Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review
Abstract
:1. Introduction
Objectives
2. Method
2.1. Protocol and Registrations
2.2. Eligibility Criteria
- A study must assess circular economy (or one of the defined search synonyms, or predecessing concepts).
- A study must contain assessment of environmental performance. It must have narrowed the assessment method to an LCA.
- A study’s environmental assessment must cover at least 1 building principle within a given circular economic model/strategy (explicitly or implicitly defined).
- A study must provide sufficient detail on the applied assessment method, i.e., how the assessment has been applied, which LCA approach and system boundaries were applied, and what impact assessment methods were used and the decisions/-support derived from the assessment.
- be peer-reviewed
- be in English, Danish, or German
2.3. Information Sources
2.4. Search
Key Word | Applied Search Synonyms | ||||
---|---|---|---|---|---|
Environmental performance | LCA | Life Cycle Assessment | Life cycle Analysis | Life-cycle Analysis | Lifecycle analysis |
Building principles | Built Environment | Building | Construction | Building design | Building system |
Civil engineering | Built | Urban | Community | City | |
Cities | Infrastructure | Neighbourhood | Neighborhood | District | |
Region | Building stock | Housing stock | Dwelling stock | Built structures | |
Landscape | |||||
Economic models | Circle economy | Circular economy | Linear economy | CE | Circularity |
Industrial ecology | Cradle to cradle | C2C | Performance economy | Biomimicry | |
Nature/-al capitalism | Regenerative design | Blue economy | Refuse | Rethink | |
Recover | Reuse | Repair | Remanufacture | Refurbish | |
Recycle/-ing | Renovate/-ion | Resource economy | Eco design | Upcycle/-ing |
2.5. Selection of Sources of Evidence
2.6. Data Charting Process
2.7. Data Items
2.8. Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence
3.3. Results of Individual Sources of Evidence
3.4. Synthesis of Results
3.4.1. Synthesis of Preliminary Search Process and Screening
3.4.2. Synthesis of Included Studies
4. Discussion
4.1. Summary of Evidence
4.1.1. LCA Approach and Decision Making for CE
4.1.2. Allocation
4.1.3. Timing of LCA Application
4.1.4. Barriers for Learning from Other Industries
4.2. Limitations
4.2.1. Delimitations
4.2.2. Inclusions and Scale
4.2.3. Exclusion Criteria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Peer-Reviewed Literature
- Database: Web of Science Core Collection, editions; all
- Document types: Articles, proceedings papers, review articles, early access, corrections/additions
- Language: English, Danish or German
- Date range: publication date; 1900–2021
- ‘Topic’ field tag
- Search within: Article title, Abstract, Keywords
- Timespan: All years (1960–2021)
- ‘Topic’ field tag represented by ‘Article title, Abstract, Keywords’
- Added to Scopus: Anytime
- Language: limit to English, German, Danish
- Document types: Articles, conference papers, review, erratum
Appendix B
Authors | Ref. | Type of Study | Scale of Case | CE Proposal/Object of Case Study | CE Concept Studied |
---|---|---|---|---|---|
(Bonoli et al., 2020) | [91] | Case study | Material | Asphalt concretes from RAP aggregates and steel slag | Recycling |
(van Stijn et al., 2021) | [52] | Methodology | Component | Kitchen modules | Several |
(Wiprachtiger et al., 2020) | [75] | Methodology | Material | Thermal insulation in residential buildings | Recycling |
(Romnée et al., 2019) | [78] | Case study | Structure | Greenhouse structures | Reuse |
(Sanchez et al., 2019) | [92] | Methodology | Structure | Adaptive reuse design of building | Reuse |
(Sandanayake et al., 2022) | [93] | Methodology | Raw material | Soil-waste based geopolymer cements | Reuse |
(Russo et al., 2021) | [65] | Methodology | Infrastructure | Road asphalt Pavements using waste as raw material | Recycling |
(Meek et al., 2021) | [39] | Case study | Component | Stabilised rammed earth using recycled waste and industrial by-products | Recycling |
(Lopez-Garcia et al., 2021) | [94] | Case study | Material | Ceramic bricks, using olive pomace | Reuse |
(Toniolo et al., 2021) | [51] | Case study | Structure | Temporary exhibition installation, applying DfD | Reuse |
(Vandewalle et al., 2020) | [81] | Case study | Infrastructure | Pavements, using multi-recycled RAP mixtures | Recycling |
(Caneda-martínez et al., 2021) | [95] | Case study | Raw material | Cement pastes, using recycled concrete powder and CDW | Recycling |
(Caldas et al., 2021) | [70] | Case study | Material | Bio concrete, using wood waste | Recycling |
(Vitale et al., 2021) | [96] | Case study | Material | Cement, using CFRP waste | Recycling |
(Nussholz et al., 2019) | [32] | Case study | Material | Three different materials (and business models) using secondary materials | Several |
(Al-Hamrani, Kim et al., 2021) | [97] | Case study | Structure | Under-raft foundation using concrete and excavated boulders | Recycling |
(Silva et al., 2021) | [66] | Case study | Material | Particle boards with recycled wood and biopolymer | Recycling |
(Mostert et al., 2021) | [76] | Case study | Building | Concrete, using recycled aggregates | Recycling |
(Zhang et al., 2018) | [84] | Case Study | City | Urban concrete recycling | Recycling |
(Saadé et al., 2022) | [58] | Methodology | Neighbourhood | Urban develop of neighbourhood blocks, applying different CE approaches, up front and EoL | Recover |
(Colangelo et al., 2020) | [23] | Case study | Material | Concrete, using recycled aggregates | Recycling |
(Rodrigo-Bravo et al., 2022) | [68] | Case study | Material | Gypsum ceiling tile, using PU foam waste | Recycling |
(Uceda-Rodríguez et al., 2022) | [98] | Case study | Raw material | Lightweight aggregates made from waste | Recycling |
(Lozano-Miralles et al., 2018) | [72] | Case study | Material | Clay bricks mixed with organic waste | Reuse |
(Eberhardt et al., 2019) | [43] | Case study | Component | Building components: a concrete column, a window and roof felt, applying EoL potentials | Reuse |
(Nasir et al., 2017) | [99] | Case study | Material | Insulation material using recycled textiles | Recycling |
(Tsioka and Voudrias, 2020) | [77] | Case study | Material | Alternative management methods of phosphogypsum | Reuse |
(Diaz-Piloneta et al., 2021) | [100] | Case study | Infrastructure | Aggregates for road construction using steel slag | Recycling |
(Buyle et al., 2019) | [42] | Case study | Component | Wall assemblies, applying DfD | Several |
(Liikanen et al., 2019) | [101] | Case study | Raw material | Wood polymer composites, using CDW | Reuse |
