Sustainable Livelihoods in Rural Areas under the Shock of Climate Change: Evidence from China Labor-Force Dynamic Survey
Abstract
:1. Introduction
2. Methods
2.1. Measures of Sustainable Livelihoods
2.2. Variable Selection and Empirical Model Construction
2.2.1. Variable Selection and Assignment
2.2.2. Empirical Model
3. Results
3.1. Estimation of the Benchmark Model
3.2. Group Regression
3.2.1. Grouped by North and South
3.2.2. Grouped by Economic Region
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Public Health and the Environment. “LCIA: The ReCiPe Model”, February 2018. Available online: https://www.rivm.nl/en/life-cycle-assessment-lca/recipe (accessed on 2 November 2018).
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.Z.; Wu, Y.; Chambers, R.G.; Schmoldt, D.L.; Gao, W.; Liu, C.; Liu, Y.A.; Sun, C.; Kennedy, J.A. Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA 2017, 114, E2285–E2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinbrot, X.A.; Jones, K.W.; Rivera-Castañeda, A.; López-Báez, W.; Ojima, D.S. Smallholder farmer adoption of climate-related adaptation strategies: The importance of vulnerability context, livelihood assets, and climate perceptions. Environ. Manag. 2019, 63, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Muleta, B.G.; Mummed, Y.Y.; Kurtu, M.Y. Assessment of Beef Cattle Production and Marketing Practice in Eastern Oromia, Ethiopia. Effect of Climate Change on Agricultural Production and Community Response in Daro Lebu & Mieso District, West Hararghe Zone, Oromia Region National State, Ethiopia. Food Sci. Qual. Manag. 2019, 85. Available online: https://www.researchgate.net/publication/332343390 (accessed on 23 October 2019).
- Tesfaye, W.; Seifu, L. Climate change perception and choice of adaptation strategies. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 253–270. [Google Scholar] [CrossRef]
- Aragie, E.A. Climate Change, Growth, and Poverty in Ethiopia; Working Paper No.3; Texas University at Austin: Austin, TX, USA, 2013. [Google Scholar]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.J.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef] [PubMed]
- Tafesse, A.; Ayele, G.; Ketema, M.; Geta, E. Food Security and Adaptation Strategies to Climate Change in Eastern Ethiopia. Econ. Res. 2015, 5, 81–88. [Google Scholar]
- Phalkey, N. Household level vulnerability in an Indian mangrove socioecological system. Int. J. Sustain. Dev. World Ecol. 2020, 27, 534–547. [Google Scholar] [CrossRef]
- Zada, M.; Zada, S.; Ali, M.; Zhang, Y.; Begum, A.; Han, H.; Ariza-Montes, A.; Araya-Castillo, L. Contribution of Small-Scale Agroforestry to Local Economic Development and Livelihood Resilience: Evidence from Khyber Pakhtunkhwa Province (KPK), Pakistan. Land 2022, 11, 71. [Google Scholar] [CrossRef]
- Hong, H.; Karolyi, G.A.; Scheinkman, J.A. Climate finance. Rev. Financ. Stud. 2020, 33, 1011–1023. [Google Scholar] [CrossRef]
- Giglio, S.; Kelly, B.; Stroebel, J. Climate finance. Annu. Rev. Financ. Econ. 2021, 13, 15–36. [Google Scholar] [CrossRef]
- Carney, M. Breaking the tragedy of the horizon–climate change and financial stability. Speech Given Lloyd’s Lond. 2015, 29, 220–230. [Google Scholar]
