRef]
- Jin, C.; Cheng, J.; Lu, Y.; Huang, Z.; Cao, F. Spatial inequity in access to healthcare facilities at a county: A case study of Deqing County, Zhejiang, China. Int. J. Equity Health 2015, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.; Dong, S.; Zhao, Y.; Hu, H.; Li, Z. Assessing potential spatial accessibility of health services in rural China: A case study of Donghai county. Int. J. Equity Health 2013, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhang, Z.; Lan, X. Impact of China’s Referral Reform on the Equity and Spatial Accessibility of Healthcare Resources: A Case Study of Beijing. Soc. Sci. Med. 2019, 235, 112386. [Google Scholar] [CrossRef]
- Cheng, G.; Zeng, X.; Duan, L.; Lu, X.; Sun, H.; Jiang, T.; Li, Y. Spatial difference analysis for accessibility to high level hospitals based on travel time in Shenzhen, China. Habitat Int. 2016, 53, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Gu, Y.; Yang, F.; Wu, T.; Wang, H.; Cutler, H.; Zhang, L. Tertiary hospitals or community clinics? An enquiry into the factors affecting patients’ choice for healthcare facilities in urban China. China Econ. Rev. 2020, 63, 101538. [Google Scholar] [CrossRef]
- Wu, F.; Hu, Q.; Zhu, C.; Wang, H.; Yu, Q.; Sun, H. New Structural Economic Analysis of Anti-COVID-19 Pandemic Model of BEST Region. Int. J. Environ. Res. Public Health 2021, 18, 7822. [Google Scholar] [CrossRef]
- XinHua Net. The Fourteenth Five-Year Plan for National Economic and Social Development of the People’s Republic of China and the Outline of Long-Term Goals for 2035. 2021. Available online: http://www.xinhuanet.com/2021-03/13/c_1127205564.htm (accessed on 14 December 2021).
- Culyer, A.J. The bogus conflict between efficiency and vertical equity. Health Econ. 2006, 5, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, L.; Antwi, H.A.; Chen, X. Evaluation of health resource utilization efficiency in community health centers of Jiangsu Province, China. Hum. Resour. Health 2018, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, D.; Aramaki, T. Geographic distribution of healthcare resources, healthcare service provision, and patient flow in Japan: A cross sectional study. Soc. Sci. Med. 2012, 75, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Czypionka, T.; Kraus, M.; Mayer, S.; Röhrling, G. Efficiency, ownership, and financing of hospitals: The case of Austria. Health Care Manag. Sci. 2014, 17, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Horev, T.; Pesis-Katz, I.; Mukamel, D.B. Trends in geographic disparities in allocation of health care resources in the US. Health Policy 2004, 68, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, Y.; Ren, J.; Sun, L.; Liu, C. Inequality in the distribution of health resources and health services in China: Hospitals versus primary care institutions. Int. J. Equity Health 2017, 16, 42. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, Y.; Twum, P.; Li, S. National equity of health resource allocation in China: Data from 2009 to 2013. Int. J. Equity Health 2016, 15, 68. [Google Scholar] [CrossRef] [Green Version]
- Cetin, V.R.; Bahce, S. Measuring the efficiency of health systems of OECD countries by data envelopment analysis. Appl. Econ. 2016, 48, 3497–3507. [Google Scholar] [CrossRef]
- Top, M.; Konca, M.; Sapaz, B. Technical efficiency of healthcare systems in African countries: An application based on data envelopment analysis. Health Policy Technol. 2020, 9, 62–68. [Google Scholar] [CrossRef]
- Retzlaff-Roberts, D.; Chang, C.F.; Rubin, R.M. Technical efficiency in the use of health care resources: A comparison of OECD countries. Health Policy 2004, 69, 55–72. [Google Scholar] [CrossRef]
- De, P.; Dhar, A.; Bhattacharya, B.N. Efficiency of Health Care System in India: An Inter-State Analysis using DEA Approach. Soc. Work Public Health 2012, 27, 482–506. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Peng, J.; Zhang, L.; Zhang, Y. Is the allocation of medical and health resources effective? Characteristic facts from regional heterogeneity in China. Int. J. Equity Health 2020, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wu, F.; Chen, W.; Zhu, C.; Huang, T. Research on Urban Medical and Health Services Efficiency and Its Spatial Correlation in China: Based on Panel Data of 13 Cities in Jiangsu Province. Healthcare 2021, 9, 1167. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Luo, H. Evaluation on equality and efficiency of health resources allocation and health services utilization in China. Int. J. Equity Health 2017, 16, 127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, L.; Cui, Z.; Wang, Y. Study on Equity and Efficiency of Health Resources and Services Based on Key Indicators in China. PLoS ONE 2015, 10, e0144809. [Google Scholar] [CrossRef] [Green Version]
- Bureau of Statistics of NanJing. Bulletin of the Seventh National Census of Nanjing. 2021. Available online: http://tjj.nanjing.gov.cn/bmfw/njsj/202105/t20210524_2945571.html (accessed on 15 December 2021).