(van Stijn et al., 2020) | [38] | Methodology | Component | Kitchen modules applying reuse and DfD | Several |
(Brütting et al., 2019) | [83] | Methodology | Component | Steel truss structures, using reused elements | Reuse |
(Hossain et al., 2021) | [67] | Case study | Material | Partition wall blocks, using waste materials and SCM | Several |
(Terrones-Saeta et al., 2021) | [102] | Case study | Raw material | Aggregates using electric arc furnace slag | Reuse |
(Joensuu et al., 2022) | [45] | Methodology | Building | Building structural solutions, applying DfD | Reuse |
(Di Maria et al., 2018) | [103] | Case study | Raw material | CDW management routes, but assessed through the functional unit of supply of an equal amount of fine aggregates for road construction + coarse aggregates for concrete production | Recycling |
(Eberhardt et al., 2019 | [44] | Case study | Component | Concrete column applying DfD | Reuse |
(Wang et al., 2017) | [104] | Case study | Infrastructure | Concrete using recycled aggregates | Recycling |
(Zhang et al., 2021) | [33] | Case study | Component | Prefabricated concrete element using CDW | Several |
(Dias et al., 2021) | [40] | Review | Raw material | Recycled course aggregates | Recycling |
(Cuenca-Moyano et al., 2019) | [105] | Case study | Material | Masonry mortars using recycled aggregates | Recycling |
(Kakkos et al., 2019) | [64] | Case study | Structure | Internal wall applying DfD | Reuse |
(Brambilla et al., 2019) | [46] | Case study | Component | Demountable composite floor system | Reuse |
(Eberhardt et al., 2021) | [56] | Methodology | Structure | Tunnel structure applying different circular visions | Several |
(Weimann et al., 2021) | [53] | Case study | Material | Plasterboard waste recycling into plasterboards | Recycling |
(Antunes et al., 2021) | [57] | Methodology | Building | Building rehabilitation and precast wall system, assessing reuse and recycling at EoL | Recycling |
(Ma et al., 2021) | [62] | Case study | Building | Building refurbishment project, waste management options | Refurbishing |
(Gravagnuolo et al., 2020) | [60] | Case study | Building | Historic building conservation | Refurbishing |
(Suarez-Macias et al., 2021) | [106] | Case study | Raw material | Filler in bituminous mixtures, using biomass bottom ash | Reuse |
(Minunno et al., 2020) | [50] | Case study | Building | Building design applying DfD | Reuse |
(Kim & Kim, 2020) | [107] | Methodology | Structure | Noise barrier structure using reused steel beams | Reuse |
(Kucukvar et al., 2021) | [108] | Case study | Building | Container stadium design construction, reusable | Recycling |
(Kio & Ali, 2021) | [41] | Case study | Material | Wall system, using waste sheet metal | Reuse |
(Hossain & Ng, 2019) | [109] | Methodology | Material | CDW of building renovation | Recycling |
(Monteiro and Soares, 2022) | [47] | Case study | Building | Building design, suggesting EoL potentials | Recycling |
(Cascione et al., 2022) | [49] | Case study | Component | Wall panels using agricultural waste materials and DfD | Reuse |
(Peceno et al., 2020) | [79] | Case study | Structure | Noise barrier, using recycled seashell waste | Recycling |
(Zimmermann et al., 2020) | [63] | Methodology | Building | Building refurbishment | Renovating |
(Zanni et al., 2018) | [82] | Case study | Material | Concrete using CDW recycled aggregates | Recycling |
(Eberhardt et al., 2019c) | [110] | Methodology | Building | Building design applying DfD | Reuse |
(Rivero et al., 2016) | [31] | Case study | Material | Gypsum plasterboard recycling | Recycling |
(Rajagopalan et al., 2021) | [111] | Methodology | Component | Wall partitioning systems using different CE actions | Reuse |
(Ghisellini et al., 2021) | [80] | Case study | Material | Concretes using CDW and hemp by-products as aggregates | Recycling |
(Niu et al., 2021) | [73] | Case study | Component | Structural timber cascading | Reuse |
(Finch and Marriage, 2018) | [48] | Case study | Component | Light timber frame applying DfD | Reuse |
(Marconi et al., 2020) | [112] | Case study | Material | Insulation panels reusing leather scraps | Reuse |
(Rios et al., 2019) | [55] | Case study | Component | Reusable external wall framing | Reuse |
(Brütting et al., 2021) | [59] | Methodology | Structure | Steel truss structures, using reused elements | Reuse |
(Peceno et al., 2021) | [113] | Case study | Material | Fireproofing panels using seashell waste | Recycling |
(Buyle et al., 2019b) | [61] | Case study | Component | Wall assemblies, applying DfD | Several |
(Simoes et al., 2021) | [114] | Case study | Raw material | Concrete using waste from the pulp and paper industry | Reuse |
(Cassiani et al., 2021) | [115] | Case study | Material | Concrete using recycled aggregates and SCM | Recycling |
(Pešta et al., 2020) | [37] | Case study | Component | Masonry using recycled aggregates | Several |
(Ferriss, 2021) | [116] | Case study | Building | Reuse of post-war architecture | Several |
(Ali et al., 2020) | [117] | Methodology | Component | Building facades using sheet metal waste | Reuse |
(Ramos et al., 2021) | [118] | Case study | Material | Particleboards, using corn cob waste | Reuse |
(Aversa et al., 2019) | [54] | Case Study | Material | Non-loadbearing walls using hemp shives, an agricultural by-product | Reuse |
(Kakkos et al., 2020) | [36] | Case study | Building | Building design and materials, applying DfD | Several |
(Moreno-Juez et al., 2020) | [34] | Case study | Material | Cement using EoL concrete waste | Recycling |
(Rasmussen et al., 2019) | [69] | Case study | Building | Building design using upcycled materials or DfD principles | Several |
(Bertolini & Guardigli, 2020) | [35] | Case study | Building | Building components from upcycled shipping containers | Upcycling |
(Mostert et al., 2020) | [119] | Case study | Material | Concrete using recycled aggregates | Recycling |
(Zhao et al., 2020) | [120] | Case study | Material | Precast concrete building blocks using recycled aggregates | Recycling |
(Capuano et al., 2020) | [121] | Case study | Infrastructure | Road pavements, using recycled plastics | Recycling |
(Quintana-Gallardo et al., 2021) | [74] | Case study | Component | Building façade panel using rice straw | Reuse |
References
- Joint Research Centre—Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook: General Guide for Life Cycle Assessment: Detailed Guidance; Publications Office: Luxembourg, 2011. [Google Scholar]
- EN 15804; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 15978; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. European Committee for Standardization: Brussels, Belgium, 2011.
