Agroforestry Contributions to Urban River Rehabilitation
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. What Are the Main Problems of Water Bodies and Rivers in Cities?
- Water availability. According to the United Nations [43], one in three people do not have access to safe drinking water, and 60% of people lack access to safely managed sanitation facilities. In cities in Africa, water availability decreases as we move away from city centers; in other regions, such as Asia, cities have expanded over areas of importance for water access [44].
- Water body pollution by direct and diffuse sources [45,46]. Pollutants discharged into water bodies in urban areas represent up to 80% of wastewater [46]. Every day, almost 1000 children die from preventable diarrheal diseases related to water and sanitation. These waters also cause diseases such as cholera and schistosomiasis [47].
- Loss of habitat and biodiversity in riparian and aquatic environments [48]. Urban development and channelization of rivers have led to the reduction of riparian vegetation, which affects the water cycle by reducing groundwater recharge, impacting water availability and soil stability (subsidence) [3,11]. Loss of infiltration into groundwater decreases storage, increasing runoff and the speed of stormwater discharges. It also increases stream erosion, flooding, and the concentration and number of pollutants in stormwater [3,49,50].
- Loss of the natural pattern of hydromorphology and connectivity of the river due to hydraulic maneuvers [3,49,50,51]. The loss of wild river vegetation is one of the impacts of urbanization on river hydromorphology [52]. The construction of impermeable surfaces changes the hydrology of the basin, the river flow, and sediment mechanisms, as well as the movement of organisms, which restricts the dynamics of the rivers [53,54,55]. Hydraulic maneuvers to improve navigation or prevent flooding have also modified the connection of rivers with cities and their citizens [14,17,52,53,55,56].
- Floods [14,56,57,58,59] Flooding in urban areas is caused mainly by a reduction in the infiltration capacity of soils in urban areas [14] due to the construction of impervious surfaces [53] and the consequent increase in the amount of runoff [34,35], as well as deforestation and land-use changes upstream [60]. Approximately 70% of all deaths related to natural disasters in 2018 came from water-related disasters such as floods [43]. In 2050, the number of people at risk of flooding will increase to 1.6 billion in cities [58].
- Loss of water bodies and green areas in cities [61] and the degradation of public and recreational spaces connected to water bodies (waterscapes) [41,61,62]. In most of the world’s cities, the public open spaces or urban green areas that are available to the general population are small and highly visited, evidencing a significant need for open (green) spaces [61,63]. However, concerns such as litter, pollution, water and river flow safety, and insecurity (crime) influence people’s perception of urban rivers. They can be determinant in the acceptance of river rehabilitation projects [41,64] and impact how people access and use these spaces.
- Land subsidence [65] is becoming a common problem in many cities worldwide [66,67,68]. It is “a gradual settling or sudden sinking of the Earth’s surface due to removal or displacement of subsurface earth materials,” [65] with underground water extraction being one of the leading causes. In addition to the damage to buildings and constructed capital, one of the most pressing problems is the compaction of aquifers to store water [69] which impacts urban water availability.
- Marginalized and poverty-stricken areas along rivers [64]. Riverbanks are diverse areas where we can find high real estate value as well as places of great marginality and abandonment. Certain spatial conditions may be a consequence of the lack of government attention to these marginalized areas [64]. These conditions affect access to and use of these spaces and their connection to other areas of social and ecological importance in the cities.
- Low potential for food production in connection with urban water bodies [70,71]. Farmers use approximately 70% of all water extracted from rivers, lakes, and aquifers for irrigation [43]. Thebo et al. [71] found that 60% of irrigated cropland and 35% of rain-fed cropland are within a 20 km radius of an urban area globally. However, food production in urban areas poses health risks due to high contamination levels, which has led to a ban on food production in cities such as Sydney [46,72]. Regardless, agricultural practices are typical along riverbanks and floodplains in towns worldwide [72,73,74,75]. See Figure 2 for a representation of the problems described and the processes they impact.
3.2. Experiences in the Rehabilitation of Urban Rivers
3.2.1. Improve Water Quality, Access, and Availability
3.2.2. Restore River Hydromorphology and Connectivity
3.2.3. Restore Riparian and Aquatic Habitats: Flora, Fauna, and Microorganisms
3.2.4. Create Local River Cultures and Social Cohesion
3.2.5. Guarantee Food Production
3.2.6. Impact on Public Policies
3.2.7. Rehabilitate Local Economies and Integrate the Urban Landscape
3.2.8. Create Recreational Spaces and Contribute to Physical and Mental Health
4. Conclusions: The Contributions of Agroforestry to Urban River Rehabilitation Experiences
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opperman, J.; Orr, S.; Baleta, H.; Garrick, D.; Goichot, M.; McCoy, A.; Morgan, A.; Turley, L.; Vermeulen, A. Valuing Rivers: How the Diverse Benefits of Healthy Rivers Underpin Economies. WWF. 2018. Available online: https://www.unwater.org/valuing-rivers-how-the-diverse-benefits-of-rivers-underpin-economies/#:~:text=Traditionally%2C%20rivers%20have%20been%20valued,of%20the%20water%20they%20carry (accessed on 17 June 2022).
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Sys. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Michel, S.; Graizbord, C. Los ríos Urbanos de Tecate y Tijuana: Estrategias para Ciudades Sustentables. Institute for Regional Studies of the Californias. 1997. Available online: https://cemdi.org.mx/docs/library/spa_URIV_SPA.PDF (accessed on 17 June 2022).