- Batten, S.; Sowerbutts, R.; Tanaka, M. Let’s talk about the weather: The impact of climate change on central banks. Bank Engl. 2016, 603, 2–37. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Rasmussen, D.J.; Muir-Wood, R.; Wilson, P.; Oppenheimer, M.; et al. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Myers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate change and global food systems: Potential impacts on food security and undernutrition. Annu. Rev. Public Health 2017, 38, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environment Issues and Options; Food and Agriculture Organization of the United Nations: Roma, Italy, 2006. [Google Scholar]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Uusitalo, V.; Leino, M. Neutralizing global warming impacts of crop production using biochar from side flows and buffer zones: A case study of oat production in the boreal climate zone. J. Clean. Prod. 2019, 227, 48–57. [Google Scholar] [CrossRef]
- Zeleke, T.; Beyene, F.; Deressa, T.; Yousuf, J.; Kebede, T. Vulnerability of smallholder farmers to climate change-induced shocks in East Hararghe Zone, Ethiopia. Sustainability 2021, 13, 2162. [Google Scholar] [CrossRef]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilanic, P.; Breraa, C.; Conia, E.; Cubaddaa, F.; Crocia, L.; Santisa, B.D.; Dekkers, S.; et al. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef]
- You, L.Z.; Rosegrant, M.W.; Wood, S.; Sun, D. Impact of growing season temperature on wheat productivity in China. Agric. For. Meteorol. 2009, 149, 1009–1014. [Google Scholar] [CrossRef]
- Christiaensen, L.J.; Subbarao, K. Towards an understanding of household vulnerability in rural Kenya. J. Afr. Econ. 2005, 14, 520–558. [Google Scholar] [CrossRef]
- Günther, I.; Harttgen, K. Estimating households vulnerability to idiosyncratic and covariate shocks: A novel method applied in Madagascar. World Dev. 2009, 37, 1222–1234. [Google Scholar] [CrossRef]
- Liu, W.T.; Kogan, F. Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. Int. J. Remote Sens. 2002, 23, 1161–1179. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kokan, F.; Zaka, R. Using AVHRR data for quantitive estimation of vegetation conditions: Calibration and validation. Adv. Space Res. 1998, 22, 673–676. [Google Scholar] [CrossRef]
- Xu, Y.F.; Yang, J.; Chen, Y. NDVI-Based Vegetation Responses to Climate Change in an Arid Area of China. Theor. Appl. Climatol. 2016, 126, 213–222. [Google Scholar] [CrossRef]
- Pang, G.J.; Wang, X.J.; Yang, M.X. Using the NDVI to Identify Variations in, and Responses of, Vegetation to Climate Change on the Tibetan Plateau From 1982 to 2012. Quat. Int. 2017, 444, 87–96. [Google Scholar] [CrossRef]
- Post, E.; Bhatt, U.S.; Bitz, C.M.; Brodie, J.F.; Fulton, T.L.; Hebblewhite, M.; Kerby, J.; Kutz, S.J.; Stirling, I.; Walker, D.A. Ecological consequences of sea-ice decline. Science 2013, 341, 519–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Hu, Y.; Xiong, Z.; Yan, X.; Ren, B.; Bu, R. Spatiotemporal Variations of Growing-Season NDVI Associated with Climate Change in Northeastern China’s Permafrost Zone. Pol. J. Environ. Stud. 2017, 26, 1521–1529. [Google Scholar] [CrossRef]