- Buyle, M.; Braet, J.; Audenaert, A.; Debacker, W. Strategies for optimizing the environmental profile of dwellings in a Belgian context: A consequential versus an attributional approach. J. Clean. Prod. 2018, 173, 235–244. [Google Scholar] [CrossRef]
- Plevin, R.J.; Delucchi, M.A.; Creutzig, F. Using Attributional Life Cycle Assessment to Estimate Climate Change Mitigation Benefits Misleads Policy Makers. J. Ind. Ecol. 2014, 18, 73–83. [Google Scholar] [CrossRef]
- Tricco, A.C.; Levac, D.; Weeks, L.; Stewart, L.; Garritty, C.; Langlois, E.V.; Tunçalp, Ö. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 371, 71. [Google Scholar] [CrossRef]
- Nikmehr, B.; Hosseini, M.R.; Wang, J.; Chileshe, N.; Rameezdeen, R. BIM-Based Tools for Managing Construction and Demolition Waste (CDW): A Scoping Review. Sustainability 2021, 13, 8427. [Google Scholar] [CrossRef]
- Engebø, A.; Lædre, O.; Young, B.; Larssen, P.F.; Lohne, J.; Klakegg, O.J. Collaborative project delivery methods: A scoping review. J. Civ. Eng. Manag. 2020, 26, 278–303. [Google Scholar] [CrossRef]
- Hanc, M.; McAndrew, C.; Ucci, M. Conceptual approaches to wellbeing in buildings: A scoping review. Build. Res. Inf. 2019, 47, 767–783. [Google Scholar] [CrossRef]
- Carlsson, G.; Slaug, B.; Schmidt, S.M.; Norin, L.; Ronchi, E.; Gefenaite, G. A scoping review of public building accessibility. Disabil. Health J. 2021, 15, 101227. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Röck, M.; Baldereschi, E.; Verellen, E.; Passer, A.; Sala, S.; Allacker, K. Environmental modelling of building stocks—An integrated review of life cycle-based assessment models to support EU policy making. Renew. Sustain. Energy Rev. 2021, 151, 111550. [Google Scholar] [CrossRef]
- Anand, C.K.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 2017, 67, 408–416. [Google Scholar] [CrossRef]
- Dong, Y.; Ng, S.T.; Liu, P. A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review. Build. Environ. 2021, 204, 108162. [Google Scholar] [CrossRef]
- Buyle, M.; Braet, J.; Audenaert, A. Life cycle assessment in the construction sector: A review. Renew. Sustain. Energy Rev. 2013, 26, 379–388. [Google Scholar] [CrossRef]
- Benachio, G.L.F.; Freitas, M.d.C.D.; Tavares, S.F. Circular economy in the construction industry: A systematic literature review. J. Clean. Prod. 2020, 260, 121046. [Google Scholar] [CrossRef]
- Çimen, Ö. Construction and built environment in circular economy: A comprehensive literature review. J. Clean. Prod. 2021, 305, 127180. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T. Critical consideration of buildings’ environmental impact assessment towards adoption of circular economy: An analytical review. J. Clean. Prod. 2018, 205, 763–780. [Google Scholar] [CrossRef]
- Lovrenčić Butković, L.; Mihić, M.; Sigmund, Z. Assessment methods for evaluating circular economy projects in construction: A review of available tools. Int. J. Constr. Manag. 2021, 1–10. [Google Scholar] [CrossRef]
- López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. The circular economy in the construction and demolition waste sector—A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar] [CrossRef]
- Colangelo, F.; Navarro, T.G.; Farina, I.; Petrillo, A. Comparative LCA of concrete with recycled aggregates: A circular economy mindset in Europe. Int. J. Life Cycle Assess. 2020, 25, 1790–1804. [Google Scholar] [CrossRef]
- Larsen, V.G.; Tollin, N.; Sattrup, P.A.; Birkved, M.; Holmboe, T. What are the challenges in assessing circular economy for the built environment? A literature review on integrating LCA, LCC and S-LCA in life cycle sustainability assessment, LCSA. J. Build. Eng. 2022, 50, 104203. [Google Scholar] [CrossRef]
- Lei, H.; Li, L.; Yang, W.; Bian, Y.; Li, C.-Q. An analytical review on application of life cycle assessment in circular economy for built environment. J. Build. Eng. 2021, 44, 103374. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Schools of Thought. Available online: https://www.ellenmacarthurfoundation.org/circular-economy/concept/schools-of-thought (accessed on 8 August 2021).
- PRISMA Statement. Available online: http://www.prisma-statement.org/PRISMAStatement/PRISMAStatement (accessed on 14 December 2021).
