Inter- and Mixed Cropping of Different Varieties Improves High-Temperature Tolerance during Flowering of Summer Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Experimental Design
2.3. Measurement of Parameters and Methods
2.3.1. Main Reproductive Assessment Period
2.3.2. Population Density Determination
2.3.3. Main Agricultural Characters Determination
2.3.4. Ear Traits and Yield Determination
2.3.5. Calculation of the Land Equivalent Ratio
2.4. Determination of Maize Flowering Period and High-Temperature Stress Threshold
2.5. Statistical Analysis
3. Results
3.1. Differences in the Onset of Flowering and the Occurrence of High Temperatures
3.2. Plant Height and Ear Height
3.3. Leaf Area Index
3.4. Population Light Transmittance
3.5. Effects of Inter- and Mixed Cropping Modes on Ear Traits
3.6. Effect of Inter- and Mixed Cropping Modes on Yield
3.7. Population Yield and Land Equivalent Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seleiman, M.F.; Al-Suhaibani, N.; El-Hendawy, S.; Abdella, K.; Alotaibi, M.; Alderfasi, A. Impacts of Long- and Short-Term of Irrigation with Treated Wastewater and Synthetic Fertilizers on the Growth, Biomass, Heavy Metal Content, and Energy Traits of Three Potential Bioenergy Crops in Arid Regions. Energies 2021, 14, 3037. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Selim, S.; Jaakkola, S.; Mäkelä, P.S. Chemical composition and in vitro digestibility of whole-crop maize fertilized with synthetic fertilizer or digestate and harvested at two maturity stages in Boreal growing conditions. Agric. Food Sci. 2017, 26, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.J.; Wan, S.Q.; Xiao, Y.; Liu, M.; Sun, S.L. Simulative evaluation and projection of air temperatures over central China in the SRES scenarios. Acta Meteorol. Sina 2012, 70, 1098–1106. (In Chinese) [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Yan, C.; Ju, H.; Mei, X.; Liu, Q.; Xu, J. Spatio-temporal characteristics and jump features of air temperature in huang-huai-hai plain during recent 50 years. J. Agrometeorol. 2013, 1, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Guan, Y.; He, Q.J.; Liu, J.H.; Li, R.C.; Hu, Q.; Hang, B.X.; Pan, X.B. Variation characteristics of extreme temperature and its earliest and latest day sequence in Huang-Huai-Hai region during the period 1961 to 2015. Res. Soil Water Conserv. 2021, 1, 147–152. (In Chinese) [Google Scholar] [CrossRef]
- Chen, X.; Bao, Y.J.; Li, Q.; Ding, J.K.; Yang, M.Z.; Wang, D.Y.; Cao, Z.H.; He, L.; Song, Y.H. Review on characteristics of high temperature and its damage, and prevention measures of summer maize in Huang-Huai-Hai area. Anhui Nong Ye Da Xue Xue Bao 2020, 2, 304–308. (In Chinese) [Google Scholar] [CrossRef]
- Lv, Z.; Li, F.; Lu, G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 87–106. [Google Scholar] [CrossRef]
- Singletary, G.; Bnisadr, R.; Keling, P. Heat-stress during grain filling in maize—Effects on carbohydrate storage and metabolism. Aust. J. Plant Physiol. 1994, 6, 829–841. [Google Scholar] [CrossRef]
- Wilhelm, E.P.; Mullen, R.E. Heat Stress during Grain Filling in Maize. Crop Sci. 1999, 6, 1733–1741. [Google Scholar] [CrossRef]
- Zhao, L.F.; Li, C.H.; Liu, T.X.; Wang, X.P.; Pan, X. Genotypic responses and physiological mechanisms of maize (Zea mays L.) to high temperature stress during flowering. Acta Agron. Sin. 2012, 5, 857–864. (In Chinese) [Google Scholar] [CrossRef]
- Rattalino, E.J.; Budakli, C.E.; Sammarro, D.; Otegui, M.E. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011, 2, 62–73. [Google Scholar] [CrossRef]