- Murray, C.J.L.; Frenk, J. Health metrics and evaluation: Strengthening the science. Lancet 2008, 371, 1191–1199. [Google Scholar] [CrossRef]
- Jin, J.; Wang, J.; Ma, X.; Wang, Y.; Li, R. Equality of Medical Health Resource Allocation in China Based on the Gini Coefficient Method. Iran J. Public Health 2015, 44, 445–457. [Google Scholar]
- Peng, L.; Liu, Z. Empirical Study on Equalization of Public Library Services in China: Analysis Based on the Theil Index. Library 2019, 5, 47–56. [Google Scholar]
- Zhang, Y.; Wang, Q.; Jiang, T.; Wang, J. Equity and efficiency of primary health care resource allocation in mainland China. Int. J. Equity Health 2018, 17, 140. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Hu, X.; Zhang, X.; Shang, L.; Yu, M.; Chen, H. Equity and efficiency of medical service systems at the provincial level of China’s mainland: A comparative study from 2009 to 2014. BMC Public Health 2018, 18, 214. [Google Scholar] [CrossRef]
- Zhou, D.; Yuan, J. Efficient and equitable of health resources allocation in China: Problem discovery and policy path. Chin. J. Health Policy 2018, 11, 64–71. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=ZGWZ201803012&uniplatform=NZKPT&v=lu05uyFogcOG1S2-dCo6CtHNQON4ls4TM-aBD8ovYIaBzDaA40piT6xVm4197SS3 (accessed on 12 April 2022).
- Maynard, A. Rationing health care: An exploration. Health Policy 1999, 49, 5–11. [Google Scholar] [CrossRef]
- Reckers-Droog, V.T.; Van Exel, N.J.A.; Brouwer, W.B.F. Looking back and moving forward: On the application of proportional shortfall in healthcare priority setting in the Netherlands. Health Policy 2018, 122, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Theil, H. Information and Economic Theory; North Holland Publishing Company: Amsterdam, The Netherlands, 1967; pp. 1–488. [Google Scholar]
- Anand, S. Measuring Health Workforce Inequalities: Methods and Application to China and India; World Health Organization: Geneva, Switzerland, 2010.