- Ellen MacArthur Foundation. Towards the Circular Economy Vol. 1: An Economic and Business Rationale for An Accelerated Transition. 2013. Available online: https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed on 15 October 2021).
- Harris, S.; Martin, M.; Diener, D. Circularity for circularity’s sake? Scoping review of assessment methods for environmental performance in the circular economy. Sustain. Prod. Consum. 2021, 26, 172–186. [Google Scholar] [CrossRef]
- The EndNote Team. EndNote 20; Clarivate: Philadelphia, PA, USA, 2020. [Google Scholar]
- Rivero, A.J.; Sathre, R.; Navarro, J.G. Life cycle energy and material flow implications of gypsum plasterboard recycling in the European Union. Resour. Conserv. Recycl. 2016, 108, 171–181. (In English) [Google Scholar] [CrossRef] [Green Version]
- Nußholz, J.L.K.; Rasmussen, F.N.; Milios, L. Circular building materials: Carbon saving potential and the role of business model innovation and public policy. Resour. Conserv. Recycl. 2019, 141, 308–316. (In English) [Google Scholar] [CrossRef]
- Zhang, C.B.; Hu, M.M.; Laclau, B.; Garnesson, T.; Yang, X.N.; Tukker, A. Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden. Renew. Sust. Energ. Rev. 2021, 145, 15. [Google Scholar] [CrossRef]
- Moreno-Juez, J.; Vegas, I.J.; Gebremariam, A.T.; Garcia-Cortes, V.; Di Maio, F. Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products. J. Clean. Prod. 2020, 263, 15. (In English) [Google Scholar] [CrossRef]
- Bertolini, M.; Guardigli, L. Upcycling shipping containers as building components: An environmental impact assessment. Int. J. Life Cycle Assess. 2020, 25, 947–963. [Google Scholar] [CrossRef]
- Kakkos, E.; Heisel, F.; Hebel, D.E.; Hischier, R. Towards Urban Mining-Estimating the Potential Environmental Benefits by Applying an Alternative Construction Practice. A Case Study from Switzerland. Sustainability 2020, 12, 5041. (In English) [Google Scholar] [CrossRef]
- Pešta, J.; Pavlu, T.; Fortová, K.; Kocí, V. Sustainable Masonry Made from Recycled Aggregates: LCA Case Study. Sustainability 2020, 12, 1581. (In English) [Google Scholar] [CrossRef] [Green Version]
- van Stijn, A.; Eberhardt, L.C.M.; Wouterszoon Jansen, B.; Meijer, A. Design Guidelines for Circular Building Components Based on LCA and MFA: The Case of the Circular Kitchen. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 042045. [Google Scholar] [CrossRef]
- Meek, A.H.; Elchalakani, M.; Beckett, C.T.S.; Grant, T. Alternative stabilised rammed earth materials incorporating recycled waste and industrial by-products: Life cycle assessment. Constr. Build. Mater. 2021, 267, 43. (In English) [Google Scholar] [CrossRef]
- Dias, A.B.; Pacheco, J.N.; Silvestre, J.D.; Martins, I.M.; de Brito, J. Environmental and Economic Life Cycle Assessment of Recycled Coarse Aggregates: A Portuguese Case Study. Materials 2021, 14, 5452. (In English) [Google Scholar] [CrossRef]
- Kio, P.; Ali, A.K. In situ experimental evaluation of a novel modular living wall system for industrial symbiosis. Energy Build. 2021, 252, 111405. [Google Scholar] [CrossRef]
- Buyle, M.; Galle, W.; Debacker, W.; Audenaert, A. Consequential LCA of demountable and reusable internal wall assemblies: A case study in a Belgian context. In IOP Conference Series-Earth and Environmental Science, Proceedings of the Sustainable Built Environment D-A-CH Conference (SBE), Graz Univ Technol, Graz, Austria, 11–14 September 2019; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 323, p. 323. [Google Scholar] [CrossRef]
- Eberhardt, L.; Birgisdottir, H.; Birkved, M. Comparing Life Cycle Assessment Modelling of Linear vs. Circular Building Components. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012039. [Google Scholar] [CrossRef]
- Eberhardt, L.; Birgisdottir, H.; Birkved, M. Dynamic Benchmarking of Building Strategies for a Circular Economy. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012057. [Google Scholar] [CrossRef] [Green Version]
- Joensuu, T.; Leino, R.; Heinonen, J.; Saari, A. Developing Buildings’ Life Cycle Assessment in Circular Economy-Comparing methods for assessing carbon footprint of reusable components. Sustain. Cities Soc. 2022, 77, 103499. [Google Scholar] [CrossRef]
- Brambilla, G.; Lavagna, M.; Vasdravellis, G.; Castiglioni, C.A. Environmental benefits arising from demountable steel-concrete composite floor systems in buildings. Resour. Conserv. Recycl. 2019, 141, 133–142. [Google Scholar] [CrossRef]
- Monteiro, H.; Soares, N. Integrated life cycle assessment of a southern European house addressing different design, construction solutions, operational patterns, and heating systems. Energy Rep. 2022, 8, 526–532. [Google Scholar] [CrossRef]
- Finch, G.; Marriage, G. Reducing Building Waste through Light Timber Frame Design: Geometric, Assembly and Material Optimisations. In Proceedings of the 34th International Conference on Passive and Low Energy Architecture (PLEA)—Smart and Healthy within the Two-Degree Limit, Hong Kong, 10–12 December 2018; pp. 244–249. [Google Scholar]
- Cascione, V.; Roberts, M.; Allen, S.; Dams, B.; Maskell, D.; Shea, A.; Walker, P.; Emmitt, S. Integration of life cycle assessments (LCA) in circular bio-based wall panel design. J. Clean. Prod. 2022, 344, 130938. [Google Scholar] [CrossRef]
- Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L. Exploring environmental benefits of reuse and recycle practices: A circular economy case study of a modular building. Resour. Conserv. Recycl. 2020, 160, 14. (In English) [Google Scholar] [CrossRef]
- Toniolo, S.; Camana, D.; Guidolin, A.; Aguiari, F.; Scipioni, A. Are design for disassembly principles advantageous for the environment when applied to temporary exhibition installations? Sustain. Prod. Consum. 2021, 28, 1262–1274. (In English) [Google Scholar] [CrossRef]
- van Stijn, A.; Eberhardt, L.C.M.; Wouterszoon Jansen, B.; Meijer, A. A Circular Economy Life Cycle Assessment (CE-LCA) model for building components. Resour. Conserv. Recycl. 2021, 174, 34. (In English) [Google Scholar] [CrossRef]
- Weimann, K.; Adam, C.; Buchert, M.; Sutter, J. Environmental Evaluation of Gypsum Plasterboard Recycling. Minerals 2021, 11, 101. (In English) [Google Scholar] [CrossRef]
- Aversa, P.; Daniotti, B.; Dotelli, G.; Marzo, A.; Tripepi, C.; Sabbadini, S.; Lauriola, P.; Luprano, V.A.M. Thermo-Hygrometric Behavior of Hempcrete Walls for Sustainable Building Construction in the Mediterranean Area. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012020. [Google Scholar] [CrossRef]
- Rios, F.C.; Grau, D.; Chong, W.K. Reusing exterior wall framing systems: A cradle-to-cradle comparative life cycle assessment. Waste Manag. 2019, 94, 120–135. (In English) [Google Scholar] [CrossRef]
- Eberhardt, L.C.M.; van Stijn, A.; Stranddorf, L.K.; Birkved, M.; Birgisdottir, H. Environmental Design Guidelines for Circular Building Components: The Case of the Circular Building Structure. Sustainability 2021, 13, 5621. [Google Scholar] [CrossRef]
- Antunes, A.; Martins, R.; Silvestre, J.D.; Do Carmo, R.; Costa, H.; Júlio, E.; Pedroso, P. Environmental impacts and benefits of the end-of-life of building materials: Database to support decision making and contribute to circularity. Sustainability 2021, 13, 12659. [Google Scholar] [CrossRef]
- Saadé, M.; Erradhouani, B.; Pawlak, S.; Appendino, F.; Peuportier, B.; Roux, C. Combining circular and LCA indicators for the early design of urban projects. Int. J. Life Cycle Assess. 2022, 27, 1–19. [Google Scholar] [CrossRef]
- Brütting, J.; Ohlbrock, P.O.; Hofer, J.; D’Acunto, P. Stock-constrained truss design exploration through combinatorial equilibrium modeling. Int. J. Space Struct. 2021, 36, 253–269. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Angrisano, M.; Nativo, M. Evaluation of Environmental Impacts of Historic Buildings Conservation through Life Cycle Assessment in a Circular Economy Perspective. Aestimum 2020, 2020, 241–272. [Google Scholar] [CrossRef]
- Buyle, M.; Galle, W.; Debacker, W.; Audenaert, A. Sustainability assessment of circular building alternatives: Consequential LCA and LCC for internal wall assemblies as a case study in a Belgian context. J. Clean. Prod. 2019, 218, 141–156. (In English) [Google Scholar] [CrossRef]
- Ma, W.; Hao, J.L.; Zhang, C.; Di Sarno, L.; Mannis, A. Evaluating carbon emissions of China’s waste management strategies for building refurbishment projects: Contributing to a circular economy. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, R.K.; Kanafani, K.; Rasmussen, F.N.; Andersen, C.; Birgisdóttir, H. LCA-Framework to Evaluate Circular Economy Strategies in Existing Buildings. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 042044. [Google Scholar] [CrossRef]
- Kakkos, E.; Heisel, F.; Hebel, D.E.; Hischier, R. Environmental Assessment of the Urban Mining and Recycling (UMAR) Unit by Applying the LCA Framework. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012043. [Google Scholar] [CrossRef]
- Russo, F.; Oreto, C.; Veropalumbo, R. A Practice for the Application of Waste in Road Asphalt Pavements in an Eco-Friendly Way. Appl. Sci. 2021, 11, 9268. (In English) [Google Scholar] [CrossRef]
- Silva, V.U.; Nascimento, M.F.; Oliveira, P.R.; Panzera, T.H.; Rezende, M.O.; Silva, D.A.L.; Aquino, V.B.D.; Lahr, F.A.R.; Christoforo, A.L. Circular vs. linear economy of building materials: A case study for particleboards made of recycled wood and biopolymer vs. conventional particleboards. Constr. Build. Mater. 2021, 285, 17. [Google Scholar] [CrossRef]
- Hossain, M.U.; Xuan, D.X.; Ng, S.T.; Amor, B. Designing sustainable partition wall blocks using secondary materials: A life cycle assessment approach. J. Build. Eng. 2021, 43, 7. [Google Scholar] [CrossRef]
- Rodrigo-Bravo, A.; Cuenca-Romero, L.A.; Calderon, V.; Rodriguez, A.; Gutierrez-Gonzalez, S. Comparative Life Cycle Assessment (LCA) between standard gypsum ceiling tile and polyurethane gypsum ceiling tile. Energy Build. 2022, 259, 111867. (In English) [Google Scholar] [CrossRef]
- Rasmussen, F.N.; Birkved, M.; Birgisdóttir, H. Upcycling and Design for Disassembly—LCA of Buildings Employing Circular Design Strategies. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012040. [Google Scholar] [CrossRef]
- Caldas, L.R.; Saraiva, A.B.; Lucena, A.F.P.; Da Gloria, M.Y.; Santos, A.S.; Toledo, R.D. Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resour. Conserv. Recycl. 2021, 166, 12. (In English) [Google Scholar] [CrossRef]
- Guest, G.; Cherubini, F.; Strømman, A.H. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life. J. Ind. Ecol. 2013, 17, 20–30. [Google Scholar] [CrossRef]
