Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Measurements
2.2.1. Micro-Climate
2.2.2. Vegetation
2.3. Data Analysis
2.3.1. Data Pre-Processing and Descriptive Statistics
2.3.2. Linear Mixed-Effects Model
2.3.3. General Additive Mixed Model
2.3.4. Multidimensional Functional Diversity (FD)
2.4. LU Impact Assessment
3. Results
3.1. Preliminary Results
3.2. Linear Mixed-Effects Model
3.3. General Additive Mixed Model
3.4. Multidimensional Functional Diversity Indices
3.5. LU Impact Assessment
4. Discussion
4.1. Microclimate and Vegetation
4.2. Multidimensional Functional Diversity Indices
4.3. LU Impact Assessment
4.4. Limitations and Suggestions for Further Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
DECIMAL SCALE | Braun-Blanquet Scale | ||
---|---|---|---|
Symbol | Coverage | Supplementary Symbols | |
1 | <1% | = r (raro) = rare, sporadic p (paululum) = rather sparse a (amplius) = plentiful m (multum) = very numerous | + |
2 | 1–3% | 1 | |
4 | 3–5% | 2 | |
1 | 5–15% | 1 − = 0.7 = coverage 5–10% | |
1 + = 1.2 = coverage 10–15% | |||
2 | 15–25% | ||
3 | 25–35% | 3 | |
4 | 35–45% | ||
5 | 45–55% | 5 − = coverage 45–50% | |
5 + = coverage 50–55% | 4 | ||
6 | 55–65% | (coverage > 5%: abundance not indicated) | |
7 | 65–75% | ||
8 | 75–85% | 5 | |
9 | 85–95% | ||
10 | 95–100% |
Appendix B
Code | Indicator | Formula | Units |
---|---|---|---|
S1 | Soil compaction | where areaaff = area affected; areatot = total area; permref = permeability at the reference state; permact = permeability at the actual state | |
S2 | Soil structure disturbance by ploughing, etc. | where timesS2 = number of soil works per rotation period; rot = length of rotation period (in years) | |
S3 | Soil erosion | where USLE = soil loss in t ha−1 yr−1; Soil depth = total rootable soil depth in t ha−1 | |
S4 | Cation exchange capacity (CEC) | ||
S5 | Base saturation (BS) | ||
W1 | Evapotranspiration (ET) | ||
W2 | Surface runoff | ||
V1 | Total aboveground living biomass (TAB) | ||
V2 | Leaf area index (LAI) | ||
V3 | Vegetation height (H) | ||
V4 | Free net primary production (fNPP) | where AH = annual harvest | |
V5 | Crop biomass | ||
B1 | Artificial change in water balance | where areairr = irrigated area; areadrain = drained area | |
B2 | Liming, fertilization, impoverishment | where timesB2 = number of applications per rotation period | |
B3 | Biocides | where timesB3 = number of applications per rotation period | |
B4 | Canopy cover of exotic plant species (Ex) | ||
B5 | Number of plant species (Sp) |
Appendix C
Indicator | Variable | References |
---|---|---|
Soil compaction | Areaaff/tot/ * Permeabilityaff/ref | [89,90,91] |
Soil disturbance | Areaaff/tot/depth/ times/rot length | [47,68] |
Soil erosion | USLE/depth | [48,49] |
CEC | * CEC | [50,51,111] |
BS | * BS | [52,53,112] |
Evapotranspiration | * ET | [53,54,55] |
Surface runoff | SR/P/ET | [57,58] |
TAB | * TAB | [58,59,60] |
LAI | * LAI | [60,61,62] |
fNPP | * NPP | [59,60,63] |
Crop biomass | Crop and total biomass | [65] |
Vegetation Height | Heightact/ref | [65,66] |
Water balance | Areairr/drain/tot | [68] |
Fertilization /impoverishment | Areaaff/tot/times/ rot length | [68] |
Biocides | Areaaff/tot/times/ rot length | [68,98] |
Exotic plant | Coverexot/tot | [101,104] |
Species | * Sp | [101,102,103] |
Appendix D
Light Regime * | 1 | Plant in Deep Shade |
---|---|---|
2 | Between 1 and 3 | |
3 | Shade plant, mostly less than 5% relative illumination, seldom more than 30% illumination when trees are in full leaf | |
4 | Between 3 and 5 | |
5 | Semi-shade plant, rarely in full light, but generally with more than 10% relative illumination when trees are in leaf | |
6 | Between 5 and 7 | |
7 | Plant generally in well-lit places, but also occurring in partial shade | |
8 | Light-loving plant rarely found where relative illumination in summer is less than 40% | |
9 | Plant in full light, found mostly in full sun | |
Humidity /moisture | 1 | Indicator of extreme dryness, restricted to soils that often dry out for some time |
2 | Between 1 and 3 | |
3 | Dry-site indicator, more often found on dry ground than in moist places | |
4 | Between 3 and 5 | |
5 | Moist-site indicator, mainly on fresh soils of average dampness | |
6 | Between 5 and 7 | |
7 | Dampness indicator, mainly on constantly moist or damp, but not on wet soils | |
8 | Between 7 and 9 | |
9 | Wet-site indicator, often on water-saturated, badly aerated soils | |
10 | Indicator of shallow-water sites that may lack standing water for extensive periods | |
11 | Plant rooting under water, but at least for a time exposed above, or plant floating on the surface | |
12 | Submerged plant, permanently or almost constantly under water | |
Reaction /acidity | 1 | Indicator of extreme acidity, never found on weakly acid or basic soils |