- Qi, Y.; Qin, Y. Study on the relationship between public service equalization and economic development imbalance in urban agglomerations. Stat. Decis. 2020, 36, 77–81. [Google Scholar] [CrossRef]
- Shorrocks, A.F. The Class of Additively Decomposable Inequality Measure. Econometrica 1980, 3, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Henry, K.; Zou, Q.; Zhong, X. Methods for measuring horizontal equity in health resource allocation: A comparative study. Health Econ. Rev. 2014, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Sun, X. The Research about the Arrangement of Basic Medical Resources and Medical Service Utilization in Shanghai. J. Gansu Adm. Inst. 2016, 5, 78–90, 127. [Google Scholar]
- Gao, J.; Han, Y.; Wang, Y.; Zhang, Q. Reflections on Space of Medical Service for Urban Residents and its Planning based on Individual Behavior: A Case Study of Central District of Guangzhou. Urban Space Stud. 2017, 41, 46–52. [Google Scholar]
- Neri, M.; Cubi-Molla, P.; Cookson, G. Approaches to Measure Efficiency in Primary Care: A Systematic Literature Review. Appl. Health Econ. Health Policy 2022, 20, 19–33. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale in Efficiencies in Data Envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- González-de-Julián, S.; Barrachina-Martínez, I.; Vivas-Consuelo, D.; Bonet-Pla, Á.; Usó-Talamantes, R. Data Envelopment Analysis Applications on Primary Health Care Using Exogenous Variables and Health Outcomes. Sustainability 2021, 13, 1337. [Google Scholar] [CrossRef]
- Alpandi, R.M.; Kamarudin, F.; Wanke, P.; Muhammad Salam, M.S.; Iqbal Hussain, H. Energy Efficiency in Production of Swiftlet Edible Bird’s Nest. Sustainability 2022, 14, 5870. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Hu, M.; Tao, C.; Zhou, H. The Influence of Industrial Structure Upgrade on Coupling and Coordinated Development—Empirical Analysis from Chinese Pharmaceutical Manufacturing and Pharmaceutical Service Industries. Front. Public Health 2021, 9, 722006. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xie, S.; Cheng, X. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef]
- Dong, G.; Ge, Y.; Zhu, W.; Qu, Y.; Zhang, W. Coupling Coordination and Spatiotemporal Dynamic Evolution Between Green Urbanization and Green Finance: A Case Study in China. Front. Environ. Sci. 2021, 8, 621846. [Google Scholar] [CrossRef]
- Cui, X. Population Urbanization and Land Urbanization in Ethnic Minority Areas: Disequilibrium and Spatial Heterogeneity. China Popul. Resour. Environ. 2014, 24, 63–72. [Google Scholar] [CrossRef]
- Fang, Z. Research on the Optimization of Medical Service Facility Allocation in Small Towns in Wuhan from the Perspective of Supply and Demand. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, May 2017. [Google Scholar]
- Dong, E.; Xu, J.; Sun, X.; Xu, T.; Zhang, L.; Wang, T. Differences in regional distribution and inequality in health-resource allocation on institutions, beds, and workforce: A longitudinal study in China. Arch. Public Health 2021, 79, 78. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Z.; Ma, Q.; Fu, X.; Sun, C.Q. Fairness and efficiency analysis of health resource allocation in Shenzhen. Med. Soc. 2019, 32, 44–47. [Google Scholar] [CrossRef]
