Spatiotemporal Variability of Human Disturbance Impacts on Ecosystem Services in Mining Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review
2.2. Meta-Analysis
3. Results
3.1. Human Disturbance Impacts on ESs in Mining Areas
3.2. ESs Response on Temporal and Spatial Scales in Mining Areas to Human Disturbance
4. Discussion
4.1. Possible Causes and Consequences of the Spatiotemporal Variability
4.2. The Contribution of Climate Change to Spatiotemporal Variability
4.3. Recommendations for How to Cope with the Twofold Pressure of Climate Change and Spatiotemporal Variability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mi, J.X.; Yang, Y.J.; Zhang, S.L.; An, S.; Hou, H.; Hua, Y.; Chen, F. Tracking the land use/land cover change in an area with underground mining and reforestation via continuous landsat classification. Remote Sens. 2019, 11, 1719. [Google Scholar] [CrossRef] [Green Version]
- Gläßer, C.; Thürkow, D.; Dette, C.; Scheuer, S. The development of an integrated technical-methodical approach to visualise hydrological processes in an exemplary post-mining area in central Germany. ISPRS J. Photogramm. 2010, 65, 275–281. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Qindong, F.; Shengyan, D. Response of ecosystem services to land use change in county scale of Fengqiu, Henan Province, China. Arab. J. Geosci. 2015, 8, 9015–9022. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lechner, A.M.; Yang, Y.J.; Baumgartl, T.; Wu, J. Mapping the cumulative impacts of long-term mining disturbance and progressive rehabilitation on ecosystem services. Sci. Total Environ. 2020, 717, 137214. [Google Scholar] [CrossRef] [PubMed]
- Phair, N.L.; Toonen, R.J.; Knapp, I.S.S.; von der Heyden, S. Anthropogenic pressures negatively impact genomic diversity of the vulnerable seagrass Zostera capensis. J. Environ. Manag. 2020, 255, 109831. [Google Scholar] [CrossRef]
- Myroniuk, V.; Bilous, A.; Khan, Y.; Terentiev, A.; Kravets, P.; Kovalevskyi, S.; See, L. Tracking rates of forest disturbance and associated carbon loss in areas of illegal amber mining in Ukraine using landsat time series. Remote Sens. 2020, 12, 2235. [Google Scholar] [CrossRef]
- Hughes, A.C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 2017, 8, 33. [Google Scholar] [CrossRef]
- Thisani, S.K.; Kallon, D.V.V.; Byrne, P. Geochemical classification of global mine water drainage. Sustainability 2020, 12, 10244. [Google Scholar] [CrossRef]
- Murguía, D.I.; Bringezu, S.; Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation. J. Environ. Manag. 2016, 180, 409–420. [Google Scholar] [CrossRef]
- Alamgir, M.; Turton, S.M.; Campbell, M.J.; Macgregor, C.J.; Pert, P.L. Spatial congruence and divergence between ecosystem services and biodiversity in a tropical forested landscape. Ecol. Indic. 2018, 93, 173–182. [Google Scholar] [CrossRef]
- Pratiwi; Narendra, B.H.; Siregar, C.A.; Turjaman, M.; Hidayat, A.; Rachmat, H.H.; Mulyanto, B.; Suwardi; Iskandar; Maharani, R.; et al. Managing and reforesting degraded post-mining landscape in Indonesia: A review. Land 2021, 10, 658. [Google Scholar] [CrossRef]
- UNE. Programme. United Nations Decade on Ecosystem Restoration (2021–2030). Type Medium. 2019. Available online: https://undocs.org/en/A/RES/73/284 (accessed on 26 March 2020).
- UNE. Programme. Becoming #Generationrestoration: Ecosystem Restoration for People, Nature and Climate. Type Medium. 2021. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/36251/ERPNC.pdf (accessed on 15 October 2021).