- Lozano-Miralles, J.A.; Hermoso-Orzaez, M.J.; Martinez-Garcia, C.; Rojas-Sola, J.I. Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis. Sustainability 2018, 10, 2917. (In English) [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Rasi, K.; Hughes, M.; Halme, M.; Fink, G. Prolonging life cycles of construction materials and combating climate change by cascading: The case of reusing timber in Finland. Resour. Conserv. Recycl. 2021, 170, 105555. [Google Scholar] [CrossRef]
- Quintana-Gallardo, A.; Clausell, J.R.; Guillen-Guillamon, I.; Mendiguchia, F.A. Waste valorization of rice straw as a building material in Valencia and its implications for local and global ecosystems. J. Clean. Prod. 2021, 318, 12. (In English) [Google Scholar] [CrossRef]
- Wiprachtiger, M.; Haupt, M.; Heeren, N.; Waser, E.; Hellweg, S. A framework for sustainable and circular system design: Development and application on thermal insulation materials. Resour. Conserv. Recycl. 2020, 154, 11. (In English) [Google Scholar] [CrossRef]
- Mostert, C.; Sameer, H.; Glanz, D.; Bringezu, S. Climate and resource footprint assessment and visualization of recycled concrete for circular economy. Resour. Conserv. Recycl. 2021, 174, 13. (In English) [Google Scholar] [CrossRef]
- Tsioka, M.; Voudrias, E.A. Comparison of alternative management methods for phosphogypsum waste using life cycle analysis. J. Clean. Prod. 2020, 266, 12. (In English) [Google Scholar] [CrossRef]
- Romnée, A.; Vandervaeren, C.; Breda, O.; De Temmerman, N. A Greenhouse that Reduces Greenhouse Effect: How to Create a Circular Activity with Construction Waste? IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012035. [Google Scholar] [CrossRef]
- Peceno, B.; Leiva, C.; Alonso-Farinas, B.; Gallego-Schmid, A. Is Recycling Always the Best Option? Environmental Assessment of Recycling of Seashell as Aggregates in Noise Barriers. Processes 2020, 8, 776. (In English) [Google Scholar] [CrossRef]
- Ghisellini, P.; Ncube, A.; D’ambrosio, G.; Passaro, R.; Ulgiati, S. Potential energy savings from circular economy scenarios based on construction and agri-food waste in Italy. Energies 2021, 14, 8561. [Google Scholar] [CrossRef]
- Vandewalle, D.; Antunes, V.; Neves, J.; Freire, A.C. Assessment of eco-friendly pavement construction and maintenance using multi-recycled rap mixtures. Recycling 2020, 5, 17. [Google Scholar] [CrossRef]
- Zanni, S.; Simion, I.M.; Gavrilescu, M.; Bonoli, A. Life Cycle Assessment applied to circular designed construction materials. In Procedia CIRP, Proceedings of the 25th CIRP Life Cycle Engineering (LCE) Conference, Copenhagen, Denmark, 30 April–2 May 2018; Elsevier Science Bv: Amsterdam, The Netherlands, 2018; Volume 69, pp. 154–159. [Google Scholar]
- Brütting, J.; Desruelle, J.; Senatore, G.; Fivet, C. Design of Truss Structures Through Reuse. Structures 2019, 18, 128–137. (In English) [Google Scholar] [CrossRef]
- Zhang, C.B.; Hu, M.M.; Dong, L.; Xiang, P.C.; Zhang, Q.; Wu, J.B.; Li, B.; Shi, S.Y. Co-benefits of urban concrete recycling on the mitigation of greenhouse gas emissions and land use change: A case in Chongqing metropolis, China. J. Clean. Prod. 2018, 201, 481–498. [Google Scholar] [CrossRef]
- Zaman, A.; Arnott, J.; McLntyre, K.; Hannon, J. Resource Harvesting through a Systematic Deconstruction of the Residential House: A Case Study of the ‘Whole House Reuse’ Project in Christchurch, New Zealand. Sustainability 2018, 10, 3430. [Google Scholar] [CrossRef] [Green Version]
- Brütting, J.; Senatore, G.; Fivet, C. Optimization Formulations for the Design of Low Embodied Energy Structures Made from Reused Elements. In Advanced Computing Strategies for Engineering; Smith, I.F.C., Domer, B., Eds.; EG-ICE 2018. Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10863. [Google Scholar] [CrossRef] [Green Version]
- Petit-Boix, A.; Leipold, S. Circular economy in cities: Reviewing how environmental research aligns with local practices. J. Clean. Prod. 2018, 195, 1270–1281. [Google Scholar] [CrossRef]
- Eberhardt, L.C.M.; van Stijn, A.; Nygaard Rasmussen, F.; Birkved, M.; Birgisdottir, H. Development of a Life Cycle Assessment Allocation Approach for Circular Economy in the Built Environment. Sustainability 2020, 12, 9579. [Google Scholar] [CrossRef]
- Eberhardt, L.C.M.; Stijn, A.v.; Rasmussen, F.N.; Birkved, M.; Birgisdottir, H. Towards circular life cycle assessment for the built environment: A comparison of allocation approaches. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 032026. [Google Scholar] [CrossRef]
- De Wolf, C.; Hoxha, E.; Fivet, C. Comparison of environmental assessment methods when reusing building components: A case study. Sustain. Cities Soc. 2020, 61, 102322. [Google Scholar] [CrossRef]
- Bonoli, A.; Degli Esposti, A.; Magrini, C. A Case Study of Industrial Symbiosis to Reduce GHG Emissions: Performance Analysis and LCA of Asphalt Concretes Made with RAP Aggregates and Steel Slags. Front. Mater. 2020, 7, 14. [Google Scholar] [CrossRef]
- Sanchez, B.; Esnaashary Esfahani, M.; Haas, C. A methodology to analyze the net environmental impacts and building’s cost performance of an adaptive reuse project: A case study of the Waterloo County Courthouse renovations. Environ. Syst. Decis. 2019, 39, 419–438. [Google Scholar] [CrossRef]
- Sandanayake, M.; Law, D.; Sargent, P. A new framework for assessing the environmental impacts of circular economy friendly soil waste-based geopolymer cements. Build. Environ. 2022, 210, 108702. [Google Scholar] [CrossRef]