- Cohen, J.; Burg, E. On the possibility of a positive-sum game in the distribution of health care resources. J. Med. Philos. 2003, 28, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | Primary Indicators | Secondary Indicators | Unit | References | Indicator Description/Calculation |
---|---|---|---|---|---|
Equity (F) | Supply of material resources (W) | Number of health institutions(W1) | quantity | [20,27,28,31] | W1, W2, R1 and R2 are assessing indicators commonly used in equity measurement, which well represents the supply of medical and health material resources and human resources. Therefore, referring to relevant studies, they are weighted by 25% respectively [32]. |
Number of beds (W2) | quantity | [19,27,31,33,34] | |||
Supply of human resources (R) | Number of licensed (assistant) physicians (R1) | person | [19,20,28,31,34] | ||
Number of registered nurses (R2) | person | [19,20,27,31] | |||
Efficiency (E) | Input index (X) | Number of health institutions per 1000 population (X1) | quantity | [25,26,27,28,33,34] | X1 = Number of health institutions/total population × 1000 |
Number of beds per 1000 population (X2) | quantity | [15,22,23,26] | X2 = Number of beds/total population × 1000 | ||
Number of health personnel per 1000 population (X3) | person | [5,15,27,28,33] | X3 = Number of health personnel/total population × 1000 | ||
Output index (Y) | Population survival rate (Y1) | % | [22,23,24,25] | Y1 = 1 − Mortality rate |
Indicator Name (Unit) | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
Number of health institutions (quantity) | 213.053 | 108.214 | 43 | 615 |
Number of beds (quantity) | 3857.902 | 3820.161 | 672 | 18,313 |
Number of licensed (assistant) physicians (person) | 2051.652 | 1888.737 | 451 | 9705 |
Number of registered nurses (person) | 2472.591 | 2741.566 | 352 | 14,259 |
Number of health institutions per 1000 population (quantity) | 0.281 | 0.070 | 0.103 | 0.456 |
Number of beds per 1000 population (quantity) | 4.574 | 2.773 | 1.480 | 17.173 |
Number of health personnel per 1000 population (person) | 8.257 | 4.989 | 3.263 | 31.581 |
Population survival rate (%) | 99.390 | 0.172 | 98.280 | 99.712 |
Level | Balanced Development Degree (D) | Classification | Characteristics |
---|---|---|---|
I | 0.90–1.00 | Superior | There is a high level of coupling between the equity and efficiency of medical and health resources allocation, and the intensity of interaction between the two reaches the highest level. |
II | 0.80–0.89 | Good | There is a relatively high level of coupling between the equity and efficiency of medical and health resources allocation, and there is a relatively significant interaction relationship. |
III | 0.70–0.79 | Medium | There is a certain degree of interaction and mutual influence between the equity and efficiency of medical and health resources allocation. |
IV | 0.60–0.69 | Primary | There is an interactive relationship between the equity and efficiency of medical and health resources allocation, but the effect of mutual influence is relatively low. |