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Kossoff, D.; Hudson-Edwards, K.A.; Howard, A.J.; Knight, D. Industrial mining heritage and the legacy of environmental pollution in the Derbyshire Derwent catchment: Quantifying contamination at a regional scale and developing integrated strategies for management of the wider historic environment. J. Archaeol. Sci. Rep. 2016, 6, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Adesipo, A.A.; Freese, D.; Zerbe, S.; Wiegleb, G. An approach to thresholds for evaluating post-mining site reclamation. Sustainability 2021, 13, 5618. [Google Scholar] [CrossRef]
- Cao, Y.G.; Bai, Z.K.; Zhou, W.; Zhang, X. Characteristic analysis and pattern evolution on landscape types in typical compound area of mine agriculture urban in Shanxi Province, China. Environ. Earth Sci. 2016, 75, 15. [Google Scholar] [CrossRef]
- Van der Laan, C.; Budiman, A.; Verstegen, J.A.; Dekker, S.; Effendy, W.; Faaij, A.; Kusuma, A.; Verweij, P. Analyses of land cover change trajectories leading to tropical forest loss: Illustrated for the West Kutai and Mahakam ulu districts, east Kalimantan, Indonesia. Land 2018, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, X.B.; Wang, H.; Zhang, M.; Kong, F.; Li, G.; Tian, M.; Huang, Q. Spatiotemporal assessment of ecological security in a typical steppe ecoregion in Inner Mongolia. Pol. J. Environ. Stud. 2018, 27, 1601–1617. [Google Scholar] [CrossRef]
- Franke, M.E.; Zipper, C.; Barney, J.N. Invasive autumn olive performance varies in different reclamation conditions: Implications for restoration. Restor. Ecol. 2019, 27, 600–606. [Google Scholar] [CrossRef]
- Clark, M.R.; Durden, J.M.; Christiansen, S. Environmental impact assessments for deep-sea mining: Can we improve their future effectiveness? Mar. Policy 2020, 114, 9. [Google Scholar] [CrossRef]
- Qian, D.W.; Yan, C.Z.; Xiu, L.N.; Feng, K. The impact of mining changes on surrounding lands and ecosystem service value in the southern slope of Qilian Mountains. Ecol. Complex. 2018, 36, 138–148. [Google Scholar] [CrossRef]
- Yu, L.; Xu, Y.D.; Xue, Y.M.; Li, X.; Cheng, Y.; Liu, X.; Porwal, A.; Holden, E.; Yang, J.; Gong, P. Monitoring surface mining belts using multiple remote sensing datasets: A global perspective. Ore Geol. Rev. 2018, 101, 675–687. [Google Scholar] [CrossRef]
- Laplante, K.; Sébastien, B.; Derome, N. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation. Evol. Appl. 2013, 6, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Crane, R.A.; Sinnett, D.E.; Cleall, P.J.; Sapsford, D.J. Physicochemical composition of wastes and co-located environmental designations at legacy mine sites in the south west of England and Wales: Implications for their resource potential. Resour. Conserv. Recy. 2017, 123, 117–134. [Google Scholar] [CrossRef]
- Trabucchi, M.; Puente, C.; Comin, F.A.; Olague, G.; Smith, S.V. Mapping erosion risk at the basin scale in a Mediterranean environment with opencast coal mines to target restoration actions. Reg. Environ. Chang. 2012, 12, 675–687. [Google Scholar] [CrossRef] [Green Version]
- Collins, Y.A. Colonial residue: Redd plus, territorialisation and the racialized subject in Guyana and Suriname. Geoforum 2019, 106, 38–47. [Google Scholar] [CrossRef]
- Temper, L.; Martinez-Alier, J. The god of the mountain and Godavarman: Net present value, indigenous territorial rights and sacredness in a bauxite mining conflict in India. Ecol. Econ. 2013, 96, 79–87. [Google Scholar] [CrossRef]
- Ferreira, P.C.; Pupin, B.; Rangel, D.E.N. Stress tolerance of soil fungal communities from native Atlantic Forests, reforestations, and a sand mining degraded area. Fungal Biol. 2018, 122, 400–409. [Google Scholar] [CrossRef]