- Tan, Z.; Tao, H.; Jiang, J.; Zhang, Q. Influences of climate extremes on NDVI (normalized difference vegetation index) in the Poyang Lake Basin, China. Wetlands 2015, 35, 1033–1042. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Möllmann, J.; Buchholz, M.; Kölle, W.; Musshoff, O. Do remotely-sensed vegetation health indices explain credit risk in agricultural microfinance? World Dev. 2020, 127, 104771. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. The Research of Temperature Variation Trends Over Xin-jiang in China by Extreme-Point Symmetric Mode Decomposition Method. Geogr. Res. 2014, 33, 2358–2366. [Google Scholar]
- O’Donnell, O.; van Doorslaer, E.; Wagstaff, A.; Lindelow, M. Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Guimaraes, P.; Portugal, P. A simple feasible procedure to fit models with high-dimensional fixed effects. Stata J. 2010, 10, 628–649. [Google Scholar] [CrossRef] [Green Version]
- Xu, G. The costs of patronage: Evidence from the British empire. Am. Econ. Rev. 2018, 108, 3170–3198. [Google Scholar] [CrossRef]
- Lima, M.C.F.; de Almeida Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic detection and monitoring of insect pests—A review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Milosavljević, I.; El-Shafie, H.A.F.; Faleiro, J.R.; Hoddle, C.D.; Lewis, D.; Hoddle, M.S. Palmageddon: The wasting of ornamental palms by invasive palm weevils, Rhynchophorus spp. J. Pest Sci. 2019, 92, 143–156. [Google Scholar] [CrossRef]
- Yazid, S.N.E.; Jinap, S.; Ismail, S.I.; Magan, N.; Samsudin, N.I.P. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Compr. Rev. Food Sci. Food Saf. 2020, 19, 643–669. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Hellin, J.; Rosenstock, T.; Fisher, E.; Cairns, J.; Stirling, C.; Lamanna, C.; Etten, J.; Rose, A.; Campbell, B. Climate risk management and rural poverty reduction. Agric. Syst. 2019, 172, 28–46. [Google Scholar] [CrossRef]
- Nabi, R.L.; Gustafsonm, A.; Jensen, R. Framing climate change: Exploring the role of emotion in generating advocacy behavior. Sci. Commun. 2018, 40, 442–468. [Google Scholar] [CrossRef]
- Maher, A.; Kamel, E.; Enrico, F.; Atif, I.; Abdelkader, M. An intelligent system for the climate control and energy savings in agricultural greenhouses. Energy Effic. 2016, 9, 1241–1255. [Google Scholar] [CrossRef]
- Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Passel, S.V.; Kurban, A.; Lopez-Car, D. Rethinking resilient agriculture: From climate-smart agriculture to vulnerable-smart agriculture. J. Clean. Prod. 2021, 319, 128602. [Google Scholar] [CrossRef]
- Masiza, W.; Chirima, J.G.; Hamandawana, H.; Kalumba, A.M.; Magagula, H.B. Linking Agricultural Index Insurance with Factors That Influence Maize Yield in Rain-Fed Smallholder Farming Systems. Sustainability 2021, 13, 5176. [Google Scholar] [CrossRef]
- Tarnavsky, E.; Chavez, E.; Boogaard, H. Agro-meteorological risks to maize production in Tanzania: Sensitivity of an adapted Water Requirements Satisfaction Index (WRSI) model to rainfall. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 77–87. [Google Scholar] [CrossRef]