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. North Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- González Reynoso, A.E.; Hernández, M.L.; Perló Cohen, M.; Zamora Sáens, I. Rescate de Ríos Urbanos: Propuestas Conceptuales y Metodológicas para la Restauración y Rehabilitación de Ríos; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2010. [Google Scholar]
- Baldauf, C. Participatory Biodiversity Conservation: Concepts, Experiences, and Perspectives; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Vieira, D.; Holl, K.; Peneireiro, F. Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor. Ecol. 2009, 17, 451–459. [Google Scholar] [CrossRef]
- Espinosa, P.; de Meulder, B. River Restoration/Rehabilitation as a New Urban Design Strategy: Learning to Re-see Urban Rivers. Int. J. Constr. Environ. 2016, 7, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Morsch, M.R.S.; Mascaró, J.J.; Pandolfo, A. Sustentabilidade urbana: Recuperação dos rios como um dos princípios da infraestrutura verde. Ambiente Construído 2017, 17, 305–321. [Google Scholar] [CrossRef]
- Findlay, S.; Taylor, M. Why rehabilitate urban river systems? Area 2006, 383, 312–325. [Google Scholar] [CrossRef]
- Jochen, S.; Olfert, A.; Tourbier, J.; Gersdorf, I.; Schwager, T. Existing Urban River Rehabilitation Schemes. European Commission. 2004. Available online: https://www.upv.es/contenidos/CAMUNISO/info/U0643718.pdf (accessed on 17 June 2022).
- Seager, J.; Abrahams, R.G. The Impact of Storm Sewage Discharges on the Ecology of a Small Urban River. Water Sci. Technol. 1990, 22, 163–171. [Google Scholar] [CrossRef]
- Kristiánová, K.; Gécová, K.; Putrová, E. Watercourse as cultural heritage in contemporary urbanism: Preservation approaches from Košice and Prešov in Slovakia. Archnet-IJAR 2015, 9, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Lundy, L.; Wade, R. Integrating sciences to sustain urban ecosystem services. Prog. Phys. Geogr. 2011, 35, 653–669. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Greulich, S.; Wantzen, K.M.; Pauleit, S. Societal drivers of European water governance: A comparison of urban river restoration practices in France and Germany. Water 2017, 9, 206. [Google Scholar] [CrossRef]
- Zalewski, M. Ecohydrology, biotechnology and engineering for cost efficiency in reaching the sustainability of biogeosphere. Ecohydrol. Hydrobiol. 2014, 14, 14–20. [Google Scholar] [CrossRef]
- Yu, K. Turenscape. 2021. Available online: https://www.turenscape.com/en/about/course.html (accessed on 1 June 2022).
- ONU Habitat. La Ciudad Esponja. 2018. Available online: https://onuhabitat.org.mx/index.php/la-ciudad-esponja (accessed on 1 June 2022).
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- WWAP. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; United Nations World Water Assessment Programme, UNESCO: Paris, France, 2018. [Google Scholar]
- Moreno-Calles, A.I.; Luna, V.J.G.; Casas-Fernández, A.; Toledo, V.M.; Ramos, M.V.; Fita, D.S.; Guerrero, A.C. Etnoagroforestería: El estudio de los sistemas agroforestales tradicionales de México. Etnobiología 2014, 12, 1–16. [Google Scholar]
- AFTA. What Is Agroforestry? 2014. Available online: www.aftaweb.org/about/what-is-agroforestry.html (accessed on 1 June 2022).
- Otto, B.; McCormick, K.; Leccese, M. Ecological Riverfront Design: Restoring Rivers, Connecting Communities; APA Planning Advisory Service Reports. 2004, Volume 518–519, pp. 1–170. Available online: https://www.planning.org/publications/report/9026851/ (accessed on 17 June 2022).
- Zingraff-Hamed, A.; George, F.N.; Lupp, G.; Pauleit, S. Effects of recreational use on restored urban floodplain vegetation in urban areas. Urban For. Urban Green. 2022, 67, 127444. [Google Scholar] [CrossRef]
- Moreno-Calles, A.I.; Toledo, V.M.; Casas, A. Los sistemas agrofororestales tradicionales de México: Una aproximación biocultural. Bot. Sci. 2013, 91, 375–398. [Google Scholar] [CrossRef]
- Casas, A.; Viveros, J.L.; Caballero, J. Etnobotánica Mixteca: Sociedad, Cultura y Recursos Naturales en la Montaña de Guerrero; Instituto Nacional Indigenista: Mexico City, Mexico, 1994. [Google Scholar]
- Alcorn, J.B. Indigenous Agroforestry Systems in the Latin American Tropics. In Agroecology and Small Farm Development; Hecht, S.B., Altieri, M., Eds.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Jose, S.; Gold, M.; Garrett, H. The Future of Temperate Agroforestry in the United States. In Agroforestry—The Future of Global Land Use, Advances in Agroforestry 9; Garrity, N.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Nair, P.; Gordon, A.; Mosqueda-Losada, M. Agroforestry. In Encyclopedia of Ecology (Ecological); Jorgensen, S.J., Fath, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Toledo, V.; Barrera-Bassols, N. La Memoria Biocultural: La Importancia Ecológica de las Sabidurías Tradicionales; Icaria Editorial: Barcelona, Spain, 2008. [Google Scholar]
- Arunachalam, A.; Balasubramanian, D.; Arunachalam, K.; Dagar, J.C.; Mohan Kumar, B. Wetland-Based Agroforestry Systems: Balancing Between Carbon Sink and Source. In Agroforestry Systems in India: Livelihood Security & Ecosystem Services; Dagar, J., Singh, A., Arunachalam, A., Eds.; Springer: New Delhi, India, 2014; pp. 333–343. [Google Scholar] [CrossRef]
- Haase, D.; Haase, D. Urban Wetlands and Riparian Forests as a Nature-Based Solution for Climate Change Adaptation in Cities and Their Surroundings. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer: Cham, Switzerland, 2017; pp. 111–121. [Google Scholar] [CrossRef] [Green Version]
- Mann, S. Urban agroforestry: Connecting agroecology, permaculture, urban forestry and urban agriculture with agroforestry. Forest 2014, 8385, 29–50. [Google Scholar]
- Tellström, S. Urban Agroforestry for Developing Ecosystem Services in Urban Forests. Bachelor’s Thesis, Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall, Sweden, 2014. [Google Scholar]
- Salbitano, F.; Sanesi, G. Urban forestry and agroforestry. In Developing Resilient Urban Food Systems; de Zeuuw, H., Drechsel, P., Eds.; Earthscan: London, UK, 2015. [Google Scholar]
- Fisk, S. A Preliminary Framework for Better Urban Agroforestry. Soil Science Society of America. 2021. Available online: https://www.soils.org/news/science-news/preliminary-framework-better-urban-agroforestry/ (accessed on 17 June 2022).