2 | Between 1 and 3 | |
3 | Acidity indicator, mainly on acid soils, but exceptionally also on nearly neutral ones | |
4 | Between 3 and 5 | |
5 | Indicator of moderately acid soils, only occasionally found on very acid or on neutral to basic soils | |
6 | Between 5 and 7 | |
7 | Indicator of weakly acid to weakly basic conditions; never found on very acid soils | |
8 | Between 7 and 9 | |
9 | Indicator of basic reaction, always found on calcareous or other high-pH soils | |
Nutrients /nitrogen | 1 | Indicator of extremely infertile sites |
2 | Between 1 and 3 | |
3 | Indicator of more or less infertile sites | |
4 | Between 3 and 5 | |
5 | Indicator of sites of intermediate fertility | |
6 | Between 5 and 7 | |
7 | Plant often found in richly fertile places | |
8 | Between 7 and 9 | |
9 | Indicator of extremely rich situations, such as cattle resting places or near polluted rivers | |
Salt concentration | 0 | Absent from saline sites; if in coastal situations, only accidental and non-persistent if subjected to saline spray or water |
1 | Slightly salt-tolerant species, rare to occasional on saline soils but capable of persisting in the presence of salt—includes dune and dune-slack species where the ground water is fresh but where some inputs of salt spray are likely | |
2 | Species occurring in both saline and non-saline situations, for which saline habitats are not strongly predominant | |
3 | Species most common in coastal sites but regularly present in freshwater or on non-saline soils inland (includes strictly coastal species occurring in sites, such as cliff crevices and sand dunes that are not obviously salt-affected) | |
4 | Species of salt meadows and upper saltmarsh, subject to at most only very occasional tidal inundation—includes species of brackish conditions (i.e., of consistent but low salinity) | |
5 | Species of the upper edge of saltmarsh, where not inundated by all tides—includes obligate halophytes of cliffs receiving regular salt spray | |
6 | Species of mid-level saltmarsh | |
7 | Species of lower saltmarsh | |
8 | Species more or less permanently inundated in sea water | |
9 | Species of extremely saline conditions, in sites where sea water evaporates, precipitating salt |
References
- Renewable Energy Policy Network for the 21st Century. Renewables 2017: Global Status Report; REN21: Paris, France, 2017; Volume 72, ISBN 978-3-9818107-6-9. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Minx, J.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Working Group III. Climate Change 2014: Mitigation of Climate Change. In Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- European Parliament, Council of the European Union. EC of the European Parliament and of the Council of 27 September 2001 on the Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market; Document 32001L0077; European Parliament: Strasbourg, Austria; Council of the European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Commission. Europe 2020: A Strategy for Smart, Sustainable and Inclusive Growth; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Union, Europäische. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance). Off. J. Eur. Union 2009, L140, 16–62. [Google Scholar]
- IEA. Solar Energy Perspectives; OECD Publishing: Paris, France, 2011; Volume 9789264124. [Google Scholar] [CrossRef]
- Devabhaktuni, V.; Alam, M.; Depuru, S.S.S.R.; Green, R.C.; Nims, D.; Near, C. Solar energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2013, 19, 555–564. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy 2005, 33, 289–296. [Google Scholar] [CrossRef]
- Armstrong, A.; Waldron, S.; Whitaker, J.; Ostle, N.J. Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Glob. Chang. Biol. 2014, 20, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 2016, 11, 074016. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.; Wilman, E.N.; Laurance, W.F. How Green is ‘Green’ Energy? Trends Ecol. Evol. 2017, 32, 922–935. [Google Scholar] [CrossRef]
- Hernandez, R.; Easter, S.; Murphy-Mariscal, M.; Maestre, F.T.; Tavassoli, M.; Allen, E.; Barrows, C.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Moore-O’Leary, K.A.; Hernandez, R.R.; Johnston, D.S.; Abella, S.R.; Tanner, K.E.; Swanson, A.C.; Kreitler, J.; Lovich, J.E. Sustainability of utility-scale solar energy–critical ecological concepts. Front. Ecol. Environ. 2017, 15, 385–394. [Google Scholar] [CrossRef]
- Cameron, D.R.; Cohen, B.S.; Morrison, S.A. An Approach to Enhance the Conservation-Compatibility of Solar Energy Development. PLoS ONE 2012, 7, e38437. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.R.; Hoffacker, M.K.; Field, C.B. Efficient use of land to meet sustainable energy needs. Nat. Clim. Change 2015, 5, 353–358. [Google Scholar] [CrossRef]