0.50–0.59 | |||
0.40–0.49 | |||
V | 0.30–0.39 | Inferior | There is almost no interaction between the equity and efficiency of medical and health resources allocation, and they tend to be independent of each other and do not affect each other. |
0.20–0.29 | |||
0.10–0.19 | |||
0.00–0.09 |
Dimension | Year | Tw ① | Tb ② | |||
---|---|---|---|---|---|---|
TA ③ (CR ⑥ %) | TB ④ (CR%) | TC ⑤ (CR%) | Tw (CR%) | Tb (CR%) | ||
Population Dimension | 2008 | 0.0370 (86.99) | 0.0026 (1.15) | 0.0160 (11.85) | 0.0310 (59.22) | 0.0214 (40.78) |
2009 | 0.0328 (86.53) | 0.0026 (1.29) | 0.0144 (12.18) | 0.0275 (57.38) | 0.0204 (42.62) | |
2010 | 0.0374 (95.66) | 0.0052 (2.38) | 0.0026 (1.96) | 0.0281 (55.31) | 0.0227 (44.69) | |
2011 | 0.0372 (96.54) | 0.0047 (1.98) | 0.0016 (1.49) | 0.0277 (55.08) | 0.0226 (44.92) | |
2012 | 0.0348 (96.61) | 0.0036 (1.90) | 0.0018 (1.49) | 0.0255 (57.16) | 0.0191 (42.84) | |
2013 | 0.0370 (97.74) | 0.0008 (0.43) | 0.0024 (1.82) | 0.0267 (59.30) | 0.0183 (40.70) | |
2014 | 0.0366 (98.40) | 0.0008 (0.44) | 0.0014 (1.15) | 0.0262 (58.88) | 0.0183 (41.12) | |
2015 | 0.0379 (97.97) | 0.0017 (0.82) | 0.0014 (1.21) | 0.0272 (59.73) | 0.0184 (40.27) | |
2016 | 0.0400 (96.77) | 0.0020 (0.87) | 0.0032 (2.36) | 0.0288 (60.78) | 0.0186 (39.22) | |
2017 | 0.0425 (97.09) | 0.0013 (0.58) | 0.0034 (2.33) | 0.0301 (61.27) | 0.0190 (38.73) | |
2018 | 0.0460 (97.49) | 0.0004 (0.13) | 0.0035 (2.38) | 0.0321 (62.15) | 0.0196 (37.85) | |
2019 | 0.0439 (98.17) | 0.0003 (0.13) | 0.0022 (1.69) | 0.0304 (58.65) | 0.0214 (41.35) | |
Geographic Dimension | 2008 | 0.4332 (96.27) | 0.0028 (0.18) | 0.0385 (3.55) | 0.3166 (43.72) | 0.4074 (56.28) |
2009 | 0.4129 (96.22) | 0.0027 (0.19) | 0.0367 (3.59) | 0.3000 (42.75) | 0.4017 (57.25) | |
2010 | 0.4048 (98.28) | 0.0008 (0.03) | 0.0180 (1.69) | 0.2824 (42.96) | 0.3750 (57.04) | |
2011 | 0.3993 (98.05) | 0.0009 (0.03) | 0.0189 (1.93) | 0.2802 (42.99) | 0.3715 (57.01) | |
2012 | 0.3981 (98.03) | 0.0004 (0.01) | 0.0216 (1.95) | 0.2758 (43.44) | 0.3591 (56.56) | |
2013 | 0.4020 (97.72) | 0.0010 (0.06) | 0.0252 (2.21) | 0.2777 (44.00) | 0.3534 (56.00) | |
2014 | 0.3958 (97.90) | 0.0008 (0.06) | 0.0202 (2.04) | 0.2714 (43.73) | 0.3493 (56.27) | |
2015 | 0.3934 (97.73) | 0.0005 (0.06) | 0.0221 (2.21) | 0.2690 (43.80) | 0.3452 (56.20) | |
2016 | 0.3913 (96.96) | 0.0007 (0.09) | 0.0306 (2.94) | 0.2670 (44.15) | 0.3378 (55.85) | |
2017 | 0.3877 (97.08) | 0.0016 (0.11) | 0.0294 (2.81) | 0.2610 (44.16) | 0.3300 (55.84) | |
2018 | 0.3846 (96.37) | 0.0040 (0.31) | 0.0314 (3.32) | 0.2591 (44.10) | 0.3284 (55.90) | |
2019 | 0.3652 (95.84) | 0.0072 (0.61) | 0.0299 (3.55) | 0.2464 (43.10) | 0.3253 (56.90) |
Dimension | Year | Main Urban Region | |||||
---|---|---|---|---|---|---|---|
Xuanwu | Qinhuai | Jianye | Gulou | Qixia | Yuhua | ||
Population Dimension | 2008 | −0.0001 | 0.0217 | −0.0080 | 0.0897 | −0.0031 | −0.0054 |
2009 | 0.0015 | 0.0190 | −0.0073 | 0.0844 | −0.0026 | −0.0058 | |
2010 | −0.0012 | 0.0206 | −0.0048 | 0.0875 | −0.0077 | −0.0067 | |
2011 | −0.0001 | 0.0262 | −0.0048 | 0.0805 | −0.0069 | −0.0073 | |