- Zhou, G.; Gong, K.; Luo, S.; Xu, G. Inclusive finance, human capital and regional economic growth in China. Sustainability 2018, 10, 1194. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Huang, X.; He, Y.; Yang, X. Assessment of livelihood vulnerability of land-lost farmers in urban fringes: A case study of Xi’an, China. Habitat Int. 2017, 59, 1–9. [Google Scholar] [CrossRef]
- Nikologianni, A.; Larkham, P.J. The Urban Future: Relating Garden City Ideas to the Climate Emergency. Land 2022, 11, 147. [Google Scholar] [CrossRef]
- Olivares, B.; Cortez, A.; Muñetones, A. Strategic Elements of Organizational Knowledge Management for Innovation. Case: Agrometeorology Network. Rev. Digit. De Investig. En Docencia Univ. 2016, 10, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Mo, R.; Dai, F.; Lin, W.; Wan, S. Dynamic resource provisioning with fault tolerance for data-intensive meteorological workflows in cloud. IEEE Trans. Ind. Inform. 2019, 16, 6172–6181. [Google Scholar] [CrossRef]
- Tarchiani, V.; Coulibaly, H.; Baki, G.; Sia, C.; Burrone, S.; Nikiema, P.M.; Migraine, J.; Camacho, J. Access, Uptake, Use and Impacts of Agrometeorological Services in Sahelian Rural Areas: The Case of Burkina Faso. Agronomy 2021, 11, 2431. [Google Scholar] [CrossRef]
Category | Variable Symbol | Assignment Method |
---|---|---|
Family characteristic variables | lnIncome | ln(Total household income/number of household members + 1) |
Size | Number of family members | |
Age18 | Number of family members younger than 18 | |
Age60 | Number of family members older than 60 | |
Edu | Average education level of labor force (out-of-work and non-school household members) | |
NotHealth | The number of family members with self-rated health as relatively unhealthy or very unhealthy | |
Capital | Original value of tractors, large farm implements (such as harvesters, rice transplanters, seeders, large combine harvesters) | |
Agr | The proportion of income from agriculture, forestry, animal husbandry, sideline, and fishery in total income | |
Internet | It is represented as 1 when using the Internet at home, otherwise it is 0 | |
Community characteristic variables | Library | It is represented as 1 if there is a library (room) within the administrative division of the village, otherwise it is 0 |
Clinic | It is represented as 1 if there is a clinic or hospital within the village administrative division, otherwise it is 0 | |
Bank | It is represented as 1 if there is a rural credit cooperative within the scope of the village administrative division, otherwise it is 0 | |
Bus | It is represented as 1 if there is a bus stop within the administrative division of the village, otherwise it is 0 | |
BankNum | Number of banks and financial institutions in prefecture-level cities/area of prefecture-level cities (km2) | |
lnDistant1 | Distance from the village to the nearest county/district government (km) | |
lnDistant2 | Distance from the village to the nearest town/street (km) | |
Terrain | The terrain where the farmer is located, Plain, Hills, Mountains | |
Climate variables | Temp | (annual average temperature of the city where the farmer is located—perennial temperature value)/standard deviation of annual average temperature |