- Jiang, Z.B.; Tao, H.B.; Tuo, W.U.; Wang, P.; Song, Q.F. Effects of high temperature on maize pollen viability. J. China Agric. Univ. 2016, 3, 25–29. (In Chinese) [Google Scholar] [CrossRef]
- Singh, A.; Antre, S.H.; Ravikumar, R.L.; Kuchanur, P.H.; Lohithaswa, H.C. Genetic evidence of pollen selection mediated phenotypic changes in maize conferring transgenerational heat–stress tolerance. Crop Sci. 2020, 4, 1907–1924. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Perumal, R.; Jagadish, S.V.K.; Ciampitti, I.A.; Welti, R.; Prasad, P.V.V. Sensitivity of sorghum pollen and pistil to high–temperature stress. Plant Cell Environ. 2018, 5, 1065–1082. [Google Scholar] [CrossRef]
- Yadav, S.K.; Tiwari, Y.K.; Pavan, K.D.; Shanker, A.K.; Jyothi, L.N.; Vanaja, M.; Maheswari, M. Genotypic variation in physiological traits under high temperature stress in maize. Agric. Res. 2016, 2, 119–126. [Google Scholar] [CrossRef]
- Mukhtar, T.; Rehman, S.U.; Smith, D.; Sultan, T.; Seleiman, M.F.; Alsadon, A.A.; Shafaqat Ali, A.; Chaudhary, H.J.; Solieman, T.H.I.; Ibrahim, A.A.; et al. Mitigation of heat stress in Solanum lycopersicum L. by acc-deaminase and exopolysaccharide producing Bacillus cereus: Effects on biochemical profiling. Sustainability 2020, 12, 2159. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tao, H.; Tian, B.; Sheng, D.; Xu, C.; Zhou, H.; Huang, S.; Wang, P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ. Exp. Bot. 2019, 158, 80–88. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Vara, P.V.; Murugan, M.; Perumal, R.; Reddy, U.K. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ. Exp. Bot. 2014, 100, 43–54. [Google Scholar] [CrossRef]
- Liu, T.X.; Wang, Z.H.; Dong, P.F.; Li, C.H. Research Progress of Physiological and Ecological Effects in Maize Intercropping System. J. Maize Sci. 2007, 5, 114–116. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.L.; Kang, J.; Liu, T.X.; Li, C.H. Optimum stripe arrangement for inter–cropping and mixed–cropping of different maize (Zea mays L.) genotypes. Acta Ecol. Sin. 2013, 12, 3855–3864. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Sinsawat, V.; Leipner, J.; Stamp, P.; Fracheboud, Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot. 2005, 52, 123–129. [Google Scholar] [CrossRef]
- Hu, D.D.; Li, R.F.; Zhang, J.W.; Zhao, B.; Liu, P.; Dong, S.T. Mixed Cropping of Different Hybrids of Maize Optimizes Canopy Structure and Promotes Higher Grain Yield. Agron. J. 2019, 111, 2692–2702. [Google Scholar] [CrossRef]
- Brtnicky, M.; Elbl, J.; Kintl, A.; Dokulilova, T.; Kucerova, J. Effect of maize and legume mixed cropping on soil quality in relation to planting density. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, Albena, Bulgaria, 30 June–6 July 2019; SGEM: Sofia, Bulgaria, 2019; Volume 19, pp. 221–227. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, L.; Liu, R.J.; Wang, W.B.; Yu, R.W.; Zhou, T.; Ahmad, I.; Raza, A.; Jiang, S.J.; Xu, M.; et al. Shade-Tolerant Soybean Reduces Yield Loss by Regulating Its Canopy Structure and Stem Characteristics in the Maize-Soybean Strip Intercropping System. Front. Plant Sci. 2022, 13, 48893. [Google Scholar] [CrossRef]
- Zhao, X.H.; Dong, Q.Q.; Han, Y.; Zhang, K.Z.; Shi, X.L.; Yang, X.; Yuan, Y.; Zhou, D.Y.; Wang, K.; Wang, X.G.; et al. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiol. 2022, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Astiko, W.; Ernawati, N.M.L.; Silawibawa, I.P. Effect of Intercropping on Mycorrhizal Populations, Growth, and Yield on Several Varieties of Maize (Zea mays L.) and Soybeans [Glycine max (L.) Merr.] in Dryland North Lombok, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 913, 012008. [Google Scholar] [CrossRef]