- Lovell, S.T. Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2010, 2, 2499–2522. [Google Scholar] [CrossRef] [Green Version]
- Wantzen, K.M.; Ballouche, A.; Longuet, I.; Bao, I.; Bocoum, H.; Cisse, L.; Chauhan, M.; Girard, P.; Gopal, B.; Kane, A.; et al. River Culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. Ecohydrol. Hydrobiol. 2016, 16, 7–18. [Google Scholar] [CrossRef]
- Rakhshandehroo, M.; Mohd Yusof, M.J.; Parva, M.; Nochian, A. The environmental benefits of urban open green spaces. Alam Cipta 2017, 10, 10–16. [Google Scholar]
- Che, Y.; Yang, K.; Chen, T.; Xu, Q. Assessing a riverfront rehabilitation project using the comprehensive index of public accessibility. Ecol. Eng. 2012, 40, 80–87. [Google Scholar] [CrossRef]
- Asakawa, S.; Yoshida, K.; Yabe, K. Perceptions of urban stream corridors within the greenway system of Sapporo, Japan. Landsc. Urban Plan. 2004, 68, 167–182. [Google Scholar] [CrossRef]
- Atlas-ti, Version 9.0; ATLAS.ti Scientific Software Development GmbH. Available online: https://atlasti.com/ (accessed on 17 June 2022).
- UN Sustainable Development Goals. 2018. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 10 April 2022).
- Rodríguez, A.; Ana, S. La nueva agenda urbana: Pensamiento mágico. Hábitat Y Soc. 2017, 10, 165–180. [Google Scholar] [CrossRef]
- Chen, C.; Meurk, C.D.; Cheng, H.; Lv, M.; Chen, R.; Wu, S. Incorporating local ecological knowledge into urban riparian restoration in a mountainous region of Southwest China. Urban For. Urban Green. 2016, 20, 140–151. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua. El saneamiento del río Apatlaco. De lo crítico a lo sustentable. Report. SEMARNAT. Mexico D.F. 2012. Available online: https://www.gob.mx/cms/uploads/attachment/file/121857/El_saneamiento_del_r_o_Apatlaco._De_lo_cr_tico_a_lo_sustentable.pdf (accessed on 17 June 2022).
- FAO. Ciudades más Verdes en América Latina y el Caribe, 1, no. 0. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Roma, Italy. 2014. Available online: http://www.fao.org/3/i3696s/i3696s.pdf (accessed on 17 June 2022).
- Lings of the Report of a joint FAO/WHO workshope Viol, I.; Mocq, J.; Julliard, R.; Kerbiriou, C. The contribution of motorway stormwater retention ponds to the biodiversity of aquatic macroinvertebrates. Biol. Conserv. 2009, 142, 3163–3171. [Google Scholar] [CrossRef]
- Dallman, S.; Piechota, T. Storm Water: Asset Not Liability; The Los Angeles and San Gabriel Rivers Watershed Council: Los Angeles, CA, USA, 2000. [Google Scholar]
- Michel, S. The Alamar River Corridor: An Urban River Park Oasis in Tijuana, Baja California, Mexico; Institute for Regional Studies of the Californias, San Diego State University: San Diego, CA, USA, 2001. [Google Scholar]
- Everard, M.; Moggridge, H.L. Rediscovering the value of urban rivers. Urban Ecosyst. 2012, 15, 293–314. [Google Scholar] [CrossRef]
- Solari, L.; van Oorschot, M.; Belletti, B.; Hendriks, D.; Rinaldi, M.; Vargas-Luna, A. Advances on Modelling Riparian Vegetation-Hydromorphology Interactions. River Res. Appl. 2016, 32, 164–178. [Google Scholar] [CrossRef]
- Gurnell, A.; Lee, M.; Souch, C. Urban Rivers: Hydrology, Geomorphology, Ecology and Opportunities for Change. Geogr. Compass 2007, 1, 1118–1137. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Gonzalez Del Tanago, M.; O’Hare, M.T.; Van Oorschot, M.; Belletti, B.; Buijse, T.; Garcia De Jalon, D.; Grabowski, R.; Hendriks, D.; Mountford, O.; et al. Influence of Natural Hydromorphological Dynamics on Biota and Ecosystem Function. Part 1 (Chapters 1 to 3 of 6). Deliverable 2.2 Part 1 of REFORM (REstoring Rivers FOR Effective Catchment Management), a Collaborative Project (Large-Scale Integrating Project) Funded by the European Commission within the 7th Framework Programme under Grant Agreement 282656; European Commission: Brussels, Belgium, 2015; 324p. [Google Scholar]
- Meyer, J.L.; Kaplan, L.A.; Newbold, J.D.; Strayer, D.L.; Woltemade, C.J.; Zedler, J.B.; Beilfuss, R.; Carpenter, Q.; Semlitsch, R.; Watzin, M.C.; et al. Where Rivers Are Born: The Scientific Imperative for Defending Small Streams and Wetlands. Available online: http://www.stroudcenter.org/about/pdfs/lk_meyer2003_defending_streams.pdf (accessed on 17 June 2022).