2012 | 0.0005 | 0.0251 | −0.0043 | 0.0728 | −0.0068 | −0.0074 | |
2013 | 0.0001 | 0.0201 | −0.0049 | 0.0783 | −0.0077 | −0.0070 | |
2014 | 0.0005 | 0.0182 | −0.0053 | 0.0783 | −0.0080 | −0.0069 | |
2015 | −0.0011 | 0.0170 | −0.0040 | 0.0811 | −0.0082 | −0.0071 | |
2016 | −0.0018 | 0.0163 | −0.0040 | 0.0839 | −0.0086 | −0.0071 | |
2017 | −0.0015 | 0.0167 | −0.0036 | 0.0881 | −0.0093 | −0.0075 | |
2018 | 0.0001 | 0.0156 | −0.0022 | 0.0933 | −0.0104 | −0.0069 | |
2019 | 0.0014 | 0.0197 | −0.0031 | 0.0894 | −0.0093 | −0.0054 | |
Geographic Dimension | 2008 | 0.0716 | 0.2408 | 0.0149 | 0.5133 | 0.0014 | 0.0055 |
2009 | 0.0764 | 0.2320 | 0.0186 | 0.4979 | 0.0020 | 0.0047 | |
2010 | 0.0656 | 0.2247 | 0.0208 | 0.4724 | 0.0009 | 0.0040 | |
2011 | 0.0685 | 0.2428 | 0.0210 | 0.4515 | 0.0009 | 0.0033 | |
2012 | 0.0697 | 0.2388 | 0.0230 | 0.4303 | 0.0012 | 0.0032 | |
2013 | 0.0682 | 0.2230 | 0.0217 | 0.4413 | −0.0001 | 0.0045 | |
2014 | 0.0692 | 0.2163 | 0.0211 | 0.4396 | −0.0004 | 0.0050 | |
2015 | 0.0629 | 0.2094 | 0.0250 | 0.4422 | −0.0002 | 0.0048 | |
2016 | 0.0577 | 0.2020 | 0.0251 | 0.4440 | −0.0001 | 0.0054 | |
2017 | 0.0530 | 0.2008 | 0.0273 | 0.4319 | 0.0001 | 0.0059 | |
2018 | 0.0561 | 0.1941 | 0.0326 | 0.4265 | −0.0016 | 0.0076 | |
2019 | 0.0559 | 0.1967 | 0.0316 | 0.4012 | 0.0002 | 0.0116 |
Area | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Xuanwu | 0.586 | 0.575 | 0.760 | 0.580 | 0.596 | 0.657 | 0.701 | 0.830 | 0.823 | 0.871 | 0.691 | 0.791 | 0.705 |
Qinhuai | 0.437 | 0.483 | 0.590 | 0.575 | 0.630 | 0.722 | 0.763 | 0.771 | 0.745 | 0.759 | 0.773 | 0.813 | 0.672 |
Jianye | 1.000 | 1.000 | 0.918 | 0.934 | 0.772 | 0.936 | 1.000 | 0.998 | 1.000 | 0.799 | 0.788 | 0.875 | 0.918 |
Gulou | 0.405 | 0.410 | 0.679 | 0.669 | 0.688 | 0.794 | 0.834 | 0.841 | 0.811 | 0.751 | 0.672 | 0.830 | 0.699 |
Qixia | 0.714 | 0.744 | 0.872 | 0.793 | 0.797 | 0.886 | 0.951 | 0.897 | 0.879 | 0.886 | 1.000 | 0.995 | 0.868 |
Yuhua | 0.942 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.972 | 0.993 |
Main urban | 0.681 | 0.702 | 0.803 | 0.759 | 0.747 | 0.833 | 0.875 | 0.890 | 0.876 | 0.844 | 0.821 | 0.879 | 0.809 |
Pukou | 0.895 | 0.952 | 1.000 | 0.958 | 1.000 | 0.865 | 0.924 | 0.926 | 1.000 | 1.000 | 1.000 | 1.000 | 0.960 |
Luhe | 0.859 | 0.873 | 0.733 | 0.733 | 0.682 | 0.778 | 0.791 | 0.731 | 0.795 | 0.835 | 0.906 | 1.000 | 0.810 |
Jiangbei | 0.877 | 0.913 | 0.867 | 0.846 | 0.841 | 0.822 | 0.858 | 0.829 | 0.898 | 0.918 | 0.953 | 1.000 | 0.885 |
Jiangning | 0.819 | 0.811 | 0.866 | 0.816 | 0.767 | 0.872 | 0.837 | 0.751 | 0.642 | 0.644 | 0.662 | 0.709 | 0.766 |
Lishui | 1.000 | 1.000 | 0.877 | 0.903 | 0.915 | 0.976 | 0.874 | 0.825 | 0.836 | 0.871 | 0.900 | 0.928 | 0.909 |
Gaochun | 0.889 | 0.800 | 0.735 | 0.695 | 0.707 | 0.755 | 0.756 | 0.737 | 0.734 | 0.777 | 0.841 | 0.866 | 0.774 |
Ningnan | 0.903 | 0.870 | 0.826 | 0.805 | 0.796 | 0.868 | 0.822 | 0.771 | 0.737 | 0.764 | 0.801 | 0.834 | 0.816 |
Mean | 0.777 | 0.786 | 0.821 | 0.787 | 0.778 | 0.840 | 0.857 | 0.846 | 0.842 | 0.836 | 0.839 | 0.889 | 0.825 |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | 0.92 | 0.92 | 0.94 | 0.92 | 0.92 | 0.94 | 0.95 | 0.95 | 0.94 | 0.94 | 0.94 | 0.96 |