- Li, C.H.; Su, X.H.; Sun, D.L. Ecophysiological Characterization of Different Maize (Zea mays L.) Genotypes under Mono- or Inter-cropping Conditions. Acta Ecol. Sin. 2002, 12, 2096–2102. (In Chinese) [Google Scholar] [CrossRef]
- Weng, W.H.; Chen, L.G.; Sun, J.Y.; Fu, Y.J. Mechanism and Application of Mixed Cropping in Crop Protection: A Review. J. Agric. 2017, 2, 15–19. [Google Scholar] [CrossRef]
- Zaeem, M.; Nadeem, M.; Pham, T.H.; Ashiq, W.; Ali, W.; Gillani, S.S.M.; Moise, E.; Elavarthi, S.; Kavanagh, V.; Cheema, M.; et al. Corn-soybean intercropping improved the nutritional quality of forage cultivated on Podzols in boreal climate. Plants 2021, 10, 1015. [Google Scholar] [CrossRef]
- Raza, M.A.; Cui, L.; Khan, I.; Din, A.; Yang, W. Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system. Environ. Sci. Pollut. Res. Int. 2021, 28, 41135–41148. [Google Scholar] [CrossRef]
- Gajghate, R.; Chourasiya, D.; Harikrishna; Sharma, R.K. Plant Morphological, Physiological Traits Associated with Adaptation Against Heat Stress in Wheat and Maize. In Plant Stress Biology; Springer: Singapore, 2021; pp. 51–81. [Google Scholar] [CrossRef]
- Rattalino, J.I.; Otegui, M.E. Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use. Field Crop. Res. 2012, 130, 87–98. [Google Scholar] [CrossRef]
- Thayamini, H.S.; Brintha, I. Review on maize based intercropping. J. Agron. 2010, 3, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.B. Effects of row spacing and intercropping on canopy photosynthetic characteristics and yield of Xianyu series maize varieties. Hebei Agric. Univ. 2021, 5, S513. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.H.; Wang, A.L.; Wang, J.J.; Xue, J.B.; Dong, X.C.; Wei, G.Y. Influence of High Temperature on Growth and Development of Maize. Crops 2008, 4, 90–92. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Y.H.; Liu, T.X.; Fang, W.S.; Li, S.Y. Risk analysis of high temperature disaster during summer maize flowering period in henan province. Chin. J. Agrometeorol. 2021, 42, 879–888. (In Chinese) [Google Scholar] [CrossRef]
- Naveed, S.; Aslam, M.; Maqbool, M.A.; Bano, S.; Ahmad, R.M. Physiology of high temperature stress tolerance at reproductive stages in maize. J. Anim. Plant Sci. 2014, 4, 1141–1145. [Google Scholar]
- Kumar, S.; Thakur, P.; Kaushal, N.; Malik, J.A.; Gaur, P.; Nayyar, H. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch. Agron. Soil Sci. 2013, 6, 823–843. [Google Scholar] [CrossRef]
- Fonseca, A.E.; Westgate, M.E. Relationship between desiccation and viability of maize pollen. Field Crop Res. 2004, 94, 114–125. [Google Scholar] [CrossRef]
- Song, F.W.; Peng, W.U.; Xing, J.M.; Zhou, X.Y.; Cui, X.R.; Yu, X.P.; Wang, J. Influences of high temperature stress on viability of pollen grain inbred lines of male parent. J. Maize Sci. 2014, 3, 153–158. [Google Scholar] [CrossRef]
- Sheng, D.C.; Wang, Y.Y.; Huang, S.B.; Tao, H.B.; Wang, P. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants. J. Maize Sci. 2020, 5, 86–92. (In Chinese) [Google Scholar] [CrossRef]
- Rasheed, A.; Seleiman, M.F.; Nawaz, M.; Mahmood, A.; Rizwan Anwar, M.; Ahsin Ayub, M.; Aamer, M.; El-Esawi, M.A.; El-Harty, E.H.; Batool, M.; et al. Agronomic and genetic approaches for enhancing tolerance to heat stress in rice: A review. Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 1–27. [Google Scholar] [CrossRef]
- Yang, X.Q.; Wang, Y.; Qi, X.N.; Sun, L.Y.; Song, F.B.; Liu, S.Q.; Li, X.N.; Raza, X.C.; Tian, C. Photosynthetic physio-ecological characteristics of maize intercropping system. Soil Crop 2019, 8, 70–77. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, M.; Shi, Z.S.; Li, F.H.; Wang, Z.B. Summary of Different Maize Variety Inter-planting and Mixed Cultivation. J. Maize Sci. 2007, 1, 100–103. (In Chinese) [Google Scholar] [CrossRef]
