Woodland for Sludge Disposal in Beijing: Sustainable?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Undisturbed Soil Columns Preparation
2.3. The Leaching Experiment
2.3.1. The Experimental Device
2.3.2. The Experimental Design
2.4. Methods
2.4.1. Sample Analysis
2.4.2. Statistical Methods
3. Results and Discussion
3.1. Changes in Heavy Metal Concentration in Leachate and Its Risk to Groundwater
3.1.1. Analysis of Heavy Metal Concentration in Leachate
3.1.2. Risk Assessment of Groundwater by Heavy Metals in Sludge
3.2. Accumulation of Heavy Metals in Different Soil Layers and Its Risk to Soil Environment
3.2.1. Analysis of Accumulation Behavior of Heavy Metals from Sludge in Different Soil Layers
3.2.2. Risk Assessment of Soil Environment by Heavy Metals in Sludge
3.3. Leaching Efficiency of Heavy Metals in Sludge
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.F.; Wang, T.Y.; Mizunoya, T.; Yabar, H.; Yan, J.J.; Sha, J.H.; Higano, Y. An Analysis of Economic and Environmental Impact of Sewage Treatment in Beijing City. Appl. Mech. Mater. 2013, 368–370, 275–281. [Google Scholar] [CrossRef]
- BDGC (Beijing Drainage Group Co., Ltd.). Social Responsibility Report; BDGC: Beijing, China, 2022. [Google Scholar]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, M. General situation and problems of sludge treatment and disposal in Beijing sewage treatment plant. China Environ. Prot. Ind. 2016, 11, 64–68. (In Chinese) [Google Scholar]
- Koyuncu, S. Occurrence of organic micropollutants and heavy metals in the soil after the application of stabilized sewage sludge. J. Environ. Health Sci. Eng. 2022, 20, 385–394. [Google Scholar] [CrossRef] [PubMed]
- MOEE (Ministry of Ecology and Environment of the People’s Republic of China). Measures for the Management of Agricultural Land Soil Environment; MOEE: Beijing, China, 2017. Available online: http://www.gov.cn/gongbao/content/2017/content_5248223.htm (accessed on 2 May 2022).
- Zhuang, P.; McBride, M.B.; Xia, H.P.; Li, N.Y.; Li, Z.A. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, D.J.; Alloway, B.J. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 2004, 127, 137–144. [Google Scholar] [CrossRef]
- Lu, J.M.; Leiviskä, T.; Walder, I. The effect of temperature and digested sewage sludge cover over tailings on the leaching of contaminants from Ballangen tailings deposit. J. Water Clim. Chang 2021, 12, 3573–3581. [Google Scholar] [CrossRef]
- Feizi, M.; Jalali, M. Leaching of Cd, Cu, Ni and Zn in a sewage sludge-amended soil in presence of geo- and nano-materials. J. Clean. Prod. 2021, 297, 126506. [Google Scholar] [CrossRef]
- Ma, K.J.; Zhang, M.Q.; Cai, P. Leaching characteristics of heavy metals from compost sludge in loess. Chin. J. Environ. Eng. 2013, 4, 361–366. (In Chinese) [Google Scholar]
- Fang, W.; Wei, Y.H.; Liu, J.G. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics. J. Hazard. Mater. 2016, 310, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhang, K.K.; Sun, P.D.; Lin, D.H.; Shen, B.; Luo, Y. Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid. Sci. Total Environ. 2016, 57, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Tuli, A.; Hopmans, J.W.; Rolston, D.E.; Moldrup, P. Comparison of Air and Water Permeability between Disturbed and Undisturbed Soils. Soil Sci. Soc. Am. J. 2005, 69, 1361–1371. [Google Scholar] [CrossRef]
- Dong, L.Y.; Wang, W.H. Water Movement Characteristics of Undisturbed and Disturbed Soil Under Drip Irrigation. J. Soil Water Conserv. 2017, 5, 164–169. (In Chinese) [Google Scholar]
- GB 4284-2018; Control Standards of Pollutants in Sludge for Agricultural Use. MEP (Ministry of Environmental Protection): Beijing, China, 2018. Available online: http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=B40A49F7734797DF61D90FE1F6BA5442 (accessed on 2 May 2022).