- Horváth, G.; Blahó, M.; Egri, A.; Kriska, G.; Seres, I.; Robertson, B. Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects. Conserv. Biol. 2010, 24, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Walston, L.J.; Rollins, K.E.; LaGory, K.E.; Smith, K.P.; Meyers, S.A. A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renew. Energy 2016, 92, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Stoms, D.M.; Dashiell, S.L.; Davis, F. Siting solar energy development to minimize biological impacts. Renew. Energy 2013, 57, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; García Quijano, J.; Content, T.; Van Wyk, G.; Holden, N.M.; Ward, S.M.; Muys, B. A new land use impact assessment method for LCA: Theoretical fundaments and field validation. In DIAS Report; DIAS: Tjele, Denmark, 2004; p. 143. [Google Scholar]
- Tanner, K.; Moore, K.; Pavlik. Measuring impacts of solar development on desert plants. Fremontia 2014, 42, 15–16. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Colwell, R.K. Biodiversity: Concepts, Patterns, and Measurement. In The Princeton Guide to Ecology; Princeton University Press: Princeton, NJ, USA, 2009; pp. 257–263. [Google Scholar]
- Koziell, I.; Saunders, J. (Eds.) Living off Biodiversity: Exploring Livelihoods and Biodiversity Issues in Natural Resources Management; Iied: London, UK, 2001. [Google Scholar]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Ecology: Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Gaines, W.L.; Harrod, R.J.; Lehmkuhl, J.F. Monitoring Biodiversity: Quantification and Interpretation; US Department of Agriculture: Washington, DC, USA; Forest Service: Washington, DC, USA; Pacific Northwest Research Station: Portland, OR, USA, 1999; Volume 443. [Google Scholar] [CrossRef] [Green Version]
- Braatz, S.M. Conserving Biological Diversity: A Strategy for Protected Areas in the Asia-Pacific Region; World Bank Publications: Washington, DC, USA, 1992; Volume 23. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Gałecki, A.; Burzykowski, T. Linear Model with Fixed Effects and Correlated Errors. In Linear Mixed-Effects Models Using R. Springer Texts in Statistics; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Linear and Nonlinear Mixed Effects Models. R Package Version 3.1–120. 2015. Available online: https://CRAN.R-project.org/package=nlme (accessed on 6 May 2021).
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016, 111, 1548–1563. [Google Scholar] [CrossRef]
- Wood, S.N. Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2010, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Laliberté, E.; Legendre, P.; Shipley, B.; Laliberté, M.E. Package ‘FD’, Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology; Version 1.0-12.1; 2014. Available online: https://cran.r-project.org/web/packages/FD/index.html (accessed on 7 May 2021).
- Pignatti, S.; Menegoni, P.; Pietrosanti, S.; Braun-Blanquetia. Valori di Biondicazione delle Piante Vascolari della Flora d’Italia. Bioindicator Values of Vascular Plants of the Flora of Italy—LibroCo.it. Available online: https://www.libroco.it/english/dl/Pignatti-S-Menegoni-P-Pietrosanti-S/Universita-degli-studi-di-Camerino/isbn/Braun-Blanquetia-Valori-di-biondicazione-delle-piante-vascolari-della-flora-d-Italia-Bioindicator-values-of-vascular-plants-of-the-Flora-of-Italy/cw148481908371557.html (accessed on 7 May 2021).
- Bunce, R.G.H.; Barr, C.J.; Gillespie, M.K.; Howard, D.C.; Scott, W.A.; Smart, S.M.; Van de Poll, H.M.; Watkins, J.W. Vegetation of the British Countryside—The Countryside Vegetation System. ECOFACT. NERC Open Research Archive. Volume 1. Available online: http://nora.nerc.ac.uk/id/eprint/4311/ (accessed on 7 May 2021).
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Cailliez, F. The analytical solution of the additive constant problem. Psychometrika 1983, 48, 305–308. [Google Scholar] [CrossRef]
- Peterson, A. Köppen-Geiger Climate Types of Italy. 2016. Available online: https://web.archive.org/web/20100906034159/http://koeppen-geiger.vu-wien.ac.at (accessed on 7 May 2021).
- International Organization for Standardization. ISO 14040, Environmental Management—Life Cycle Assessment—Principles and Framework, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Biondi, E.; Blasi, C.; Burrascano, L.Z.S.; Casavecchia, S.; Copiz, R.; del Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, G.; et al. Italian Interpretation Manual of the Habitats (92/43/EEC Directive); Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Roma, Italy, 2009. [Google Scholar]
- European Commission. Interpretation Manual of European Union Habitats—EUR28; European Commission: Brussels, Belgium, 2013; p. 144. Available online: http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/Int_Manual_EU28.pdf (accessed on 7 May 2021).