- Liu, T.X.; Li, C.H.; Fu, J.; Yan, C.H. Population quality of different maize (Zea mays L.) genotypes intercropped. Acta Ecol. Sin. 2009, 11, 6302–6309. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, B.R.; Liang, Y.C.; Zhang, S.Q.; Liu, Y.T.; Yang, D.R. Study on a new model of three-dimensional intercropping of high and dwarf maize. J. Maize Sci. 1999, 3, 51–53. (In Chinese) [Google Scholar]
- Yu, G.X. Preliminary study on Intercropping of Maize with high and short stalks. Tillage Cultiv. 1999, 2, 10–27. (In Chinese) [Google Scholar]
- Ping, X.S.; Xing, R.R.; Liu, T.X. Complementary effect of anti-adversity and yield in different maize (Zea mays L.) genotypes intercropping system. J. Gansu Agric. Univ. 2020, 55, 62–67. (In Chinese) [Google Scholar] [CrossRef]
- Jia, Y.F.; Zhang, X.S.; Zhao, M. Genetic analysis on chemical compositions of kernel of f1 embryo stage in common corn single hybrids and high oil corns. J. Maize Sci. 2004, 12, 26–29. (In Chinese) [Google Scholar] [CrossRef]
- Ren, H.; Liu, P.; Dong, S.T.; Zhang, J.J.; Zhao, B. Research advancements of effect of high temperature stress on growth and development of maize. J. Maize Sci. 2019, 27, 109–115. (In Chinese) [Google Scholar] [CrossRef]
- Su, X.H.; Li, C.H.; Sun, D.L.; Zhang, H.Z. First report of different genotype maize’s intercropping. J. Maize Sci. 2000, 8, 57–60. (In Chinese) [Google Scholar] [CrossRef]
- Meng, Q.P.; Wu, F.L.; Liu, Y.; Miao, S.R.; Li, C.X.; Guo, J.; Guo, F.; Yin, Y.H. Preliminary study on the utilization of contemporary heterosis in three-dimensional cultivation of Maize. J. Maize Sci. 1997, 3, 43–45. (In Chinese) [Google Scholar]
- Jiao, N.Y.; Ning, T.Y.; Yang, M.K.; Fu, G.Z.; Yin, F.; Xu, G.W.; Li, Z.J. Effects of maize || peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecol. Sin. 2013, 33, 4324–4330. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Cui, J.M.; Song, C.J.; Lu, D.W.; Yang, H.Y.; Guo, S.Y.; Pei, Z.Q.; Liu, Z.P.; Lu, L.Y.; Sun, H.C.; Niu, Y.F.; et al. Planting techniques of long and short-stalked multistorey intercropping of different type maize hybrid. Rain Fed. Crops 2005, 25, 253–257. (In Chinese) [Google Scholar] [CrossRef]
- Tao, J.J.; Wang, H.B.; Zhu, Z.Y.; Tan, J.F.; Wang, Y.L. Effect of Different Genotype Summer Maize Intercropping on Yield and Nitrogen Absorption and Utilization. Acta Agric. Boreali Sin. 2016, 31, 185–191. (In Chinese) [Google Scholar] [CrossRef]
- Bai, X.H.; Wang, T.Q.; Liu, Z.L.; Liu, S.M.; Zhang, S.H. Breeding process and high-efficiency cultivation technology of new summer maize variety weiyu 6 with high temperature resistance and high-yield. Mod. Agric. Sci. Technol. 2019, 13, 38–41. (In Chinese) [Google Scholar] [CrossRef]
- Liu, T.X.; Wang, Y.K.; Jiang, X. High temperature and heat damage in maize blooming period and its alleviating cultivation techniques. Henan Agric. 2017, 3, 45–46. (In Chinese) [Google Scholar]
- Liu, T.X.; Duan, P.F.; Wang, Y.L.; Zhao, C.L.; Hu, X.L. Maize Planting Method for Ecologically Mitigating Flowering-Stage High-Temperature Heat Damage. CN104996127A, 20 October 2017. (In Chinese). [Google Scholar]
- NY/T 3841—2021; Technical Specification for Maize Complementary Resistance Enhancement Production. Department of Crop Management, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Henan Agricultural University: Zhengzhou, China, 2021. Available online: https://hbba.sacinfo.org.cn/attachment/online?pk=293e6dac6d065349efac0ad6c5cc39045b7b258990738862da863ef34317ad30 (accessed on 28 April 2022).