- Lopez-Garcia, A.B.; Cotes-Palomino, T.; Uceda-Rodriguez, M.; Moreno-Maroto, J.M.; Cobo-Ceacero, C.J.; Andreola, N.M.F.; Martinez-Garcia, C. Application of Life Cycle Assessment in the Environmental Study of Sustainable Ceramic Bricks Made with ‘alperujo’ (Olive Pomace). Appl. Sci. 2021, 11, 2278. (In English) [Google Scholar] [CrossRef]
- Caneda-martínez, L.; Monasterio, M.; Moreno-juez, J.; Martínez-ramírez, S.; García, R.; Frías, M. Behaviour and properties of eco-cement pastes elaborated with recycled concrete powder from construction and demolition wastes. Materials 2021, 14, 1299. [Google Scholar] [CrossRef] [PubMed]
- Vitale, P.; Napolitano, R.; Colella, F.; Menna, C.; Asprone, D. Cement-Matrix Composites Using CFRP Waste: A Circular Economy Perspective Using Industrial Symbiosis. Materials 2021, 14, 1484. (In English) [Google Scholar] [CrossRef] [PubMed]
- Al-Hamrani, A.; Kim, D.; Kucukvar, M.; Onat, N.C. Circular economy application for a Green Stadium construction towards sustainable FIFA world cup Qatar 2022™. Environ. Impact Assess. Rev. 2021, 87, 12. (In English) [Google Scholar] [CrossRef]
- Uceda-Rodríguez, M.; Moreno-Maroto, J.M.; Cobo-Ceacero, C.J.; López-García, A.B.; Cotes-Palomino, T.; Martínez-García, C. Comparative Life Cycle Assessment of lightweight Aggregates Made from Waste—Applying the Circular Economy. Appl. Sci. 2022, 12, 1917. [Google Scholar] [CrossRef]
- Nasir, M.H.A.; Genovese, A.; Acquaye, A.A.; Koh, S.C.L.; Yamoah, F. Comparing linear and circular supply chains: A case study from the construction industry. Int. J. Prod. Econ. 2017, 183, 443–457. (In English) [Google Scholar] [CrossRef]
- Diaz-Piloneta, M.; Terrados-Cristos, M.; Alvarez-Cabal, J.V.; Vergara-Gonzalez, E. Comprehensive Analysis of Steel Slag as Aggregate for Road Construction: Experimental Testing and Environmental Impact Assessment. Materials 2021, 14, 3587. [Google Scholar] [CrossRef]
- Liikanen, M.; Gronman, K.; Deviatkin, I.; Havukainen, J.; Hyvarinen, M.; Karki, T.; Varis, J.; Soukka, R.; Horttanainen, M. Construction and demolition waste as a raw material for wood polymer composites—Assessment of environmental impacts. J. Clean. Prod. 2019, 225, 716–727. (In English) [Google Scholar] [CrossRef]
- Terrones-Saeta, J.M.; Suarez-Macias, J.; Moreno-Lopez, E.R.; Corpas-Iglesias, F.A. Determination of the Chemical, Physical and Mechanical Characteristics of Electric Arc Furnace Slags and Environmental Evaluation of the Process for Their Utilization as an Aggregate in Bituminous Mixtures. Materials 2021, 14, 782. (In English) [Google Scholar] [CrossRef] [PubMed]
- Di Maria, A.; Eyckmans, J.; Van Acker, K. Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Manag. 2018, 75, 3–21. (In English) [Google Scholar] [CrossRef]
- Wang, S.; Xu, Z.B.; Zhang, W.Q.; Fan, Z.Q.; Feng, S.Q.; Liu, Y. Effects of aggregate reuse for overpass reconstruction-extension projects on energy conservation and greenhouse gas reduction: A case study from Shanghai City. J. Clean. Prod. 2017, 140, 1444–1453. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martin-Morales, M.; Bonoli, A.; Valverde-Palacios, I. Environmental assessment of masonry mortars made with natural and recycled aggregates. Int. J. Life Cycle Assess. 2019, 24, 191–210. (In English) [Google Scholar] [CrossRef]
- Suarez-Macias, J.; Terrones-Saeta, J.M.; Iglesias-Godino, F.J.; Corpas-Iglesias, F.A. Evaluation of Physical, Chemical, and Environmental Properties of Biomass Bottom Ash for Use as a Filler in Bituminous Mixtures. Sustainability 2021, 13, 4119. (In English) [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.A. Framework for Designing Sustainable Structures through Steel Beam Reuse. Sustainability 2020, 12, 9494. (In English) [Google Scholar] [CrossRef]
- Kucukvar, M.; Kutty, A.A.; Al-Hamrani, A.; Kim, D.; Nofal, N.; Onat, N.C.; Ermolaeva, P.; Al-Ansari, T.; Al-Thani, S.K.; Al-Jurf, N.M.; et al. How circular design can contribute to social sustainability and legacy of the FIFA World Cup Qatar 2022TM? The case of innovative shipping container stadium. Environ. Impact Assess. Rev. 2021, 91, 14. (In English) [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T. Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle. Resour. Conserv. Recycl. 2019, 142, 10–23. (In English) [Google Scholar] [CrossRef]
- Eberhardt, L.C.M.; Birgisdottir, H.; Birkved, M. Life cycle assessment of a Danish office building designed for disassembly. Build. Res. Informat. 2019, 47, 666–680. (In English) [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, N.; Brancart, S.; De Regel, S.; Paduart, A.; Temmerman, N.D.; Debacker, W. Multi-Criteria Decision Analysis Using Life Cycle Assessment and Life Cycle Costing in Circular Building Design: A Case Study for Wall Partitioning Systems in the Circular Retrofit Lab. Sustainability 2021, 13, 5124. (In English) [Google Scholar] [CrossRef]
- Marconi, M.; Barbanera, M.; Calabrò, G.; Baffo, I. Reuse of leather scraps for insulation panels: Technical and environmental feasibility evaluation. Procedia CIRP 2020, 90, 55–60. [Google Scholar] [CrossRef]
- Peceno, B.; Alonso-Farinas, B.; Vilches, L.F.; Leiva, C. Study of seashell waste recycling in fireproofing material: Technical, environmental, and economic assessment. Sci. Total Environ. 2021, 790, 10. (In English) [Google Scholar] [CrossRef]