- Sinnett, D. Going to waste? The potential impacts on nature conservation and cultural heritage from resource recovery on former mineral extraction sites in England and Wales. J. Environ. Plan. Manag. 2019, 62, 1227–1248. [Google Scholar] [CrossRef] [Green Version]
- Heneberg, P.; Řezáč, M. First evidence of the formation of secondary strongholds of threatened epigeic spiders (Araneae) in oligotrophic anthropogenic wetlands that form in sand pits and gravel-sand pits. Ecol. Eng. 2018, 119, 84–96. [Google Scholar] [CrossRef]
- Kuznetsov, D.; Rabkina, N.; Ryabova, M.; Valko, O. Coal-mining industry as a forming factor of social, cultural, and linguistic environment of Kuzbass as resource region of Siberia. In E3S Web of Conferences; Tyulenev, M., Zhironkin, S., Khoreshok, A., Voth, S., Cehlar, M., Nuray, D., Janocko, J., Anyona, S., Tan, Y., Abay, A., et al., Eds.; IVth International Innovative Mining Symposium; EDP Sciences: Les Ulis, France, 2019; Volume 105. [Google Scholar] [CrossRef]
- Yuan, H.S.; Li, J.; Yin, D.; Chen, X. Evoking the industrial past at the urban-rural border region: Social movements and cultural production. Sustainability 2020, 12, 8249. [Google Scholar] [CrossRef]
- Hackworth, Z.J.; Lhotka, J.M.; Cox, J.J.; Barton, C.; Springer, M. First-year vitality of reforestation plantings in response to herbivore exclusion on reclaimed Appalachian surface-mined land. Forests 2018, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, A.J.; Li, J.; Wynne, R.H.; Zipper, C.E. Identifying woody vegetation on coal surface mines using phenological indicators with multitemporal landsat imagery. In Isprs Technical Commission I Symposium; Toth, C., Holm, T., Jutzi, B., Eds.; Copernicus Gesellschaft: Göttingen, Germany, 2014; pp. 339–345. [Google Scholar]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Carpenter, S.R.; Booth, E.G.; Motew, M.; Kucharik, C.J. Spatial and temporal variability of future ecosystem services in an agricultural landscape. Landsc. Ecol. 2020, 35, 2569–2586. [Google Scholar] [CrossRef]
- Alday, J.G.; Marrs, R.H.; Martínez-Ruiz, C. Vegetation succession on reclaimed coal wastes in Spain: The influence of soil and environmental factors. Appl. Veg. Sci. 2011, 14, 84–94. [Google Scholar] [CrossRef]
- Andersen, L. Magic light, Silver City: The business of culture in Broken Hill. Aust. Geogr. 2010, 41, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Meli, P.; Holl, K.D.; Rey Benayas, J.M.R.; Jones, H.P.; Jones, P.C.; Montoya, D.; Moreno Mateos, D. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE 2017, 12, 17. [Google Scholar] [CrossRef]
- Rau, A.L.; Burkhardt, V.; Dorninger, C.; Hjort, C.; Ibe, K.; Keßler, L.; Kristensen, J.A.; McRobert, A.; Sidemo-Holm, W.; Zimmermann, H.; et al. Temporal patterns in ecosystem services research: A review and three recommendations. Ambio 2020, 49, 1377–1393. [Google Scholar] [CrossRef]
- Martín-López, B.; Gómez-Baggethun, E.; Lomas, P.L.; Montes, C. Effects of spatial and temporal scales on cultural services valuation. J. Environ. Manag. 2009, 90, 1050–1059. [Google Scholar] [CrossRef]
- Renard, D.; Rhemtulla, J.M.; Bennett, E.M. Historical dynamics in ecosystem service bundles. Proc. Natl Acad. Sci. USA 2015, 112, 13411–13416. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Zhao, F.Q.; Yang, J.; Li, X. Mining site reclamation planning based on land suitability analysis and ecosystem services evaluation: A case study in Liaoning Province, China. Sustainability 2017, 9, 890. [Google Scholar] [CrossRef] [Green Version]
- M.E. Assessment. Ecosystems and Human Well-Being: Synthesis. Type of Medium. 2005. Available online: http://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 22 June 2020).