Farming Methods | Variety Combinations | Variety Codes | |
---|---|---|---|
Denghai 605 | Auxiliary Varieties | ||
Intercropping | Denghai 605||Zhengdan 958 [605||958] | (605)||958 | 605||(958) |
Denghai 605||Dedan 5 [605||005] | (605)||005 | 605||(005) | |
Denghai 605||Weike 702 [605||702] | (605)||702 | 605||(702) | |
Denghai 605||Xianyu 335 [605||335] | (605)||335 | 605||(335) | |
Mixed cropping | Denghai 605 × Zhengdan 958 [605 × 958] | (605) × 958 | 605 × (958) |
Denghai 605 × Dedan 5 [605 × 005] | (605) × 005 | 605 × (005) | |
Denghai 605 × Weike 702 [605 × 702] | (605) × 702 | 605 × (702) | |
Denghai 605 × Xianyu 335 [605 × 335] | (605) × 335 | 605 × (335) | |
Monoculture | Denghai 605 | CK605 | |
Zhengdan 958 | CK958 | ||
Dedan 5 | CK005 | ||
Weike 702 | CK702 | ||
Xianyu 335 | CK335 |
Variety | Ear Length /cm | Ear Thickness /cm | Bald Length /cm | Grain Number per Ear | 100-Grain Weight/g |
---|---|---|---|---|---|
CK 605 | 18.4 ± 0.8 | 5.1 ± 0.6 | 1.7 ± 0.6 | 503 ± 4 | 32.8 ± 0.3 |
(605)||958 | 21.5 ± 1.1 * | 5.1 ± 0.5 | 0.9 ± 0.3 | 615 ± 33 * | 34.5 ± 0.3 * |
(605)||005 | 17.8 ± 0.5 | 5.2 ± 1.1 | 1.8 ± 0.2 | 488 ± 32 | 34.1 ± 0.5 * |
(605)||702 | 19.7 ± 2.6 | 5.1 ± 0.9 | 1.5 ± 0.2 | 551 ± 59 * | 34.9 ± 0.7 * |
(605)||335 | 18.6 ± 1.1 | 5.0 ± 1.5 | 1.2 ± 0.4 | 523 ± 5 | 34.3 ± 0.7 * |
(605) × 958 | 20.8 ± 0.6 * | 4.8 ± 0.9* | 1.4 ± 0.4 | 546 ± 16* | 33.6 ± 0.4 |
(605) × 005 | 18.5 ± 0.7 | 5.1 ± 0.4 | 1.7 ± 0.4 | 516 ± 20 | 34.8 ± 0.7 * |
(605) × 702 | 19.3 ± 0.6 | 5.1 ± 0.5 | 1.3 ± 0.4 | 560 ± 13 * | 34.2 ± 0.8 * |
(605) × 335 | 18.8 ± 0.9 | 4.9 ± 0.9 | 2.2 ± 0.4 | 488 ± 24 | 33.6 ± 0.1 |
CK958 | 16.9 ± 0.5 | 5.4 ± 1.6 | 0.3 ± 0.1 | 523 ± 49 | 33.5 ± 0.3 |
605||(958) | 17.4 ± 0.5 | 5.3 ± 0.3 | 0.6 ± 0.2 | 531 ± 12 | 34.2 ± 1.2 |
605 × (958) | 17.1 ± 0.5 | 5.2 ± 0.9 | 0.9 ± 0.3 * | 528 ± 59 | 33.6 ± 0.5 |
CK005 | 15.7 ± 1.0 | 5.0 ± 0.6 | 0.0 ± 0.0 | 504 ± 20 | 30.9 ± 0.3 |
605||(005) | 15.3 ± 0.3 | 5.1 ± 0.6 | 0.1 ± 0.1 | 557 ± 7 * | 30.0 ± 0.3 |
605 × (005) | 15.4 ± 0.3 | 5.1 ± 0.9 | 0.0 ± 0.0 | 533 ± 33 | 30.5 ± 0.1 |
CK702 | 17.6 ± 0.8 | 5.4 ± 0.1 | 1.2 ± 0.3 | 524 ± 30 | 35.1 ± 1.0 |
605||(702) | 19.7 ± 0.4 * | 5.5 ± 0.3* | 0.6 ± 0.3 * | 577 ± 34 * | 37.3 ± 0.6 * |
605 × (702) | 19.4 ± 0.8 * | 5.3 ± 0.3 | 0.8 ± 0.2 | 565 ± 20 * | 35.3 ± 0.5 |
CK335 | 16.2 ± 0.9 | 5.2 ± 0.5 | 2.0 ± 1.1 | 426 ± 11 | 34.5 ± 0.6 |
605||(335) | 18.9 ± 0.8 * | 5.1 ± 1.2 | 1.7 ± 0.5 | 526 ± 46 * | 35.4 ± 0.5 |
605 × (335) | 18.5 ± 0.8 * | 5.2 ± 0.2 | 2.3 ± 0.3 | 529 ± 42 * | 35.4 ± 0.3 |