- Berndtsson, J. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Madlener, R.; Sunak, Y. Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management? Sustain. Cities Soc. 2011, 1, 45–53. [Google Scholar] [CrossRef]
- ONU. Informe del Relator Especial sobre los Derechos Humanos al Agua Potable y al Saneamiento Acerca de su Misión a Mongolia; Nota de la Secretaría, 39a sesión, 18 de julio de 2018. 2018. Available online: https://www.ohchr.org/es/documents/reports/report-special-rapporteur-human-rights-safe-drinking-water-and-sanitation-his-1 (accessed on 21 April 2022).
- Shi, P.J.; Yuan, Y.; Zheng, J.; Wang, J.A.; Ge, Y.; Qiu, G.Y. The effect of land use/cover change on surface runoff in Shenzhen region, China. Catena 2007, 69, 31–35. [Google Scholar] [CrossRef]
- Bunge, V.; Cotler, H.; Iura González, D.; Enríquez, C. Incorporación del enfoque de cuencas en los ordenamientos ecológicos. In Dimensiones Sociales en el Manejo de Cuencas; Burgos, A., Bocco, G., Sosa Ramírez, J., Eds.; Centro de Investigaciones en Geografía Ambiental (Morelia), Universidad Nacional Autónoma de México: Morelia, Mexico, 2015. [Google Scholar]
- Kondolf, G.M.; Pinto, P.J. The social connectivity of urban rivers. Geomorphology 2017, 277, 182–196. [Google Scholar] [CrossRef]
- Åberg, E.U.; Tapsell, S. Revisiting the River Skerne: The long-term social benefits of river rehabilitation. Landsc. Urban Plan. 2013, 113, 94–103. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Korsunsky, A. From vacant land to urban fallows: A permacultural approach to wasted land in cities and suburbs. J. Political Ecol. 2019, 26, 282–304. [Google Scholar] [CrossRef] [Green Version]
- US Geological Survey. Land Subsidence. Available online: https://www.usgs.gov/mission-areas/water-resources/science/land-subsidence#:~:text=BACKGROUND,drainage%20of%20organic%20soils (accessed on 12 April 2022).
- Osmanoğlu, B.; Dixon, T.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Kumar, H.; Syed, T.H.; Amelung, F.; Agrawal, R.; Venkatesh, A.S. Space-time evolution of land subsidence in the National Capital Region of India using ALOS-1 and Sentinel-1 SAR data: Evidence for groundwater overexploitation. J. Hydrol. 2022, 605, 127329. [Google Scholar] [CrossRef]
- Castellazzi, P.; Garfias, J.; Martel, R. Assessing the efficiency of mitigation measures to reduce groundwater depletion and related land subsidence in Querétaro (Central Mexico) from decadal InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102632. [Google Scholar] [CrossRef]
- Poreh, D.; Pirasteh, S.; Cabral-Cano, E. Assessing subsidence of Mexico City from InSAR and LandSat ETM+ with CGPS and SVM. Geoenvironmental Disasters 2021, 8, 7. [Google Scholar] [CrossRef]
- Rudge, S.; Staff, M.; Capon, A.; Paepke, O. Serum dioxin levels in Sydney Harbour commercial fishers and family members. Chemosphere 2008, 73, 1692–1698. [Google Scholar] [CrossRef]
- Thebo, A.; Drechsek, P.; Lambin, E. Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands. Env. Res. Lett. 2014, 9, 114002. [Google Scholar] [CrossRef]
- Balmer, K.; Gill, J.; Kaplinger, H.; Miller, J.; Peterson, M.; Rhoads, A.; Rosenbloom, P.; Wall, T. The Diggable City: Making Urban Agriculture a Planning Priority; Toulan School of Urban Studies and Planning, Portland State University: Portland, OR, USA, 2005. [Google Scholar]
- Oliveira, V.; Pinho, P.; Mendes Batista, L.; Patatas, T.; Claudia, M. Our Common Future in Urban Morphology; FEUP: Porto, Portugal, 2014. [Google Scholar]
- Boissière, T. Le jardinier et le citadin. Ethnologie d’un espace agricole urbain dans la vallée de l’Oronte en Syrie; Institut Francais du Proche-Orient: Damascus, Syria, 2005; 480p. [Google Scholar]
- Santos, P.; Pena-Corvillon, D. Urban black holes: The rural in the urban as liminal spaces from where to build a new city. In Our Common Future in Urban Morphology; Olivera, P., Ponho, P., Mendes Batista, L., Patatas, T., Eds.; FEUP: Porto, Portugal, 2014. [Google Scholar]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Programa Nacional Hídrico 2020–2024; Diario Oficial: Ciudad de México, Mexico, 2020; Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5609188&fecha=30/12/2020 (accessed on 17 June 2022).
- Jarosiewicz, P.; Jurczak, T.; Zalewski, M. Ecohydrology for sustainable urban water management. In Proceedings of the Second International Conference « Water, Megacities and Global Change », Online Pre-Conference, 7–11 December 2020; p. 11. [Google Scholar]
- Villa, P.M.; Martins, S.V.; Delgado Monsanto, L.; de Oliveira Neto, S.N.; Mota Cancio, N. La agroforestería como estrategia para la recuperación y conservación de reservas de carbono en bosques de la Amazonía. Bosque 2016, 36, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, S.; Gustafson, A.; Joelsson, A.; Pansar, J.; Stibe, L. Nitrogen Removal in Created Ponds. Ambio 1994, 23, 349–357. Available online: http://www.jstor.org/stable/4314235 (accessed on 16 June 2022).