- Vela-Almeida, D.; Brooks, G.; Kosoy, N. Setting the limits to extraction: A biophysical approach to mining activities. Ecol. Econ. 2015, 119, 189–196. [Google Scholar] [CrossRef]
- Magris, R.A.; Marta-Almeida, M.; Monteiro, J.A.F.; Ban, N.C. A modelling approach to assess the impact of land mining on marine biodiversity: Assessment in coastal catchments experiencing catastrophic events (Sw Brazil). Sci. Total Environ. 2019, 659, 828–840. [Google Scholar] [CrossRef] [Green Version]
- Waddington, J.M.; Morris, P.J.; Kettridge, N.; Granath, G.; Thompson, D.K.; Moore, P.A. Hydrological feedbacks in northern peatlands. Ecohydrology 2015, 8, 113–127. [Google Scholar] [CrossRef]
- Longo, M.H.C.; Rodrigues, R.R. Ecosystem services analysis in environmental impact assessments: Proposal and application in a mining project. Desenvolv. Meio Ambiente 2017, 43, 103–125. [Google Scholar]
- Vihervaara, P.; Rönkä, M.; Walls, M. Trends in ecosystem service research: Early steps and current drivers. Ambio 2010, 39, 314–324. [Google Scholar] [CrossRef]
- Sacchelli, S.; Fabbrizzi, S.; Bernetti, I.; Menghini, S. State of the art of ecosystem services research at the global level: A multiscale quantitative review. Int. J. Environ. Sustain. Dev. 2017, 16, 359–378. [Google Scholar] [CrossRef]
- McDonough, K.; Hutchinson, S.; Moore, T.; Hutchinson, J.M.S. Analysis of publication trends in ecosystem services research. Ecosyst. Serv. 2017, 25, 82–88. [Google Scholar] [CrossRef]
- Boldy, R.; Santini, T.; Annandale, M.; Erskine, P.D.; Sonter, L.J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc.-Int. J. 2021, 8, 457–466. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D.; Hedlund, K. Synthesizing multiple ecosystem service assessments for urban planning: A review of approaches, and recommendations. Landsc. Urban Plan. 2021, 213, 104129. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. Camb. Philos. Soc. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Nahuelhual, L.; Laterra, P.; Villarino, S.; Mastrángelo, M.; Carmona, A.; Jaramillo, A.; Barral, P.; Burgos, N. Mapping of ecosystem services: Missing links between purposes and procedures. Ecosyst. Serv. 2015, 13, 162–172. [Google Scholar] [CrossRef]
- Longépée, E.; Ahmed Abdallah, A.A.; Jeanson, M.; Golléty, C. Local ecological knowledge on mangroves in Mayotte Island (Indian Ocean) and influencing factors. Forests 2021, 12, 53. [Google Scholar] [CrossRef]
- Rosa, J.C.S.; Geneletti, D.; Morrison-Saunders, A.; Sánchez, L.E.; Hughes, M. To what extent can mine rehabilitation restore recreational use of forest land? Learning from 50 years of practice in Southwest Australia. Land Use Policy 2020, 90, 11. [Google Scholar] [CrossRef]
- Mason, T.J.; Krogh, M.; Popovic, G.C.; Glamore, W.; Keith, D.A. Persistent effects of underground longwall coal mining on freshwater wetland hydrology. Sci. Total Environ. 2021, 772, 144772. [Google Scholar] [CrossRef]
- Corredor, J.A.G.; Perez, E.H.; Figueroa, R.; Casas, A.F. Water quality of streams associated with artisanal gold mining; Suarez, department of Cauca, Colombia. Heliyon 2021, 7, e07047. [Google Scholar] [CrossRef]