- Di Prima, S.; Bagarello, V.; Angulo-Jaramillo, R.; Bautista, I.; Cerdà, A.; del Campo, A.; González-Sanchis, M.; Iovino, M.; Lassabatere, L.; Maetzke, F. Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. J. Hydrol. Hydromech. 2017, 65, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Masri, Z.; Ryan, J. Soil organic matter and related physical properties in a Mediterranean wheat-based rotation trial. Soil Tillage Res. 2006, 87, 146–154. [Google Scholar] [CrossRef]
- Korkanç, S.Y.; Korkanç, M. Physical and chemical degradation of grassland soils in semi-arid regions: A case from Central Anatolia, Turkey. J. Afr. Earth Sci. 2016, 124, 1–11. [Google Scholar] [CrossRef]
- Brandsæter, L.O.; Bakken, A.K.; Mangerud, K.; Riley, H.; Eltun, R.; Fykse, H. Effects of tractor weight, wheel placement and depth of ploughing on the infestation of perennial weeds in organically farmed cereals. Eur. J. Agron. 2011, 34, 239–246. [Google Scholar] [CrossRef]
- Hancock, G.; Coulthard, T.; Martinez, C.; Kalma, J. An evaluation of landscape evolution models to simulate decadal and centennial scale soil erosion in grassland catchments. J. Hydrol. 2011, 398, 171–183. [Google Scholar] [CrossRef]
- Onori, F.; De Bonis, P.; Grauso, S. Soil erosion prediction at the basin scale using the revised universal soil loss equation (RUSLE) in a catchment of Sicily (southern Italy). Environ. Earth Sci. 2006, 50, 1129–1140. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; Sellitto, V.M.; Di Iorio, E.; Castrignanò, A.; Stelluti, M. The effects of land use and landscape on soil nitrate availability in Southern Italy (Molise region). Geoderma 2015, 239–240, 1–12. [Google Scholar] [CrossRef]
- Rutigliano, F.; D’Ascoli, R.; De Santo, A.V. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biol. Biochem. 2004, 36, 1719–1729. [Google Scholar] [CrossRef]
- Wang, H.H.; Wang, Y.; Delgado, M.S. The Transition to Modern Agriculture: Contract Farming in Developing Economies. Am. J. Agric. Econ. 2014, 96, 1257–1271. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Xu, L.; Kiang, N.Y. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Paço, T.A.; David, T.; Henriques, M.O.; Pereira, J.; Valente, F.; Banza, J.; Pereira, F.L.; Pinto, C.; David, J.S. Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasture. J. Hydrol. 2009, 369, 98–106. [Google Scholar] [CrossRef]
- Toureiro, C.; Serralheiro, R.; Shahidian, S.; Sousa, A. Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition. Agric. Water Manag. 2017, 184, 211–220. [Google Scholar] [CrossRef]
- Rossi, S.; Bocchi, S. Monitoring crop evapotranspiration with time series of MODIS satellite data in Northern Italy. In Proceedings of the 26th Annual Symposium of the European Association of Remote Sensing Laboratories (EARSeL), Warsaw, Poland, 29 May–2 June 2006. [Google Scholar]
- Wever, L.A.; Flanagan, L.B.; Carlson, P.J. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric. For. Meteorol. 2002, 112, 31–49. [Google Scholar] [CrossRef]
- Ogaya, R.; Peñuelas, J.; Martínez-Vilalta, J.; Mangirón, M. Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. For. Ecol. Manag. 2003, 180, 175–184. [Google Scholar] [CrossRef]
- Kobata, T.; Koç, M.; Barutçular, C.; Tanno, K.-I.; Inagaki, M. Harvest index is a critical factor influencing the grain yield of diverse wheat species under rain-fed conditions in the Mediterranean zone of southeastern Turkey and northern Syria. Plant Prod. Sci. 2018, 21, 71–82. [Google Scholar] [CrossRef]
- Blanke, J.; Boke-Olén, N.; Olin, S.; Chang, J.; Sahlin, U.; Lindeskog, M.; Lehsten, V. Implications of accounting for management intensity on carbon and nitrogen balances of European grasslands. PLoS ONE 2018, 13, e0201058. [Google Scholar] [CrossRef]
- Royo, C.; Aparicio, N.; Blanco, R.; Villegas, D. Leaf and green area development of durum wheat genotypes grown under Mediterranean conditions. Eur. J. Agron. 2004, 20, 419–430. [Google Scholar] [CrossRef]