- IOWA State University Water Gardens: Aquatic Plants. Available online: https://www.extension.iastate.edu/smallfarms/water-gardens-aquatic-plants (accessed on 29 April 2022).
- Landscape Performance Series. Glenstone. Available online: https://www.landscapeperformance.org/case-study-briefs/glenstone#/lessons-learned (accessed on 26 April 2022).
- Halaburka, B.J.; Lawrence, J.E.; Bischel, H.N.; Hsiao, J.; Plumlee, M.H.; Resh, V.H.; Luthy, R.G. Economic and ecological costs and benefits of streamflow augmentation using recycled water in a California coastal stream. Environ. Sci. Technol. 2013, 47, 10735–10743. [Google Scholar] [CrossRef] [PubMed]
- Leibowitz, S.G.; Wigington, P.J.; Schofield, K.A.; Alexander, L.C.; Vanderhoof, M.K.; Golden, H.E. Connectivity of streams and wetlands to downstream waters: An integrated systems framework. EPA J. Am. Water Resour. Assoc. 2018, 54, 298–322. [Google Scholar] [CrossRef]
- Castelli, G.; Foderi, C.; Guzman, B.H.; Ossoli, L.; Kempff, Y.; Bresci, E.; Salbitano, F. Planting Waterscapes: Green Infrastructures, Landscape and Hydrological Modeling for the Future of Santa Cruz de la Sierra, Bolivia. Forests 2017, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Naturally Resilient Communities. Santa Cruz Riverbank and Ecosystem Restoration, Pima County, Arizona. Available online: http://nrcsolutions.org/santa-cruz-riverbank-and-ecosystem-restoration-pima-county-arizona/ (accessed on 29 April 2022).
- Water, L.A. Strategies for Urban Acupuncture. Available online: https://www.waterla.org/strategies (accessed on 26 April 2022).
- Kim, H.; Jung, Y. Is Cheonggyecheon sustainable? A systematic literature review of a stream restoration in Seoul, South Korea. Sustain. Cities Soc. 2019, 45, 59. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Nassauer, J.I. Messy ecosystems, orderly frames. Landsc. J. 1995, 14, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Calles, A.; Casas, A.; Blancas, J.; Torres, I.; Masera, O.; Caballero, J.; Garcia-Barrios, L.; Pérez-Negrón, E.; Rangel-Landa, S. Agroforestry systems and biodiversity conservation in arid zones: The case of the Tehuacán Valley, Central México. Agrofor. Syst. 2010, 80, 315–331. [Google Scholar] [CrossRef]
- Lake, P.S.; Bond, N.; Reich, P. Linking ecological theory with stream restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Burmil, S.; Daniel, T.C.; Hetherington, J.D. Human values and perceptions of water in arid landscapes. Landsc. Urban Plan. 1999, 44, 99–109. [Google Scholar] [CrossRef]
- Cranz, G.; Boland, M. Defining the Sustainable Park: A Fifth Model for Urban Parks. Landsc. J. 2004, 23, 102–120. [Google Scholar] [CrossRef]
- Nassauer, J.I.; Wang, Z.; Dayrell, E. What will the neighbors think? Cultural norms and ecological design. Landsc. Urban Plan. 2009, 92, 282–292. [Google Scholar] [CrossRef]
- Bejarano, P. Proyecto Recuperación Integral de las Quebradas de Chapinero. Historia ambiental y recuperación integral de los terrritorios asociados a quebradas y ríos en Bogotá (caso Chapinero). Secretaría Distrital de Ambiente, Alcaldía Local de Chapinero y Conservación Internacional Colombia. Bogota. Available online: https://www.ambienteysociedad.org.co/wp-content/uploads/2014/08/LIBRO-QUEBRADAS-DE-CHAPINERO.pdf (accessed on 17 June 2022).
- Water, L.A. Guides & Videos. Available online: https://www.waterla.org/resources/guides-and-videos (accessed on 29 April 2022).
- Calascape. Bee’s Bliss Sage, Salvia x “Bee’s Bliss”. Available online: https://calscape.org/loc-California/’bee’s%20Bliss’%20Sage%20(Salvia%20x%20′Bee’s%20Bliss’)?newsearch=1 (accessed on 29 April 2022).
- Nowak, D.J. Institutionalizing urban forestry as a “biotechnology” to improve environmental quality. Urban For. Urban Green. 2006, 5, 93–100. [Google Scholar] [CrossRef]
- Konijnendijk, C.; Sadio, S.; Randrup, T.B.; Schipperijn, J. Urban and Peri-Urban Forestry for Sustainable Urban Development. 2003. Available online: http://www.fao.org/3/XII/0976-B5.htm (accessed on 2 June 2022).
- Clark, K.H.; Nicholas, K.A. Introducing urban food forestry: A multifunctional approach to increase food security and provide ecosystem services. Landsc. Ecol. 2013, 28, 1649–1669. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Fruit and Vegetables for Health: Report of the Joint FAO/WHO Workshop on Fruit and Vegetables for Health, 1–3 September 2004, Kobe, Japan; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Brown, K.H.; Jameton, A.L. Public Health Implications of Urban Agriculture. J. Public Health Policy 2000, 21, 20–39. [Google Scholar] [CrossRef]
- Park, H.; Kramer, M.; Rhemtulla, J.M.; Konijnendijk, C.C. Urban food systems that involve trees in Northern America and Europe: A scoping review. Urban For. Urban Green. 2019, 45, 126360. [Google Scholar] [CrossRef]
- Introduction to the EU Water Framework Directive. Available online: https://ec.europa.eu/environment/water/water-framework/info/intro_en.htm (accessed on 2 June 2022).