Variety | Yield /kg ha−2 | Yield Variety Compared with Monoculture/% |
---|---|---|
CK605 | 9075 ± 63 | — |
(605)||958 | 11,615 ± 641 * | 28.0 |
(605)||005 | 9328 ± 609 | 2.8 |
(605)||702 | 10,426 ± 405 * | 14.9 |
(605)||335 | 9878 ± 96 * | 8.8 |
(605) × 958 | 10,587 ± 664 * | 16.7 |
(605) × 005 | 9967 ± 383 * | 9.8 |
(605) × 702 | 10,549 ± 381 * | 16.2 |
(605) × 335 | 9988 ± 493 * | 10.1 |
CK958 | 10,812 ± 318 | — |
605||(958) | 11,028 ± 760 | 2.0 |
605 × (958) | 9846 ± 387 * | −8.9 |
CK005 | 9622 ± 379 | — |
605||(005) | 9842 ± 806 | 2.3 |
605 × (005) | 9983 ± 624 | −7.7 |
CK702 | 10,722 ± 520 | — |
605||(702) | 12,861 ± 747 * | 19.9 |
605 × (702) | 12,068 ± 361 * | 12.6 |
CK335 | 9144 ± 597 | — |
605||(335) | 10,800 ± 606 * | 18.1 |
605 × (335) | 10,738 ± 595 * | 17.4 |
Inter-and Mixed Cropping Patterns | Population Yield /kg ha−2 | Average Yield of Monoculture/kg ha−2 | Land Equivalent Ratio | Population Yield Variety Compared with Denghai 605 Monoculture/% | Population Yield Variety Compared with Other Varieties’ Monoculture/% |
---|---|---|---|---|---|
605||958 | 11,572 | 9944 | 1.16 | 24.8 | 4.7 |
605||005 | 9585 | 9349 | 1.03 | 5.6 | −0.4 |
605||702 | 11,644 | 9899 | 1.18 | 28.3 | 8.6 |
605||335 | 10,339 | 9110 | 1.13 | 13.9 | 13.1 |
605 × 958 | 10,217 | 9944 | 1.03 | 12.6 | −5.5 |
605 × 005 | 9975 | 9349 | 1.07 | 9.9 | 3.7 |
605 × 702 | 11,309 | 9899 | 1.14 | 24.6 | 5.5 |
605 × 335 | 10,363 | 9110 | 1.14 | 14.2 | 13.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhao, J.; Li, J.; Shao, R.; Li, H.; Fang, W.; Hu, L.; Liu, T. Inter- and Mixed Cropping of Different Varieties Improves High-Temperature Tolerance during Flowering of Summer Maize. Sustainability 2022, 14, 6993. https://doi.org/10.3390/su14126993
Li S, Zhao J, Li J, Shao R, Li H, Fang W, Hu L, Liu T. Inter- and Mixed Cropping of Different Varieties Improves High-Temperature Tolerance during Flowering of Summer Maize. Sustainability. 2022; 14(12):6993. https://doi.org/10.3390/su14126993
Chicago/Turabian StyleLi, Shuyan, Junfang Zhao, Junling Li, Ruixin Shao, Hongping Li, Wensong Fang, Liting Hu, and Tianxue Liu. 2022. "Inter- and Mixed Cropping of Different Varieties Improves High-Temperature Tolerance during Flowering of Summer Maize" Sustainability 14, no. 12: 6993. https://doi.org/10.3390/su14126993
APA StyleLi, S., Zhao, J., Li, J., Shao, R., Li, H., Fang, W., Hu, L., & Liu, T. (2022). Inter- and Mixed Cropping of Different Varieties Improves High-Temperature Tolerance during Flowering of Summer Maize. Sustainability, 14(12), 6993. https://doi.org/10.3390/su14126993