- Vitale, M.; Gerosa, G.; Ballarindenti, A.; Manes, F. Ozone uptake by an evergreen mediterranean forest (Quercus ilex L.) in Italy—Part II: Flux modelling. Upscaling leaf to canopy ozone uptake by a process-based model. Atmos. Environ. 2005, 39, 3267–3278. [Google Scholar] [CrossRef]
- Liu, D.; Ogaya, R.; Barbeta, A.; Yang, X.; Peñuelas, J. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species. Glob. Change Biol. 2015, 21, 4196–4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Sun, Y.; Zhang, S.; Palta, J.A.; Deng, X. The proportion of superior grains and the sink strength are the main yield contributors in modern winter wheat varieties grown in the Loess Plateau of China. Agronomy 2019, 9, 612. [Google Scholar] [CrossRef] [Green Version]
- Zanke, C.D.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; Hinze, M.; Neumann, K.; et al. Whole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.). PLoS ONE 2014, 9, e113287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regnery, B.; Paillet, Y.; Couvet, D.; Kerbiriou, C. Which factors influence the occurrence and density of tree microhabitats in Mediterranean oak forests? For. Ecol. Manag. 2013, 295, 118–125. [Google Scholar] [CrossRef]
- Paydar, Z.; Gaydon, D.; Chen, Y. A methodology for up-scaling irrigation losses. Irrig. Sci. 2009, 27, 347–356. [Google Scholar] [CrossRef]
- Middleton, A.B.; Bremer, E.; McKenzie, R.H. Winter wheat response to nitrogen fertilizer form and placement in southern Alberta. Can. J. Soil Sci. 2004, 84, 125–131. [Google Scholar] [CrossRef]
- European Commission. A Common Methodology for the Collection of Pesticide Usage Statistics within Agriculture and Horticulture; European Communities: Luxembourg, 2008. [Google Scholar]
- Abbate, G.; Cicinelli, E.; Iamonico, D.; Iberite, M. Floristic analysis of the weed communities in wheat and corn crops: A case study in Western-Central Italy. Annali Botanica 2013, 3, 97–105. [Google Scholar] [CrossRef]
- Kimball, S.; Schiffman, P.M. Differing Effects of Cattle Grazing on Native and Alien Plants. Conserv. Biol. 2003, 17, 1681–1693. [Google Scholar] [CrossRef]
- Rossetti, I.; Bagella, S.; Cappai, C.; Caria, M.; Lai, R.; Roggero, P.; da Silva, P.M.; Sousa, J.P.; Querner, P.; Seddaiu, G. Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agric. Ecosyst. Environ. 2015, 202, 203–216. [Google Scholar] [CrossRef]
- Selvi, F.; Valleri, M. Cork oak woodlands in the north Tyrrhenian area (Italy): Distribution and plant species diversity of a relict forest ecosystem. Biodivers. Conserv. 2012, 21, 3061–3078. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L.F.; Hu, Y. Impacts of wind farms on land surface temperature. Nat. Clim. Change 2012, 2, 539–543. [Google Scholar] [CrossRef]
- Weinstock, D.; Appelbaum, J. Optimization of Solar Photovoltaic Fields. J. Sol. Energy Eng. 2009, 131, 031003. [Google Scholar] [CrossRef]
- Nemet, G.F. Net Radiative Forcing from Widespread Deployment of Photovoltaics. Environ. Sci. Technol. 2009, 43, 2173–2178. [Google Scholar] [CrossRef] [PubMed]
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- Jiawen, Z.; Xiaodong, Z. Comprehensive Study on the Influence of Evapotranspiration and Albedo on Surface Temperature Related to Changes in the Leaf Area Index. Adv. Atmos. Sci. 2015, 32, 935–942. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Li, Y.; Kalnay, E.; Motesharrei, S.; Rivas, J.; Kucharski, F.; Kirk-Davidoff, D.; Bach, E.; Zeng, N. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 2018, 361, 1019–1022. [Google Scholar] [CrossRef] [Green Version]
- Norton, D.A.; Young, L.M. Effect of artificial shade and grazing removal on degraded grasslands: Implications of woody restoration for herbaceous vegetation. Ecol. Manag. Restor. 2016, 17, 140–146. [Google Scholar] [CrossRef]