- UWFP Urban Waters Federal Partnership 2021 Partner Recommitment. 2021. Available online: https://www.epa.gov/urbanwaterspartners/framework-future-urban-waters-federal-partnership-2021-partner-recommitment (accessed on 16 June 2022).
- UWFP The Urban Waters Federal Partnership. Vision, Mission and Principles. Available online: https://www.epa.gov/sites/default/files/2018-03/documents/uw_vision_mission_principles_11-28-17_-_new_third_page_only.pdf (accessed on 16 June 2022).
- Poudevigne, I.; Alard, D.; Leuven, R.S.E.W.; Nienhuis, P.H. A systems approach to river restoration: A case study in the lower Seine valley, France. River Res. Appl. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- SER. Mexico: Wetland Restoration at Three Sites in the Colorado River Delta. 2022. Available online: https://www.ser-rrc.org/project/mexico-wetland-restoration-at-three-sites-in-the-colorado-river-delta/ (accessed on 17 June 2022).
- Riosalitre.org. Mesa Interlocal de la cuenca del río Salitre. Available online: http://www.riosalitre.org/index.html (accessed on 11 April 2022).
- Konijnendijk, C.; Gauthier, M.; van Veenhuizen, R. Agricultura Urbana. Revista, A.U. December 2005. Available online: www.ruaf.org (accessed on 3 June 2022).
- Urban Nature Atlas. Available online: https://naturvation.eu/atlas.html (accessed on 2 June 2022).
- Marques, E.; Kállay, T. Impacts of Green Spaces on Physical and Mental Health. URBACT 2020 Thematic Report No. 1. Available online: https://urbact.eu/sites/default/files/media/thematic_report_no1_impacts_on_health_healthgreenspace_2910.pdf (accessed on 2 June 2022).
- Wortzel, J.D.; Wiebe, D.J.; DiDomenico, G.E.; Visoki, E.; South, E.; Tam, V.; Greenberg, D.M.; Brown, L.A.; Gur, R.C.; Gur, R.E.; et al. Association Between Urban Greenspace and Mental Wellbeing During the COVID-19 Pandemic in a U S Cohort. Front. Sustain. Cities 2021, 3, 686159. [Google Scholar] [CrossRef]
- Reid, C.E.; Rieves, E.S.; Carlson, K. Perceptions of green space usage, abundance, and quality of green space were associated with better mental health during the COVID-19 pandemic among residents of Denver. PLoS ONE 2022, 17, e0263779. [Google Scholar] [CrossRef]
- Petts, J. Learning about learning: Lessons from public engagement and deliberation on urban river restoration. Geogr. J. 2007, 173, 300–311. [Google Scholar] [CrossRef]
- Steinwender, A.; Gundacker, C.; Wittmann, K.J. Objective versus subjective assessments of environmental quality of standing and running waters in a large city. Landsc. Urban Plan. 2008, 84, 116–126. [Google Scholar] [CrossRef]
- Völker, S.; Kistemann, T. International Journal of Hygiene and The impact of blue space on human health and well-being—Salutogenetic health effects of inland surface waters: A review. Int. J. Hyg. Environ. Health 2011, 214, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Lowenhaupt Tsing, A. The Mushroom at the End of the World: On the Possibility of Life in Capitalist Ruins; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- American Trails. Study Cites Health Benefits of Urban River Parkways. 2014. Available online: https://www.americantrails.org/resources/study-cites-health-benefits-of-urban-river-parkways (accessed on 16 June 2022).
- Anastasios, I.Z.; Panagiotis, A.M.; Savvina, G.P. Groundwater and Soil Pollution: Bioremediation. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 369–381. [Google Scholar]
- Bedford Conservation Commission. Passive Recreation. Available online: https://www.bedfordma.gov/conservation-commission/pages/passive-recreation (accessed on 16 June 2022).
- Bertule, M.; Lloyd, J.; Korsgaard, L.; Dalton, J.; Welling, R.; Barchiesi, S.; Smith, M. Green Infrastructure. In Guide for Water Management: Ecosystem-Based Management Approaches for Water-Related Infrastructure Projects; United Nations Environment Programme: Nairobi, Kenya; DHI: Hørsholm, Denmark; IUCN: Gland, Switzerland; The Nature Conservancy: Arlington County, VA, USA, 2014. [Google Scholar]
- Bornette, G.; Amoros, C.; Lamouroux, N. Aquatic plant diversity in riverine wetlands: The role of connectivity. Freshw. Biol. 1998, 39, 267–283. [Google Scholar] [CrossRef]
- Carbon Brief. Guest post: Adapting to climate change through ‘managed retreat’. 2017. Available online: https://www.carbonbrief.org/guest-post-adapting-climate-change-through-managed-retreat (accessed on 16 June 2022).
- CIWEM. Policy Position Statement. 2005. Available online: www.ciwem.org (accessed on 16 June 2022).
- Davis, L. A Handbook of Constructed Wetlands; USDA-Natural Resources Conservation Service and the US Environmental Protection Agency-Region III; Pennsylvania Department of Environmental Resources: Harrisburg, PA, USA, 1995. [Google Scholar]
- European Environment Agency. Ecological Corridor. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/ecological-corridor (accessed on 18 April 2022).
- Ensign, S.H.; Doyle, M.W. Nutrient Spiraling in Streams and River Networks. J. Geophys. Res. Biogeosci. 2006, 111. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JG000114 (accessed on 16 June 2022).
- EPA. Composting at Home. Available online: https://www.epa.gov/recycle/composting-home (accessed on 21 April 2022).