Prec | (annual precipitation of the city where the farmer is located—perennial precipitation value)/standard deviation of precipitation | |
NDVI | (annual average NDVI of the city where the farmer is located—perennial NDVI value)/standard deviation of NDVI |
Variable | Observations | Mean Value | Standard Deviation | Max | Min |
---|---|---|---|---|---|
lnIncome | 19,365 | 8.3919 | 1.6824 | 0 | 13.7431 |
VSocial | 19,365 | 0.5343 | 0.4283 | 0 | 1 |
Size | 19,365 | 4.4244 | 2.1137 | 1 | 22 |
Age18 | 19,365 | 0.8695 | 1.0063 | 0 | 10 |
Age60 | 19,365 | 0.7973 | 0.8903 | 0 | 6 |
Edu | 19,365 | 2.7904 | 1.2171 | 1 | 10 |
NotHealth | 19,365 | 0.5423 | 0.8609 | 0 | 8 |
Capital | 19,365 | 1.0409 | 2.8903 | 0 | 15.7614 |
Agr | 19,365 | 0.3523 | 0.4176 | 0 | 1.0007 |
Internet | 19,365 | 0.4033 | 0.4906 | 0 | 1 |
Library | 19,365 | 0.7897 | 0.4076 | 0 | 1 |
Clinic | 19,365 | 0.8663 | 0.3403 | 0 | 1 |
Bank | 19,365 | 0.1649 | 0.3711 | 0 | 1 |
Bus | 19,365 | 0.3613 | 0.4804 | 0 | 1 |
BankNum | 19,365 | 0.0982 | 0.1038 | 0.0031 | 0.6614 |
lnDistant1 | 19,365 | 2.9216 | 0.8698 | 0 | 4.7958 |
lnDistant2 | 19,365 | 1.6321 | 0.7403 | 0 | 6.2166 |
Plain | 19,365 | 0.4873 | 0.4999 | 0 | 1 |
Hills | 19,365 | 0.2661 | 0.4419 | 0 | 1 |
Mountain | 19,365 | 0.2466 | 0.4310 | 0 | 1 |
Temp | 19,365 | 0.4848 | 0.9371 | −2.5013 | 2.8117 |
Prec | 19,365 | −0.0758 | 1.0681 | −4.4303 | 2.4239 |
NDVI | 19,365 | 1.0188 | 1.1272 | −4.3839 | 4.7108 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
VSocial | VSocial | VSocial | VSocial | |
Temp | 0.0328 *** | 0.0190 *** | ||
(0.0032) | (0.0029) | |||
NDVI | 0.0266 *** | 0.0183 *** | ||
(0.0050) | (0.0040) | |||
0.0165 *** | 0.0110 *** | |||
(0.0029) | (0.0025) | |||
Size | 0.0496 *** | 0.0560 *** | 0.0528 *** | 0.0579 *** |
(0.0028) | (0.0037) | (0.0027) | (0.0036) | |
Age18 | −0.0020 | −0.0077 | −0.0042 | −0.0086 * |
(0.0038) | (0.0050) | (0.0038) | (0.0051) | |
Age60 | 0.0595 *** | 0.0411 *** | 0.0633 *** | 0.0428 *** |
(0.0046) | (0.0067) | (0.0046) | (0.0066) | |
Edu | −0.0108 *** | 0.0075 *** | −0.0083 *** | 0.0088 *** |
(0.0024) | (0.0026) | (0.0023) | (0.0025) | |
NotHealth | 0.0547 *** | 0.0442 *** | 0.0554 *** | 0.0446 *** |
(0.0027) | (0.0028) | (0.0026) | (0.0029) | |
Capital | −0.0084 *** | −0.0067 *** | −0.0092 *** | −0.0072 *** |
(0.0008) | (0.0008) | (0.0008) | (0.0008) | |
Agr | 0.1531 *** | 0.1301 *** | 0.1513 *** | 0.1285 *** |
(0.0065) | (0.0064) | (0.0063) | (0.0062) | |
Internet | −0.0652 *** | −0.0337 *** | −0.0551 *** | −0.0288 *** |
(0.0046) | (0.0045) | (0.0047) | (0.0044) | |
Library | −0.0262 *** | −0.0260 *** | −0.0270 *** | −0.0259 *** |
(0.0087) | (0.0082) | (0.0087) | (0.0082) | |
Clinic | −0.0262 *** | −0.0189 ** | −0.0257 *** | −0.0183 ** |
(0.0092) | (0.0087) | (0.0097) | (0.0090) | |
Bank | −0.0529 *** | −0.0412 *** | −0.0533 *** | −0.0400 *** |
(0.0103) | (0.0109) | (0.0109) | (0.0107) | |
Bus | −0.0335 *** | −0.0253 *** | −0.0296 *** | −0.0220 *** |
(0.0066) | (0.0060) | (0.0066) | (0.0061) | |
BankNum | −0.3835 *** | 0.4540 * | −0.3515 *** | 0.6473 *** |
(0.0633) | (0.2441) | (0.0617) | (0.2389) | |
lnDistant1 | −0.0103 | −0.0225 *** | −0.0108 * | −0.0239 *** |
(0.0063) | (0.0071) | (0.0062) | (0.0068) | |