- Semchenko, M.; Lepik, M.; Götzenberger, L.; Zobel, K. Positive effect of shade on plant growth: Amelioration of stress or active regulation of growth rate? J. Ecol. 2011, 100, 459–466. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Yang, F.; Wang, J.; Di, Y.; Dai, X.; Zhang, X.; Wang, H. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Sci. Total Environ. 2015, 502, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Lan, Z.; Hu, S.; Bai, Y. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 2015, 89, 99–108. [Google Scholar] [CrossRef]
- Hill, M. Vegetation of the British Countryside; DETR: Norwich, UK, 1999; Volume 1. [Google Scholar]
- Lozano Baez, S.E. Recovery of Soil Hydraulic Properties after Forest Restoration in the Atlantic Forest. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Ryan, J. Changes in organic carbon in long-term rotation and tillage trials in northern Syria. In Management of Carbon Sequestration in Soil; CRC Press: Boca Raton, FL, USA, 2019; pp. 285–296. [Google Scholar]
- Esfandiarpour, I.; Khorasani, M.R.; Shirani, H. Determining the importance of soil properties for clay dispersibility using artificial neural network and daptive neuro-fuzzy inference system. Desert 2017, 22, 135–143. [Google Scholar]
- Hancock, G.R.; Coulthard, T.J. Channel movement and erosion response to rainfall variability in southeast Australia. Hydrol. Process. 2012, 26, 663–673. [Google Scholar] [CrossRef]
- Diodato, N. Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrol. Earth Syst. Sci. 2004, 8, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Duncan, E.W.; Kleinman, P.J.; Beegle, D.B.; Dell, C.J. Nitrogen cycling trade-offs with broadcasting and injecting dairy manure. Nutr. Cycl. Agroecosyst. 2019, 114, 57–70. [Google Scholar] [CrossRef]
- Liu, D. Climate Change Impacts on the Mediterranean Forest and Shrubland, Their Ecophysiology, Demography and Community Composition; Universitat Autònoma de Barcelona: Bellaterra, Spain, 2017. [Google Scholar]
- Vuidot, A.; Paillet, Y.; Archaux, F.; Gosselin, F. Influence of tree characteristics and forest management on tree microhabitats. Biol. Conserv. 2011, 144, 441–450. [Google Scholar] [CrossRef]
- Zanke, C.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; Hinze, M.; Beier, S.; et al. Genetic architecture of main effect QTL for heading date in European winter wheat. Front. Plant Sci. 2014, 5, 217. [Google Scholar] [CrossRef] [Green Version]
- Villegas, D.; Aparicio, N.; Blanco, R.; Royo, C. Biomass accumulation and main stem elongation of durum wheat grown under Mediterranean conditions. Ann. Bot. 2001, 88, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Gerosa, G.; Vitale, M.; Finco, A.; Manes, F.; Denti, A.B.; Cieslik, S. Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: Micrometeorological flux measurements and flux partitioning. Atmos. Environ. 2005, 39, 3255–3266. [Google Scholar] [CrossRef]
- Böcker, T.; Finger, R. European pesticide tax schemes in comparison: An analysis of experiences and developments. Sustainability 2016, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Odeurs, W.; Bries, J. Bemesting wintertarwe. Granen Oogst 2011, 2011, 5. [Google Scholar]
- Koukidou, E.; Panagopoulos, A.; Arampatzis, G.; Hatzigiannakis, E. Groundwater flow modelling as a tool for assessing aquifer restoration using artificial recharge. The case of Tirnavos alluvial basin, central Greece. In Proceedings of the 10th International Conference of Protection and Restoration of the Environment, Corfu, Greece, 5–9 July 2010. [Google Scholar]
- Latini, M.; Fanfarillo, E.; De Luca, E.; Iberite, M.; Abbate, G. The weed vegetation of the bean “Fagiolo Cannellino di Atina” and the red pepper “Peperone di Pontecorvo” PDO crops (Latium, central Italy). Plant Sociol. 2020, 57, 1–10. [Google Scholar] [CrossRef]
- Seddaiu, G.; Bagella, S.; Pulina, A.; Cappai, C.; Salis, L.; Rossetti, I.; Lai, R.; Roggero, P.P. Mediterranean cork oak wooded grasslands: Synergies and trade-offs between plant diversity, pasture production and soil carbon. Agrofor. Syst. 2018, 92, 893–908. [Google Scholar] [CrossRef]