- EPA. Stormwater Retrofit Techniques for Restoring Urban Drainages in Massachusetts and New Hampshire. Available online: https://www3.epa.gov/region1/npdes/stormwater/assets/pdfs/BMPRetrofit.pdf (accessed on 21 April 2022).
- EPA Ohio. What Is a Storm Water Retrofit? Available online: https://owl.cwp.org/mdocs-posts/urban-subwatershed-restoration-manual-series-manual-3/ (accessed on 21 April 2022).
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- EU. Natural Water Retention Measures, Floodplain Restoration, and Management. Available online: https://nwrm.eu/measure/floodplain-restoration-and-management (accessed on 16 June 2022).
- Eubanks, E.; Meadows, D. Soil Bioengineering Techniques. In A Soil Bioengineering Guide for Stream-Bank and Lakeshore Stabilization; FS-683P; U.S. Department of Agriculture, Forest Service, National Technology and Development Program: San Dimas, CA, USA, 2002; Chapter 5. [Google Scholar]
- FAO. Fish Propagation. Available online: https://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x6709e/x6709e09.htm (accessed on 18 April 2022).
- FAO; WHO. Fruit and vegetables for health. In Proceedings of the Report of a joint FAO/WHO workshop, Kobe, Japan, 1–3 September 2004. [Google Scholar]
- Fullerton, A.H.; Burnett, K.M.; Steel, E.A.; Flitcroft, R.L.; Pess, G.R.; Feist, B.E.; Sanderson, B.L. Hydrological Connectivity for Riverine Fish: Measurement Chal-lenges and Research Opportunities. Freshw. Biol. 2010, 55, 2215–2237. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071435/ (accessed on 16 June 2022). [CrossRef] [Green Version]
- Galloway, B.T.; Muhlfeld, C.C.; Guy, C.S.; Downs, C.C.; Fredenberg, W.A. A framework for assessing the feasibility of native fish conservation translocations: Applications to threatened. Bull Trout. N. Am. J. Fish. Manag. 2016, 36, 754–768. [Google Scholar] [CrossRef] [Green Version]
- Garcés-Prettel, M.E.; Jaramillo-Echeverri, L.G. Avenida ronda del Sinú: Entre espacios y significados. Rev. Luna Azul 2017, 44, 247–264. Available online: https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/3836 (accessed on 16 June 2022). [CrossRef]
- Plant and Manage Hedgerows. Available online: https://www.gov.uk/guidance/plant-and-manage-hedgerows (accessed on 21 April 2022).
- Groffman, P.M.; Bain, D.J.; Band, L.E.; Belt, K.T.; Brush, G.S.; Grove, J.M.; Pouyat, R.V.; Yesilonis, I.C.; Zipperer, W.C. Down by the riverside: Urban riparian ecology. Front. Ecol. Environ. 2003, 1, 315–321. [Google Scholar] [CrossRef]
- Hammes, F.; Velten, S.; Egli, T.; Juhna, T. Biotreatment of Drinking Water. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 517–530. [Google Scholar]
- Hino, M.; Field, C.B.; Mach, K.J. Managed retreat as a response to natural hazard risk. Nat. Clim. Chang. 2017, 7, 364–370. [Google Scholar] [CrossRef]
- Housatonic Valley Association. New culvert on Churchill Brook helps fish and reduces flood risks-Housatonic Valley Association. 2018. Available online: https://hvatoday.org/new-culvert-on-churchill-brook-helps-fish-and-reduces-flood-risks/ (accessed on 16 June 2022).
- Lamothe, K.A.; Drake, D.A.R.; Pitcher, T.E.; Broome, J.E.; Dextrase, A.J.; Gillespie, A.; Mandrak, N.E.; Poesch, M.S.; Reid, S.M.; Vachon, N. Reintroduction of fishes in Canada: A review of research progress for SARA-listed species. Environ. Rev. 2019, 27, 575–599. [Google Scholar] [CrossRef]
- Aziz, H.A.; Rasidi, M.H. The role of green corridors for wildlife conservation in urban landscape: A literature review. IOP Conf. Series: Earth Environ. Sci. 2014, 18, 12093. [Google Scholar] [CrossRef] [Green Version]
- Klonner, C.; Usón, T.J.; Aeschbach, N.; Höfle, B. Participatory Mapping and Visualization of Local Knowledge: An Example from Eberbach, Germany. Int. J. Disaster Risk Sci. 2020, 12, 56–71. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Ricard, R.M.; Kenney, A.; Randrup, T.B. Defining urban forestry–A comparative perspective of North America and Europe. Urban For. Urban Green. 2006, 4, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Konijnendijk, C.C. A decade of urban forestry in Europe. For. Policy Econ. 2003, 5, 173–186. [Google Scholar] [CrossRef]
- Landscape Performance Series. Cheonggyecheon Stream Restoration Project. Available online: https://www.landscapeperformance.org/case-study-briefs/cheonggyecheon-stream-restoration#/sustainable-features (accessed on 18 April 2022).
- Local Government Association. Sustainable Drainage Systems. Available online: https://www.local.gov.uk/topics/severe-weather/flooding/sustainable-drainage-systems (accessed on 20 April 2022).
- Loos, J.; Shader, E. Reconnecting Rivers to Floodplains; American Rivers: Wasington, DC, USA, 2016; Available online: https://www.americanrivers.org/wp-content/uploads/2016/06/ReconnectingFloodplains_WP_Final.pdf (accessed on 16 June 2022).
- Maunder, M. Plant reintroduction: An overview. Biodivers. Conserv. 1992, 1, 51–61. [Google Scholar] [CrossRef]
- Merriam-Webster Dictionary. Desilt. Available online: https://www.merriam-webster.com/dictionary/desilt (accessed on 18 April 2022).