- Asyakina, L.K.; Dyshlyuk, L.S.; Prosekov, A.Y. Reclamation of post-technological landscapes: International experience. Food Process. Tech. Technol. 2022, 51, 805–818. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, S.; Gupta, N. Modelling landscape dynamics with Lst in protected areas of Western Ghats, Karnataka. J. Environ. Manag. 2018, 206, 1253–1262. [Google Scholar] [CrossRef]
- Rodríguez-Uña, A.; Hidalgo-Castañeda, J.; Salcedo, I.; Moreno Mateos, D. Interaction recovery between European beech (Fagus sylvatica) and Ectomycorhizal fungi 140 years after the end of mining. Ecosistemas 2019, 28, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.J.; Xiao, W.; Zhao, Y.L.; Zhang, W.; Li, S.; Sun, H. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 18. [Google Scholar] [CrossRef]
- Woodbury, D.J.; Yassir, I.; Arbainsyah; Doroski, D.A.; Queenborough, S.A.; Ashton, M.S. Filling a void: Analysis of early tropical soil and vegetative recovery under leguminous, post-coal mine reforestation plantations in east Kalimantan, Indonesia. Land Degrad. Dev. 2020, 31, 473–487. [Google Scholar] [CrossRef]
- Van der Heyde, M.; Bunce, M.; Dixon, K.; Wardell-Johnson, G.; White, N.E.; Nevill, P. Changes in soil microbial communities in post mine ecological restoration: Implications for monitoring using high throughput DNA sequencing. Sci. Total Environ. 2020, 749, 142262. [Google Scholar] [CrossRef] [PubMed]
- Haffert, L.; Haeckel, M.; de Stigter, H.; Janssen, F. Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry. Biogeosciences 2020, 17, 2767–2789. [Google Scholar] [CrossRef]
- Montserrat, F.; Guilhon, M.; Corrêa, P.V.F.; Bergo, N.M.; Signori, C.N.; Tura, P.M.; de losSantos Maly, M.; Moura, D.; Jovane, L.; Pellizari, V.; et al. Deep-sea mining on the Rio Grande Rise (southwestern Atlantic): A review on environmental baseline, ecosystem services and potential impacts. Deep Sea Res. I 2019, 145, 31–58. [Google Scholar] [CrossRef]
- Martin, P.A.; Newton, A.C.; Bullock, J.M. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. Biol. Sci. 2013, 280, 20132236. [Google Scholar] [CrossRef]
- Eisenhauer, N. Plant diversity effects on soil microorganisms: Spatial and temporal heterogeneity of plant inputs increase soil biodiversity. Pedobiologia 2016, 59, 175–177. [Google Scholar] [CrossRef]
- Fremier, A.K.; DeClerck, F.A.J.; Bosque-Pérez, N.A.; Carmona, N.E.; Hill, R.; Joyal, T.; Keesecker, L.; Klos, P.Z.; Martínez-Salinas, A.; Niemeyer, R.; et al. Understanding spatiotemporal lags in ecosystem services to improve incentives. BioScience 2013, 63, 472–482. [Google Scholar] [CrossRef]
- Bennett, L.T.; Mele, P.M.; Annett, S.; Kasel, S. Examining links between soil management, soil health, and public benefits in agricultural landscapes: An Australian perspective. Agric. Ecosyst. Environ. 2010, 139, 1–12. [Google Scholar] [CrossRef]
- Motiejūnaitė, J.; Børja, I.; Ostonen, I.; Bakker, M.R.; Bjarnadottir, B.; Brunner, I.; Iršėnaitė, R.; Mrak, T.; Oddsdóttir, E.S.; Lehto, T. Cultural ecosystem services provided by the biodiversity of forest soils: A European review. Geoderma 2019, 343, 19–30. [Google Scholar] [CrossRef]
- de Mello, K.; Taniwaki, R.H.; de Paula, F.R.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Rodrigues, C.B.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar] [CrossRef]