- Zhao, L.; Shangguan, Y.X.; Yao, N.; Sun, Z.J.; Ma, J.; Hou, H. Soil migration of antimony and arsenic facilitated by colloids in lysimeter studies. Sci. Total Environ. 2020, 728, 138874. [Google Scholar] [CrossRef]
- Cao, J.S.; Zhang, W.J. Research on Shallow Groundwater Recharge and Control in Taihang Mountain Area of North China. Adv. Mater. Res. 2010, 113–116, 1572–1576. [Google Scholar] [CrossRef]
- Caccia, V.G.; Millero, F.J.; Palanques, A. The distribution of trace metals in Florida Bay sediments. Mar. Pollut. Bull. 2003, 46, 1420–1433. [Google Scholar] [CrossRef]
- Rahman, L.; Corns, W.T.; Bryce, D.W.; Stockwell, P.B. Determination of mercury, selenium, bismuth, arsenic and antimony in human hair by microwave digestion atomic fluorescence spectrometry. Talanta 2000, 52, 833–843. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Merabet, D. Monometal and competitive sorption of heavy metals in mine soils: Influence of mine soil characteristics. Environ. Sci. 2013, 8, 94–102. [Google Scholar]
- González Costa, J.J.; Reigosa, M.J.; Matias, J.M.; Covelo, E.F. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model. Sci. Total Environ. 2017, 593–594, 508–522. [Google Scholar] [CrossRef]
- GB/T14848-2017; Standard for Groundwater Quality. MONR (Ministry of Natural Resources of the People’s Republic of China): Beijing, China, 2017. Available online: http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=F745E3023BD5B10B9FB5314E0FFB5523 (accessed on 2 May 2022).
- Bellarbi, M.; Rais, N.; Elsass, F.; Duplay, J.; Ijjaali, M. Speciation of Cr, Cu, Ni and Zn in soils irrigated with contaminated waters: A case study of agricultural soils from the plain of Saiss (Fez, Morocco). Environ. Earth Sci. 2015, 73, 3465–3474. [Google Scholar] [CrossRef]
- Wang, Y.F.; van Zwieten, L.; Wang, H.L.; Wang, L.; Li, R.Z.; Qu, J.H.; Zhang, Y. Sorption of Pb(II) onto biochar is enhanced through co-sorption of dissolved organic matter. Sci. Total Environ. 2022, 825, 153686. [Google Scholar] [CrossRef] [PubMed]
- McLaren, R.G.; Williams, J.G.; Swift, R.S. The adsorption of copper by soil samples from scotland at low equilibrium solution concentrations. Geoderma 1983, 31, 97–106. [Google Scholar] [CrossRef]
- Liu, A.; Gonzalez, R.D. Adsorption/desorption in a system consisting of humic acid, heavy metals, and clay minerals. J. Colloid Interface Sci. 1999, 218, 225–232. [Google Scholar] [CrossRef]
- Wang, S.; Nan, Z.; Liu, X.; Zhang, G.Z. Availability and Speciation of Cu, Zn, and Pb Added to Irrigated Desert Soil. Pol. J. Environ. Stud. 2010, 19, 865–869. [Google Scholar]
- Kamini; Singh, B.; Narwal, R.P.; Antil, R.S. Response of adsorption and desorption behaviour of Pb and Ni to different soil organic C levels. Ann. Biol. 2012, 28, 21–27. [Google Scholar]
- Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-a review of the literature. Water Air Soil Pollut. 1991, 56, 667–680. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Liu, J.; Liem-Nguyen, V.; Tian, S.Y.; Zhang, S.Q.; Wang, D.Y.; Jiang, T. Binding strength of mercury (II) to different dissolved organic matter: The roles of DOM properties and sources. Sci. Total Environ. 2022, 807, 150979. [Google Scholar] [CrossRef]
- Fendorf, S.E. Surface reactions of chromium in soils and waters. Geoderma 1995, 67, 55–71. [Google Scholar] [CrossRef]
- Mitchell, K.; Trakal, L.; Sillerova, H.; Avelar-González, F.J.; Guerrero-Barrera, A.L.; Hough, R.; Beesley, L. Mobility of As, Cr and Cu in a contaminated grassland soil in response to diverse organic amendments; a sequential column leaching experiment. Appl. Geochem. 2018, 88, 95–102. [Google Scholar] [CrossRef]
- Choppala, G.; Bolan, N.; Seshadri, B. Chemo dynamics of chromium reduction in soils: Implications to bioavailability. J. Hazard. Mater. 2013, 261, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Kwikima, M.M.; Said, A. Hexavalent Chromium Mobility and Distribution Behavior in Riparian Agricultural Tropical Soils: A Column Experiment. Chem. Afr. 2022. [Google Scholar] [CrossRef]
- Yang, H.l.; He, M.C.; Wang, X.Q. Concentration and speciation of antimony and arsenic in soil profiles around the world’s largest antimony metallurgical area in China. Environ. Geochem. Health 2015, 37, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Manzano, R.; Rosende, M.; Leza, A.; Esteban, E.; Peñalosa, J.M.; Miró, M.; Moreno-Jiménez, E. Complementary assessment of As, Cu and Zn environmental availability in a stabilised contaminated soil using large-bore column leaching, automatic microcolumn extraction and DGT analysis. Sci. Total Environ. 2019, 690, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Zahedifar, M.; Karimian, N.; Yasrebi, J. Influence of applied zinc and organic matter on zinc desorption kinetics in calcareous soils. Arch. Agron. Soil Sci. 2012, 58, 169–178. [Google Scholar] [CrossRef]
- Hodomihou, N.R.; Feder, F.; Legros, S.; Formentini, T.A.; Lombi, E.; Doelsch, E. Zinc Speciation in Organic Waste Drives Its Fate in Amended Soils. Environ. Sci. Technol. 2020, 54, 12034–12041. [Google Scholar] [CrossRef]
- Elbana, T.A.; Selim, H.M.; Akrami, N.; Newman, A.; Shaheen, S.M.; Rinklebe, J. Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma 2018, 324, 80–88. [Google Scholar] [CrossRef]
- Atanassova, I. Competitive effect of Copper, Zinc, Cadmium and Nickel on ion adsorption and desorption by soil clays. Water Air Soil Pollut. 1999, 113, 115–125. [Google Scholar] [CrossRef]
- Kummer, L.; Gonalves, M.S.; Zemiani, A.; Melo, V.d.F.; Gomes, S.D. Individual and Competitive Adsorption of Copper, Zinc and Lead in Soils with Contrasting Texture. J. Exp. Agric. Int. 2018, 27, 1–11. [Google Scholar] [CrossRef]