- Serenelli, C. Landscape linkages between cultural and spiritual values: The wetland of Colfiorito and the Lauretana pilgrimage route in the Plestian Plateaus. In The Diversity of Sacred Lands in Europe: Proceedings of the Third Workshop of the Delos Initiative—Inari/Aanaar 2010; IUCN: Gland, Switzerland; Metsähallitus Natural Heritage Services: Vantaa, Finland, 2012. [Google Scholar]
- Hayes, G.F.; Holl, K.D. Cattle grazing impacts on annual forbs and vegetation composition of mesic grasslands in California. Conserv. Biol. 2003, 17, 1694–1702. [Google Scholar] [CrossRef]
- Londo, G. The decimal scale for releves of permanent quadrats. Vegetatio 1976, 33, 61–64. [Google Scholar] [CrossRef]
- Aerts, R.; Wagendorp, T.; November, E.; Behailu, M.; Deckers, J.; Muys, B. Ecosystem Thermal Buffer Capacity as an Indicator of the Restoration Status of Protected Areas in the Northern Ethiopian Highlands. Restor. Ecol. 2004, 12, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zou, B.; Li, H.; Li, Z. The effect of understory removal on microclimate and soil properties in two subtropical lum-ber plantations. J. For. Res. 2014, 19, 238–243. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Lan, Z.; Hu, S.; Bai, Y. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Funct. Ecol. 2016, 30, 658–669. [Google Scholar] [CrossRef]
- Garcia, C.; Hernandez, T.; Roldan, A.; Martin, A. Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol. Biochem. 2002, 34, 635–642. [Google Scholar] [CrossRef]
- Nunes, J.R.; Cabral, F.; Piñeiro, A.L. Short-term effects on soil properties and wheat production from secondary paper sludge application on two Mediterranean agricultural soils. Bioresour. Technol. 2008, 99, 4935–4942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuka, K.; Nakano, Y.; Takahashi, K. Contract farming in developed and developing countries. Annu. Rev. Resour. Econ. 2016, 8, 353–376. [Google Scholar] [CrossRef]
The t-Test between Position: | Surface Temperature | PAR Radiation | Humidity | Air Temperature |
---|---|---|---|---|
1 and 2 | 0.023 | 0.37 | 0.067 | 0.27 |
1 and 3 | 0.021 | 0.0011 | 0.0076 | 0.19 |
1 and 4 | 0.33 | 0.00043 | 0.094 | 0.42 |
2 and 3 | 0.20 | 8.0 × 10−6 | 0.026 | 0.23 |
2 and 4 | 0.066 | 5.6 × 10−5 | 0.20 | 0.30 |
3 and 4 | 0.036 | 0.015 | 0.48 | 0.15 |
t-Test between Position: | Species Richness * | Shannon Diversity * | Shannon Evenness |
---|---|---|---|
1 and 2 | 0.73 | 0.56 | 0.37 |
1 and 3 | 0.035 | 0.012 | 0.0070 |
1 and 4 | 0.032 | 0.0079 | 0.0018 |
1 and 5 | 0.091 | 0.019 | 0.0030 |
2 and 3 | 0.044 | 0.030 | 0.021 |
2 and 4 | 0.041 | 0.012 | 0.0097 |
2 and 5 | 0.076 | 0.040 | 0.025 |
3 and 4 | 0.99 | 0.91 | 0.22 |
3 and 5 | 0.53 | 0.80 | 0.52 |
4 and 5 | 0.73 | 0.88 | 0.88 |
Linear Model | Value | Std. Error | DF | t-Value | p-Value | |
---|---|---|---|---|---|---|
Tsurf~P | Intercept | 0.02658 | 0.01367 | 29 | 1.945 | 0.06150 |
Position | −0.0007015 | 0.001055 | 29 | −0.6647 | 0.5115 | |
PAR~P | Intercept | 1.260 | 0.1265 | 26 | 9.961 | 0 |
Position | −0.2530 | 0.02640 | 26 | −9.584 | 0 | |
RH~P | Intercept | −0.04684 | 0.07073 | 26 | −0.6623 | 0.5136 |
Position | −0.01758 | 0.007366 | 26 | −2.386 | 0.02460 | |
Tair~P | Intercept | 0.02772 | 0.02400 | 26 | 1.155 | 0.2585 |
Position | −0.005171 | 0.002581 | 26 | −2.003 | 0.0557 | |
S~P | Intercept | 4.530 | 1.419 | 97 | 3.193 | 0.001900 |
Position | 0.4475 | 0.1824 | 97 | 2.453 | 0.01590 | |
H’~P | Intercept | 0.5011 | 0.2700 | 97 | 1.856 | 0.06650 |
Position | 0.1201 | 0.02642 | 97 | 4.548 | 0 | |
E~P | Intercept | 0.4941 | 0.3776 | 96 | 1.308 | 0.1939 |
Position | 0.09149 | 0.01967 | 96 | 4.652 | 0 |
Gamm | Value | Std. Error | t-Value | p-Value | R-sq (adj) | |
---|---|---|---|---|---|---|
Tsurf~P | Intercept | 0.02912 | 0.009155 | 3.181 | 0.00292 | −0.0247 |
Position | −0.0007015 | 0.001064 | −0.6590 | 0.5140 | ||
PAR~P | Intercept | 1.253 | 0.1024 | 12.24 | 5.23 × 10−14 | NA |