- Ricketts, T.H. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv. Biol. 2004, 18, 1262–1271. [Google Scholar] [CrossRef]
- Avelino, J.; Romero-Gurdián, A.; Cruz-Cuellar, H.F.; Declerck, F.A. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol. Appl. 2012, 22, 584–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecce, S.A.; Pavlowsky, R.T. Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology 2014, 206, 122–132. [Google Scholar] [CrossRef]
- Kang, T.; Yang, S.; Bu, J.; Chen, J.; Gao, Y. Quantitative assessment for the dynamics of the main ecosystem services and their interactions in the northwestern arid area, China. Sustainability 2020, 12, 803. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Lechner, A.M.; Baumgartl, T. Mapping cumulative impacts of mining on sediment retention ecosystem service in an Australian mining region. Int. J. Sustain. Dev. World Ecol. 2018, 25, 69–80. [Google Scholar] [CrossRef]
- Geneletti, D.; Biasiolli, A.; Morrison-Saunders, A. Land take and the effectiveness of project screening in environmental impact assessment: Findings from an empirical study. Environ. Impact Assess. Rev. 2017, 67, 117–123. [Google Scholar] [CrossRef]
- Dobson, P.F.; Ghezzehei, T.A.; Cook, P.J.; Rodríguez-Pineda, J.A.; Villalba, L.; De la Garza, R. Heterogeneous seepage at the nopal I natural analogue site, Chihuahua, Mexico. Hydrogeol. J. 2012, 20, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Albert, S.; Kvennefors, C.; Jacob, K.; Kera, J.; Grinham, A. Environmental change in a modified catchment downstream of a Gold Mine, Solomon Islands. Environ. Pollut. 2017, 231, 942–953. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Power, M.E.; Comín, F.A.; Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLOS Biol. 2012, 10, e1001247. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Yang, Z.; Ma, X.; Ma, M.; Zhang, Z. The role of meteorological factors on mumps incidence among children in Guangzhou, Southern China. PLoS ONE 2020, 15, e0232273. [Google Scholar] [CrossRef]
- Sutherland, I.J.; Villamagna, A.M.; Dallaire, C.O.; Bennett, E.M.; Chin, A.T.M.; Yeung, A.C.Y.; Lamothe, K.A.; Tomscha, S.A.; Cormier, R. Undervalued and under pressure: A plea for greater attention toward regulating ecosystem services. Ecol. Indic. 2018, 94, 23–32. [Google Scholar] [CrossRef]
- Lopes, C.L.; Bastos, L.; Caetano, M.; Martins, I.; Santos, M.M.; Iglesias, I. Development of physical modelling tools in support of risk scenarios: A new framework focused on deep-sea mining. Sci. Total Environ. 2019, 650, 2294–2306. [Google Scholar] [CrossRef] [PubMed]
- Alava, J.J.; Cisneros-Montemayor, A.M.; Sumaila, U.R.; Cheung, W.W.L. Projected amplification of food web bioaccumulation of Mehg and PCbs under climate change in the northeastern Pacific. Sci. Rep. 2018, 8, 13460. [Google Scholar] [CrossRef] [PubMed]
- Schartup, A.T.; Thackray, C.P.; Qureshi, A.; Dassuncao, C.; Gillespie, K.; Hanke, A.; Sunderland, E.M. Climate change and overfishing increase neurotoxicant in marine predators. Nature 2019, 572, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.A.; Wei, C.L.; Dunn, D.C.; Amon, D.J.; Ashford, O.S.; Cheung, W.W.L.; Colaço, A.; Dominguez-Carrió, C.; Escobar, E.G.; Harden-Davies, H.R.; et al. Climate change considerations are fundamental to management of deep-sea resource extraction. Glob. Change Biol. 2020, 26, 4664–4678. [Google Scholar] [CrossRef]