- Lair, G.J.; Gerzabek, M.H.; Haberhauer, G.; Jakusch, M.; Kirchmann, H. Response of the sorption behavior of Cu, Cd, and Zn to different soil management. J. Plant Nutr. Soil Sci. 2006, 169, 60–68. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Tsadilas, C.D. Influence of fly ash and sewage sludge application on Cadmium and Lead sorption by an acidic alfisol. Pedosphere 2010, 20, 436–445. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Zhang, Z.H.; Chen, Y.C.; An, S.K.; Zhang, L.; Chen, F.L.; Ma, C.N.; Cai, W.Q. Adsorption and desorption of Cd in reclaimed soil under the influence of humic acid: Characteristics and mechanisms. Int. J. Coal Sci. Technol. 2022, 9, 7. [Google Scholar] [CrossRef]
- Voegelin, A.; Kretzschmar, R. Modelling sorption and mobility of cadmium and zinc in soils with scaled exchange coefficients. Eur. J. Soil Sci. 2003, 54, 387–400. [Google Scholar] [CrossRef]
- Qi, Z.M.; Feng, S.Y.; Helmers, M.J. Modeling Cadmium transport in neutral and alkaline soil columns at various depths. Pedosphere 2012, 22, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Zha, T.G.; Zhu, J.G.; Guo, X.P.; Liu, Y. Loading Capacity of Sewage Sludge for Forestry Application in Chinese Provincial Capital Cities. Sustainability 2020, 12, 7551. [Google Scholar] [CrossRef]
- Ma, L.Q.; Rao, G.N. Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils. J. Environ. Qual. 1997, 26, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Hanc, A.; Szakova, J.; Ochecova, P. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons. Bioresour. Technol. 2014, 168, 204–213. [Google Scholar] [CrossRef]
- Haynes, K.M.; Mitchell, C.P.J. Precipitation input and antecedent soil moisture effects on mercury mobility in soil-laboratory experiments with an enriched stable isotope tracer. Hydrol. Process. 2015, 29, 4161–4174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; Li, G.; Yang, L.; Wang, X.J.; Sun, G.X. Mercury distribution in the surface soil of China is potentially driven by precipitation, vegetation cover and organic matter. Environ. Sci. Eur. 2020, 32, 89. [Google Scholar] [CrossRef]
- Tersic, T.; Biester, H.; Gosar, M. Leaching of mercury from soils at extremely contaminated historical roasting sites (Idrija area, Slovenia). Geoderma 2014, 226-227, 213–222. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zeng, G.M.; Du, C.Y.; Huang, D.L.; Tang, L.; Wang, L.; Shen, G.L. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions. J. Hazard. Mater. 2010, 181, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.X. Research on Geochemical Characters and Environmental Geochemical Effects of Representative Tailings Impoundments in the Region of Tongling, Anhui Province, China. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2009. (In Chinese). [Google Scholar]
- Salonen, V.P.; Korkka-Niemi, K. Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Appl. Geochem. 2007, 22, 906–918. [Google Scholar] [CrossRef]
Materials | Cu | Cr | Ni | Zn | Pb | Cd | As | Hg | pH |
---|---|---|---|---|---|---|---|---|---|
Sludge products | 96.3 | 45.3 | 18.3 | 512 | 36.3 | 0.59 | 19.8 | 1.34 | 7.43 |
soil layer (0–10 cm) | 17.4 | 57.16 | 26.82 | 51.61 | 16.41 | 0.11 | 15.01 | 0.07 | 8.30 |
soil layer (10–20 cm) | 17.6 | 54.44 | 26.63 | 50.62 | 17.08 | 0.09 | 16.68 | 0.05 | 8.70 |