Position | −0.2530 | 0.02677 | −9.450 | 4.86 × 10−11 | ||
RH~P | Intercept | −0.04684 | 0.06881 | −0.6810 | 0.5010 | NA |
Position | −0.01758 | 0.007438 | −2.363 | 0.024 | ||
Tair~P | Intercept | 0.02772 | 0.02335 | 1.187 | 0.2434 | NA |
Position | −0.005171 | 0.002606 | −1.984 | 0.0554 | ||
S~P | Intercept | 4.400 | 1.054 | 4.174 | 6.14 × 10−5 | 0.0256 |
Position | 0.4456 | 0.1832 | 2.433 | 0.01670 | ||
H’~P | Intercept | 0.04673 | 0.1912 | 2.443 | 0.0162 | 0.0819 |
Position | 0.1199 | 0.02653 | 4.521 | 1.61 × 10−5 | ||
E~P | Intercept | 0.4888 | 0.2724 | 1.794 | 0.0756 | NA |
Position | 0.09141 | 0.01975 | 4.628 | 1.06 × 10−5 |
Linear Model | Value | Std. Error | DF | t-Value | p-Value | |
---|---|---|---|---|---|---|
Light~P | Intercept | 7.719 | 0.8910 | 87 | 8.664 | 0 |
Position | 0.1462 | 0.04946 | 87 | 2.956 | 0.004000 | |
Temp~P | Intercept | 6.629 | 0.2924 | 87 | 22.67 | 0 |
Position | 0.09673 | 0.05326 | 87 | 1.816 | 0.07280 | |
Cont~P | Intercept | 5.080 | 0.2162 | 87 | 23.49 | 0 |
Position | 0.0003660 | 0.03171 | 87 | 0.01153 | 0.9908 | |
Hum~P | Intercept | 4.803 | 0.2204 | 87 | 21.79 | 0 |
Position | −0.08587 | 0.06156 | 87 | −1.395 | 0.1666 | |
Reaction~P | Intercept | 5.762 | 0.2481 | 87 | 23.22 | 0 |
Position | 0.2085 | 0.06884 | 87 | 3.028 | 0.0032 | |
Nutrients~P | Intercept | 6.629 | 0.7782 | 87 | 8.518 | 0 |
Position | −0.2438 | 0.05757 | 87 | −4.235 | 1 ×10−0.4 | |
Salt~P | Intercept | 0.2916 | 0.1606 | 87 | 1.816 | 0.0729 |
Position | −0.03602 | 0.01778 | 87 | −2.026 | 0.04580 |
t-Test between Position | Light | Temperature | Continentality * | Humidity | Reaction * | Nutrients | Salt * |
---|---|---|---|---|---|---|---|
1 and 2 | 0.74 | 0.60 | 0.82 | 0.29 | 0.35 | 0.73 | 0.78 |
1 and 3 | 0.24 | 0.60 | 0.84 | 0.71 | 0.027 | 0.14 | 0.76 |
1 and 4 | 0.36 | 0.28 | 0.19 | 0.60 | 0.010 | 0.017 | 1 |
1 and 5 | 0.48 | 0.33 | 0.32 | 0.32 | 0.10 | 0.00059 | 0.31 |
2 and 3 | 0.0028 | 0.68 | 0.68 | 0.86 | 0.16 | 0.43 | 0.98 |
2 and 4 | 0.014 | 0.14 | 0.14 | 0.73 | 0.053 | 0.031 | 0.79 |
2 and 5 | 0.082 | 0.13 | 0.43 | 0.58 | 0.42 | 0.0044 | 0.22 |
3 and 4 | 0.30 | 0.042 | 0.26 | 0.80 | 0.70 | 0.0066 | 0.71 |
3 and 5 | 0.39 | 0.18 | 0.19 | 0.47 | 0.47 | 0.032 | 0.16 |
4 and 5 | 0.74 | 0.96 | 0.0047 | 0.56 | 0.34 | 0.73 | 0.25 |
Wheat | Solar | Land Use | Wheat | Solar | |
---|---|---|---|---|---|
Soil compaction | 91 | 39 | Soil | 40 | 18 |
Soil structure disturbance | 37 | 0 | |||
Soil erosion | 100 * | 0 | |||
Cation exchange capacity | 84 | 30 | |||
Base saturation | −13 | 66 | |||
Evapotranspiration | 26 | 3 | Water | 9 | 1 |
Surface runoff | 0 | 0 | |||
Total aboveground living biomass | 91 | 96 | Vegetation | 32 | 25 |
Leaf area index | 9 | 0 | |||
Free net primary production | 26 | 0 | |||
Crop biomass | 26 | 0 | |||
Vegetation height | 89 | 90 | |||
Artificial change in water balance | 100 | 0 | Biodiversity | 31 | 15 |
Liming, fertilisation, impoverishment | 100 * | 0 | |||
Biocides | 100 * | 0 | |||
Canopy cover of exotic species | 1 | 46 | |||
Number of species | 94 | 65 | |||
Total | 961 | 435 | |||
Average | 56.5 | 25.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vervloesem, J.; Marcheggiani, E.; Choudhury, M.A.M.; Muys, B. Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity. Sustainability 2022, 14, 7493. https://doi.org/10.3390/su14127493
Vervloesem J, Marcheggiani E, Choudhury MAM, Muys B. Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity. Sustainability. 2022; 14(12):7493. https://doi.org/10.3390/su14127493
Chicago/Turabian StyleVervloesem, Jeffrey, Ernesto Marcheggiani, MD Abdul Mueed Choudhury, and Bart Muys. 2022. "Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity" Sustainability 14, no. 12: 7493. https://doi.org/10.3390/su14127493
APA StyleVervloesem, J., Marcheggiani, E., Choudhury, M. A. M., & Muys, B. (2022). Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity. Sustainability, 14(12), 7493. https://doi.org/10.3390/su14127493