- Simoes, F.; Rios-Davila, F.J.; Paiva, H.; Maljaee, H.; Morais, M.; Ferreira, V.M. Sustainability Evaluation Using a Life Cycle and Circular Economy Approach in Precast Concrete with Waste Incorporation. Appl. Sci. 2021, 11, 11617. (In English) [Google Scholar] [CrossRef]
- Cassiani, J.; Martinez-Arguelles, G.; Peñabaena-Niebles, R.; Keßler, S.; Dugarte, M. Sustainable concrete formulations to mitigate Alkali-Silica reaction in recycled concrete aggregates (RCA) for concrete infrastructure. Constr. Build. Mater. 2021, 307, 124919. [Google Scholar] [CrossRef]
- Ferriss, L. Sustainable reuse of post-war architecture through life cycle assessment. J. Archit. Conserv. 2021, 27, 17. (In English) [Google Scholar] [CrossRef]
- Ali, A.K.; Kio, P.N.; Alvarado, J.; Wang, Y. Symbiotic Circularity in Buildings: An Alternative Path for Valorizing Sheet Metal Waste Stream as Metal Building Facades. Waste Biomass Valorization 2020, 11, 7127–7145. (In English) [Google Scholar] [CrossRef]
- Ramos, A.; Briga-Sá, A.; Pereira, S.; Correia, M.; Pinto, J.; Bentes, I.; Teixeira, C.A. Thermal performance and life cycle assessment of corn cob particleboards. J. Build. Eng. 2021, 44, 102998. [Google Scholar] [CrossRef]
- Mostert, C.; Sameer, H.; Glanz, D.; Bringezu, S. Urban Mining for Sustainable Cities: Environmental Assessment of Recycled Concrete. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 052021. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Courard, L.; Groslambert, S.; Jehin, T.; Leonard, A.; Xiao, J.Z. Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study. Resour. Conserv. Recycl. 2020, 157, 13. [Google Scholar] [CrossRef]
- Capuano, L.; Magatti, G.; Perucca; Dettori, M.; Mantecca, P. Use of recycled plastics as a second raw material in the production of road pavements: An example of circular economy evaluated with LCA methodology*. Procedia Environ. Sci. Eng. Manag. 2020, 7, 37–43. Available online: http://www.procedia-esem.eu/pdf/issues/2020/no1/5_5_Capuano_20.pdf (accessed on 14 February 2022).
Search Strings |
---|
LCA OR “life cycle assessment*” OR “life cycle analy*” OR “lifecycle assessment*” OR “lifecycle analy*” |
“circle econom*” OR “circular econom*” OR “linear econom*” OR CE OR circularity OR “industrial ecolo*” OR “cradle to cradle” OR C2C OR “performance econom*” OR biomimic* OR “natur* capital *” OR “regenerative design*” OR “blue econom*” OR refus* OR rethink* OR recov* OR reus* OR repair* OR reman* OR refurb* OR recycle* OR renovat* OR “resource econom*” OR “eco design*” OR upcycle* |
“Built environment” OR building* OR constructi* OR “building design*” OR “building system*” OR “civil engineering” OR built* OR urban* OR communit* OR city OR cities OR infrastruc* OR neighborhood OR neighbourhood OR district OR region OR “building stock*” OR “housing stock*” OR “dwelling stock*” OR “built struct*” OR landscap* |
Author | |
---|---|
Year of study | Temporal trends |
Title | |
Type of paper | Methodology, case study or review |
Aim of study | Method development, proof of concept, decision support etc. |
Main focus of study | Only LCA, or technical performance, mechanical test etc. |
Region/country of main author | Spatial trends |
Journal | |
Scale of case | |
Region of case | Spatial trends |
Temporal trends | Reference year, RSL or Reference study period |
Subject of study/case/stock | material, building, etc. |
Definition of CE | Concept studied (e.g., R-imperative) |
LCA reference | Standard, guidelines, etc. |
FU/DU | what’s the functional or declared unit? |
Life cycle scope | e.g., embodied, operational, full |
Life cycle approach | ALCA, CLCA, etc.? What def. of the methods is used? |
System boundary | How are secondary functions and/or co-products handled? |
Life Cycle stages | process level or according to EN15804/EN15804 |
System boundary, content | Life cycle stages and processes included |
Background LCI data | Ecoinvent, GaBi |
PS modelling software | OpenLCA, GaBi, SimaPro, national programme etc. |
EoL inclusion | How do they project—static or prospectively |
LCIA method | e.g., CML, ILCD etc. |
Environmental indicators | GWP, AP, Resources, etc. |
Normalisation and weighting | yes/no, how? |
Interpretation approach | e.g., MCDM |
Does CE pay of? |
Type of Publication | Conference Proceeding, Journal Article |
---|---|
Products compared | functionally equal compared or the same product |
CE cycles | Number of e.g., reuse cycles assessed/ |
CE assessed | e.g., closed, or open loop recycling, and up front or prospective CE |
Allocation method | |
LCI foreground data | BIM, manufacturers, literature, etc. |
Sensitivity analysis | yes/no, how and what? |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, S.C.; Birgisdottir, H.; Birkved, M. Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review. Sustainability 2022, 14, 6887. https://doi.org/10.3390/su14116887
Andersen SC, Birgisdottir H, Birkved M. Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review. Sustainability. 2022; 14(11):6887. https://doi.org/10.3390/su14116887
Chicago/Turabian StyleAndersen, Sarah C., Harpa Birgisdottir, and Morten Birkved. 2022. "Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review" Sustainability 14, no. 11: 6887. https://doi.org/10.3390/su14116887
APA StyleAndersen, S. C., Birgisdottir, H., & Birkved, M. (2022). Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review. Sustainability, 14(11), 6887. https://doi.org/10.3390/su14116887