soil layer (20–30 cm) | 16.6 | 47.01 | 23.80 | 47.68 | 16.47 | 0.10 | 7.02 | 0.07 | 8.50 |
soil layer (30–40 cm) | 19.1 | 53.62 | 26.78 | 59.49 | 19.60 | 0.13 | 14.03 | 0.06 | 8.30 |
soil layer (40–50 cm) | 19.2 | 53.01 | 26.68 | 57.95 | 19.47 | 0.12 | 14.53 | 0.06 | 8.30 |
Description | Treatment Code | Leaching Water Volume (L) |
---|---|---|
Soil column without sludge | CK | 1.68 × 5 = 8.4 |
Soil column + 50 g sludge | T1 | 1.68 × 5 = 8.4 |
Soil column + 100 g sludge | T2 | 1.68 × 5 = 8.4 |
Soil column + 200 g sludge | T3 | 1.68 × 5 = 8.4 |
Heavy Metals | Equation Model | R2 |
---|---|---|
Cu | C = (0.023S2 − 0.44S + 0.75)lnW − 0.012S2 + 0.82S − 1.29 | 0.99 |
Cr | C = (0.0006S2 − 0.03S − 0.01)lnW − 0.004S2 + 0.13S − 0.03 | 0.95 |
Zn | C = (−0.07S2 + 0.42S − 1.26)lnW + 0.03S2 + 1.31S − 1.18 | 0.98 |
Pb | C = (−0.0003S2 − 0.04S − 1.85)lnW − 0.02S2 + 0.48S − 0.31 | 0.96 |
Cd | C = (0.01S2 − 0.24S − 0.30)lnW − 0.02S2 + 0.46S + 0.002 | 0.94 |
As | C = (− 0.02S2 + 0.21S − 0.84)lnW + 0.04S2 − 0.31S + 2.24 | 0.99 |
Heavy Metals | Class I | Class II | Class III |
---|---|---|---|
Cu | ≤0.01 | ≤0.05 | ≤1.00 |
Cr | ≤0.005 | ≤0.01 | ≤0.05 |
Zn | ≤0.05 | ≤0.5 | ≤1.00 |
Pb | ≤0.005 | ≤0.005 | ≤0.01 |
Cd | ≤0.0001 | ≤0.001 | ≤0.005 |
As | ≤0.001 | ≤0.001 | ≤0.01 |
Ni | ≤0.002 | ≤0.002 | ≤0.02 |
Hg | ≤0.0001 | ≤0.0001 | ≤0.001 |
Heavy Metals | T1 | T2 | T3 |
---|---|---|---|
Cu | 0.00238 | 0.00410 | 0.00756 |
Cr | 0.00088 | 0.00112 | 0.00143 |
Zn | 0.00856 | 0.01257 | 0.02248 |
Pb | 0.00261 | 0.00333 | 0.00404 |
Cd | 0.00322 | 0.00376 | 0.00443 |
As | 0.00383 | 0.00431 | 0.00568 |
Ni | <0.001 | <0.001 | <0.001 |
Hg | <0.0005 | <0.0005 | <0.0005 |
Heavy Metals | T1 | T2 | T3 | Limits |
---|---|---|---|---|
Cu | 19.20 (+2.38) | 20.66 (+3.83) | 25.67 (+6.89) | <100 |
Cr | 52.68 (+2.34) | 55.92 (+5.58) | 58.79 (+9.08) | <250 |
Zn | 50.91 (+6.27) | 55.06 (+10.42) | 65.76 (+15.77) | <300 |
Pb | 19.54 (+3.63) | 19.99 (+4.08) | 20.80 (+4.89) | <170 |
Cd | 0.123 (+0.039) | 0.208 (+0.110) | 0.242 (+0.144) | <0.6 |
As | 15.98 (+2.66) | 16.17 (+2.85) | 21.95 (+10.43) | <25 |
Ni | 27.34 (+2.82) | 27.76 (+3.25) | 30.45 (+5.93) | <190 |
Hg | 0.056 (+0.025) | 0.109 (+0.078) | 0.130 (+0.099) | <3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Qi, S.; Hu, Y.; Li, Y.; Zhou, J. Woodland for Sludge Disposal in Beijing: Sustainable? Sustainability 2022, 14, 7444. https://doi.org/10.3390/su14127444
Wu B, Qi S, Hu Y, Li Y, Zhou J. Woodland for Sludge Disposal in Beijing: Sustainable? Sustainability. 2022; 14(12):7444. https://doi.org/10.3390/su14127444
Chicago/Turabian StyleWu, Bingchen, Shi Qi, Yishui Hu, Yutong Li, and Jinxing Zhou. 2022. "Woodland for Sludge Disposal in Beijing: Sustainable?" Sustainability 14, no. 12: 7444. https://doi.org/10.3390/su14127444
APA StyleWu, B., Qi, S., Hu, Y., Li, Y., & Zhou, J. (2022). Woodland for Sludge Disposal in Beijing: Sustainable? Sustainability, 14(12), 7444. https://doi.org/10.3390/su14127444