- Wen, X.; Théau, J. Assessment of ecosystem services in restoration programs in China: A systematic review. Ambio 2020, 49, 584–592. [Google Scholar] [CrossRef]
- Gu, L.P.; Kong, J.J.; Chen, K.; Guo, Y.Q. Monitoring soil biological properties during the restoration of a phosphate mine under different tree species and plantation types. Ecotoxicol. Environ. Saf. 2019, 180, 130–138. [Google Scholar] [CrossRef]
- Sherman, K. Adaptive management institutions at the regional level: The case of large marine ecosystems. Ocean. Coast. Manag. 2014, 90, 38–49. [Google Scholar] [CrossRef]
- Kinh Bac, D.; Thuy, N.T.; Huu Hao, N.; Burkhard, B.; Müller, F.; Dang, V.B.; Nguyen, H.; Ngo, V.L.; Pham, T.P.N. Integrated methods and scenarios for assessment of sand dunes ecosystem services. J. Environ. Manag. 2021, 289, 112485. [Google Scholar]
- Li, S.; Wang, J.; Zhang, M.; Tang, Q. Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020. Resour. Policy 2021, 74, 102331. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.E.; McAlpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 2019, 48, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, Y.; Xiao, W.; Yellishetty, M.; Yang, D. Identifying ecosystem service bundles and the spatiotemporal characteristics of trade-offs and synergies in coal mining areas with a high groundwater table. Sci. Total Environ. 2022, 807, 151036. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.B.; Dai, G.S.; Ulgiati, S.; Na, R.; Zhang, X.; Kang, M.; Wang, X. On the relationship between economic development, environmental integrity and well-being: The point of view of herdsmen in Northern China grassland. PLoS ONE 2015, 10, e0134786. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, J.; Wu, Y.; Yin, S.; Yang, Z.; Hu, Z. Quantitative evaluation of ecological cumulative effect in mining area using a pixel-based time series model of ecosystem service value. Ecol. Indic. 2021, 120, 106873. [Google Scholar] [CrossRef]
- Damptey, F.G.; de la Riva, E.G.; Birkhofer, K. Trade-offs and synergies between food and fodder production and other ecosystem services in an actively restored forest, natural forest and an agroforestry system in Ghana. Front. For. Glob. Change 2021, 4, 630959. [Google Scholar] [CrossRef]
- Oliveras, I.; Malhi, Y. Many shades of green: The dynamic tropical forest-savannah transition zones. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150308. [Google Scholar] [CrossRef] [Green Version]
- Bovolo, C.I.; Wagner, T.; Parkin, G.; Hein-Griggs, D.; Pereira, R.; Jones, R. The guiana shield rainforests-overlooked guardians of South American climate. Environ. Res. Lett. 2018, 13, 12. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Y.; Yan, P.; Lu, H.; Yang, L.; Xia, J. Spatial-temporal variation and nonlinear prediction of environmental footprints and comprehensive environmental pressure in urban agglomerations. J. Clean. Prod. 2022, 351, 131556. [Google Scholar] [CrossRef]