lnDistant2 | −0.0087 | −0.0087 * | −0.0039 | −0.0030 |
(0.0071) | (0.0048) | (0.0070) | (0.0049) | |
Hills | 0.0492 *** | 0.0398 *** | 0.0515 *** | 0.0412 *** |
(0.0098) | (0.0096) | (0.0092) | (0.0089) | |
Mountain | 0.0251 * | −0.0168 | 0.0302 ** | −0.0132 |
(0.0138) | (0.0137) | (0.0137) | (0.0131) | |
Constant | 0.3295 *** | 0.2319 *** | 0.2935 *** | 0.1900 *** |
(0.0250) | (0.0290) | (0.0269) | (0.0291) | |
Observations | 19,365 | 19,365 | 19,365 | 19,365 |
R2 | 0.4587 | 0.4560 | ||
Objects | 10,505 | 10,505 | 10,505 | 10,505 |
Model | Random effects | Fixed effects | Random effects | Fixed effects |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
VSocial | VSocial | |||||
I Northern | II Southern | Coefficient Difference | I Northern | II Southern | Coefficient Difference | |
Temp | 0.0146 *** | 0.0236 *** | −0.0090 *** | |||
(0.0024) | (0.0020) | |||||
NDVI | 0.0072 *** | 0.0254 *** | −0.0182 *** | |||
(0.0025) | (0.0029) | |||||
Control variables | √ | √ | √ | √ | √ | √ |
Observations | 8300 | 11,065 | 8300 | 11,065 | ||
R2 Objects | 0.5008 4288 | 0.4472 6217 | 0.4987 4288 | 0.4377 6217 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
I Northern | II Southern | |||||||
I-I | I-II | I-III | I-IV | II-I | II-II | II-III | II-IV | |
VSocial | VSocial | VSocial | VSocial | VSocial | VSocial | VSocial | VSocial | |
Temp | −0.0072 | −0.0006 | 0.0321 *** | 0.0732 *** | 0.0159 *** | 0.0404 *** | 0.0880 *** | 0.1008 *** |
(0.0070) | (0.0042) | (0.0063) | (0.0122) | (0.0029) | (0.0068) | (0.0241) | (0.0113) | |
Control variables | √ | √ | √ | √ | √ | √ | √ | √ |
Observations | 1604 | 2820 | 2333 | 1543 | 3099 | 2827 | 1527 | 3612 |
R2 | 0.5687 | 0.4375 | 0.5984 | 0.5438 | 0.4585 | 0.5610 | 0.4704 | 0.4244 |
Objects | 784 | 1446 | 1317 | 741 | 1631 | 1514 | 979 | 2093 |
NDVI | 0.0094 * | 0.0066 * | 0.0178 *** | 0.0113 | 0.0279 *** | 0.0537 *** | 0.0153 | 0.0136 *** |
(0.0055) | (0.0035) | (0.0062) | (0.0147) | (0.0050) | (0.0102) | (0.0131) | (0.0051) | |
Control variables | √ | √ | √ | √ | √ | √ | √ | √ |
Observations | 1604 | 2820 | 2333 | 1543 | 3099 | 2827 | 1527 | 3612 |
R2 | 0.5655 | 0.4373 | 0.5961 | 0.5184 | 0.4588 | 0.5458 | 0.4535 | 0.3921 |
Objects | 784 | 1446 | 1317 | 741 | 1631 | 1514 | 979 | 2093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Liu, B.; Zhou, M. Sustainable Livelihoods in Rural Areas under the Shock of Climate Change: Evidence from China Labor-Force Dynamic Survey. Sustainability 2022, 14, 7262. https://doi.org/10.3390/su14127262
Peng Y, Liu B, Zhou M. Sustainable Livelihoods in Rural Areas under the Shock of Climate Change: Evidence from China Labor-Force Dynamic Survey. Sustainability. 2022; 14(12):7262. https://doi.org/10.3390/su14127262
Chicago/Turabian StylePeng, Yating, Bo Liu, and Mengliang Zhou. 2022. "Sustainable Livelihoods in Rural Areas under the Shock of Climate Change: Evidence from China Labor-Force Dynamic Survey" Sustainability 14, no. 12: 7262. https://doi.org/10.3390/su14127262
APA StylePeng, Y., Liu, B., & Zhou, M. (2022). Sustainable Livelihoods in Rural Areas under the Shock of Climate Change: Evidence from China Labor-Force Dynamic Survey. Sustainability, 14(12), 7262. https://doi.org/10.3390/su14127262