G | 0.56 | 0.59 | 0.63 | 0.64 | 0.66 | 0.66 | 0.67 | 0.68 | 0.68 | 0.70 | 0.70 | 0.71 |
Year | Population Dimension | Geographic Dimension | ||||
---|---|---|---|---|---|---|
Main Urban Region | Jiangbei | Ningnan | Main Urban Region | Jiangbei | Ningnan | |
2008 | 0.88 | 0.96 | 0.97 | 0.78 | 0.96 | 0.96 |
2009 | 0.89 | 0.98 | 0.96 | 0.80 | 0.98 | 0.96 |
2010 | 0.93 | 0.96 | 0.95 | 0.82 | 0.96 | 0.94 |
2011 | 0.91 | 0.95 | 0.94 | 0.81 | 0.95 | 0.94 |
2012 | 0.91 | 0.95 | 0.94 | 0.81 | 0.95 | 0.93 |
2013 | 0.94 | 0.95 | 0.96 | 0.82 | 0.95 | 0.96 |
2014 | 0.96 | 0.96 | 0.95 | 0.83 | 0.96 | 0.94 |
2015 | 0.96 | 0.95 | 0.93 | 0.83 | 0.95 | 0.92 |
2016 | 0.96 | 0.97 | 0.91 | 0.83 | 0.97 | 0.91 |
2017 | 0.95 | 0.98 | 0.92 | 0.83 | 0.98 | 0.92 |
2018 | 0.94 | 0.99 | 0.94 | 0.83 | 0.99 | 0.93 |
2019 | 0.96 | 1.00 | 0.95 | 0.85 | 1.00 | 0.94 |
District | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yuhuatai | 0.98 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.99 | 1.00 |
Qixia | 0.9 | 0.91 | 0.96 | 0.93 | 0.94 | 0.97 | 0.99 | 0.97 | 0.97 | 0.97 | 1 | 1 | 0.96 |
Jianye | 1 | 1 | 0.97 | 0.98 | 0.92 | 0.98 | 0.99 | 0.99 | 0.99 | 0.93 | 0.93 | 0.96 | 0.97 |
Pukou | 0.97 | 0.98 | 0.99 | 0.98 | 0.99 | 0.96 | 0.97 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 |
Luhe | 0.95 | 0.96 | 0.90 | 0.90 | 0.88 | 0.92 | 0.93 | 0.9 | 0.93 | 0.94 | 0.97 | 0.99 | 0.93 |
Lishui | 0.99 | 0.99 | 0.96 | 0.97 | 0.97 | 0.99 | 0.96 | 0.94 | 0.95 | 0.96 | 0.97 | 0.98 | 0.97 |
Gaochun | 0.96 | 0.93 | 0.91 | 0.89 | 0.89 | 0.92 | 0.92 | 0.91 | 0.91 | 0.93 | 0.95 | 0.96 | 0.92 |
Jiangning | 0.94 | 0.94 | 0.95 | 0.94 | 0.92 | 0.96 | 0.94 | 0.91 | 0.86 | 0.86 | 0.87 | 0.89 | 0.92 |
Xuanwu | 0.83 | 0.82 | 0.91 | 0.82 | 0.83 | 0.86 | 0.89 | 0.94 | 0.94 | 0.95 | 0.88 | 0.92 | 0.88 |
Qinhuai | 0.72 | 0.75 | 0.81 | 0.8 | 0.83 | 0.86 | 0.88 | 0.88 | 0.88 | 0.88 | 0.89 | 0.9 | 0.84 |
Gulou | 0.66 | 0.67 | 0.76 | 0.77 | 0.79 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.78 | 0.82 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Chen, W.; Lin, L.; Ren, X.; Qu, Y. The Balanced Allocation of Medical and Health Resources in Urban Areas of China from the Perspective of Sustainable Development: A Case Study of Nanjing. Sustainability 2022, 14, 6707. https://doi.org/10.3390/su14116707
Wu F, Chen W, Lin L, Ren X, Qu Y. The Balanced Allocation of Medical and Health Resources in Urban Areas of China from the Perspective of Sustainable Development: A Case Study of Nanjing. Sustainability. 2022; 14(11):6707. https://doi.org/10.3390/su14116707
Chicago/Turabian StyleWu, Fang, Wei Chen, Lingling Lin, Xu Ren, and Yingna Qu. 2022. "The Balanced Allocation of Medical and Health Resources in Urban Areas of China from the Perspective of Sustainable Development: A Case Study of Nanjing" Sustainability 14, no. 11: 6707. https://doi.org/10.3390/su14116707
APA StyleWu, F., Chen, W., Lin, L., Ren, X., & Qu, Y. (2022). The Balanced Allocation of Medical and Health Resources in Urban Areas of China from the Perspective of Sustainable Development: A Case Study of Nanjing. Sustainability, 14(11), 6707. https://doi.org/10.3390/su14116707