- Li, X.; Xiao, L.; Tian, C.; Zhu, B.; Chevallier, J. Impacts of the ecological footprint on sustainable development: Evidence from China. J. Clean. Prod. 2022, 352, 131472. [Google Scholar] [CrossRef]
Search Terms | Synonyms |
---|---|
Mining AND Ecosystem service | Quarry Cultural service; provisioning service; regulating service; supporting service |
Restoration AND Ecosystem service AND Mine | Ecological restoration; phytoremediation; reclamation; rehabilitation; revegetation Cultural service; provisioning service; regulating service; supporting service |
Management AND Ecosystem service AND Mine | Supporting service; cultural service; provisioning service; regulating service |
Adjusted Standardized Residuals (ASRs) | |||||
---|---|---|---|---|---|
Indicator | Positive | Mixed | Negative | Pearson Chi-Square | Contingency Coefficient |
Mining | −13.5 | −4.3 | 15.8 | 433.739 *** | 0.609 *** |
Restoration | 16.2 | −2.6 | −14.4 | ||
Mining and Restoration | −3.5 | 13.0 | −4.0 |
Research Methodology | ||||||||
---|---|---|---|---|---|---|---|---|
Temporal Scale | Spatial Scale | Expert Opinion | Empirical | Mixed | Remote Sensing | Simulation | Questionnaire | Total |
Short term | Stand | 0 | 33 | 2 | 0 | 3 | 4 | 42 |
Patch | 0 | 6 | 0 | 1 | 0 | 0 | 7 | |
Landscape | 2 | 11 | 3 | 0 | 2 | 2 | 20 | |
Region | 0 | 1 | 3 | 1 | 2 | 0 | 7 | |
Mid term | Stand | 0 | 27 | 0 | 1 | 1 | 0 | 29 |
Patch | 0 | 7 | 1 | 0 | 1 | 1 | 10 | |
Landscape | 13 | 9 | 13 | 38 | 19 | 8 | 100 | |
Region | 3 | 3 | 16 | 34 | 28 | 0 | 84 | |
Long term | Landscape | 4 | 0 | 1 | 3 | 0 | 0 | 8 |
Region | 2 | 0 | 0 | 0 | 3 | 0 | 5 | |
Total | 24 | 97 | 39 | 78 | 59 | 15 | 312 |
Adjusted Standardized Residuals (ASRs) | |||||
---|---|---|---|---|---|
Disturbance | ESs-Short | ESs-Mid | ESs-Long | p | Kendall’s Tau-c |
Short term | 12.9◆ | −11.6◆ | −1.5 | 0.000 | 0.39475468 *** |
Mid term | −6.3◆ | 7.6◆ | −3.6 | ||
Long term | −1.9 | 2.8 | −2.4 | ||
Very long term | −2.2 | −3.8◆ | 13.4◆ |
Adjusted Standardized Residuals (ASRs) | ||||||
---|---|---|---|---|---|---|
Disturbance | ESs-Stand | ESs-Patch | ESs-Landscape | ESs-Region | p | Kendall’s Tau-b |
Stand | 14.4◆ | −1.9 | −6.5◆ | −5.2 | 0.000 | 0.914621497 *** |
Patch | −0.4 | 13.8◆ | −3.0 | −3.2 | ||
Landscape | −4.7 | −3.0 | 15.1◆ | −10.4◆ | ||
Region | −6.2 | −2.8 | −9.6◆ | 17.3◆ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, L.; Li, J.; Zhou, Q.; Ji, Y.; Lai, W.; Long, C. Spatiotemporal Variability of Human Disturbance Impacts on Ecosystem Services in Mining Areas. Sustainability 2022, 14, 7547. https://doi.org/10.3390/su14137547
Liu S, Liu L, Li J, Zhou Q, Ji Y, Lai W, Long C. Spatiotemporal Variability of Human Disturbance Impacts on Ecosystem Services in Mining Areas. Sustainability. 2022; 14(13):7547. https://doi.org/10.3390/su14137547
Chicago/Turabian StyleLiu, Shaobo, Li Liu, Jiang Li, Qingping Zhou, Yifeng Ji, Wenbo Lai, and Cui Long. 2022. "Spatiotemporal Variability of Human Disturbance Impacts on Ecosystem Services in Mining Areas" Sustainability 14, no. 13: 7547. https://doi.org/10.3390/su14137547
APA StyleLiu, S., Liu, L., Li, J., Zhou, Q., Ji, Y., Lai, W., & Long, C. (2022). Spatiotemporal Variability of Human Disturbance Impacts on Ecosystem Services in Mining Areas. Sustainability, 14(13), 7547. https://doi.org/10.3390/su14137547