- Merriam-Webster Dictionary. Reservoir. Available online: https://www.merriam-webster.com/dictionary/reservoir (accessed on 18 April 2022).
- Merriam Webster Dictionary. Piers. Available online: https://www.merriam-webster.com/dictionary/piers (accessed on 18 April 2022).
- Merriam Webster Dictionary. Beaches. Available online: https://www.merriam-webster.com/dictionary/beach (accessed on 18 April 2022).
- Meyer, J.L.; Strayer, D.L.; Wallace, J.B.; Eggert, S.L.; Helfman, G.S.; Leonard, N.E. The Contribution of Headwater Streams to Biodiversity in River Networks1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.W.; Hauer, R.J.; Werner, L.P. Urban Forestry: Planning and Managing Urban Greenspaces; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- Monclús Fraga, F.J. Ríos, ciudades, parques fluviales, corredores verdes. In Ríos y Ciudades. Aportaciones para la Recuperación de los Ríos y Riberas de Zaragoza, 2181st ed.; de la Cal, P., Pellicer, F., Eds.; Fernando el Católico: Málaga, Spain, 2002; p. 404. [Google Scholar]
- National Park Service. Available online: https://www.nps.gov/articles/studying-salt-marsh-change.htm (accessed on 18 April 2022).
- National Wildlife Federation (The). Invasive Species. Available online: https://www.nwf.org/Educational-Resources/Wildlife-Guide/Threats-to-Wildlife/Invasive-Species (accessed on 16 June 2022).
- Natural Resilient Communities. Bioswales. Available online: http://nrcsolutions.org/bioswales/ (accessed on 16 June 2022).
- Naturally Resilient Communities. Green Parking Lots. Available online: http://nrcsolutions.org/solution-4/ (accessed on 16 June 2022).
- Natural Water Retention Measures. Re-meandering. Available online: http://nwrm.eu/measure/re-meandering (accessed on 16 June 2022).
- Newbold, J.D.; Elwood, J.W.; O’Neill, R.V.; Van Winkle, W. Measuring Nutrient Spiralling in Streams. Can. J. Fish. Aquat. Sci. 1981, 38, 860–863. [Google Scholar] [CrossRef]
- NWRM. Removal of Dams and Other Longitudinal Barriers. Available online: http://nwrm.eu/measure/removal-dams-and-other-longitudinal-barriers#:~:text=Removing%20them%20consists%20in%20destroying,as%20sedimentary%20and%20ecological%20continuity.fromhttp://www.nwrm.eu (accessed on 16 June 2022).
- NWRM. Individual NWRM Retention Ponds. Available online: http://nwrm.eu/sites/default/files/nwrm_ressources/u11_-_retention_ponds.pdf (accessed on 19 April 2022).
- NYC Parks, Reed’s Basket Willow Swamp Park. Available online: https://www.nycgovparks.org/parks/reeds-basket-willow-swamp-park/ (accessed on 16 June 2022).
- Otto, B.; Mccormick, K.; Leccese, M. Ecological Riverfront Design: American Planning Association Planning Advisory Service Report Number 518–519 Restoring Rivers; Connecting Communities: Helmsdale, UK, 2004. [Google Scholar]
- Peer Experiences and Reflective Learning (PEARL). Urban Solid Waste Management. 2015. Available online: https://smartnet.niua.org/sites/default/files/resources/NIUA-PEARL%20Global%20Good%20Practices%20SWM.pdf (accessed on 16 June 2022).
- REFORM. Restoring Rivers for Effective Catchment Management. Remove Barrier. Available online: https://wiki.reformrivers.eu/index.php/Remove_barrier (accessed on 16 June 2022).
- Richardson, M.; Soloviev, M.; Toscano, A.; Hofman, J. The Urban River Syndrome: Achieving Sustainability Against a Backdrop of Accelerating Change. Int. J. Environ. Res. Public Health 2021, 18, 6406. [Google Scholar] [CrossRef]
- Riis, T.; Kelly-Quinn, M.; Aguiar, F.C.; Manolaki, P.; Bruno, D.; Bejarano, M.D.; Clerici, N.; Fernandes, M.R.; Franco, J.C.; Pettit, N.; et al. Global Overview of Ecosystem Services Provided by Riparian Vegetation. BioScience 2020, 70, 501–514. [Google Scholar] [CrossRef]
- Rosgen, D.L. Cross-Vane, W-weir, and J-hook vane Structures (Updated 2006) Description, Design, and Application for Stream Stabilization and River Restoration. 2006. Available online: www.wildlandhydrology.com (accessed on 16 June 2022).
- Schueler, T. Urban Stormwater Retrofit Practices; Manual 3. Small Watershed Restoration Manual Series; U.S. EPA. Center for Watershed Protection: Ellicott City, MD, USA, 2007. [Google Scholar]
- Scottish Environment Protection Agency (SEPA). Engineering in the Water Environment. Good Practice Guide. Riparian Vegetation Management. 2009. Available online: https://www.sepa.org.uk/media/151010/wat_sg_44.pdf (accessed on 18 April 2022).
- SICIREC. Ecological Corridors and bi Odiversity. Available online: http://www.sicirec.org/definitions/corridors (accessed on 20 April 2022).
- Steiger, J.; Tabacchi, E.; Dufour, S.; Corenblit, D.; Peiry, J.L. Hydrogeomorphic Processes Affecting Riparian Habitat within Alluvial Channel–Floodplain River Systems: A Review for the Temperate Zone. River Res. Appl. 2005, 21, 719–737. [Google Scholar] [CrossRef]
- Herzog, T.R. A cognitive analysis of preference for waterscapes. J. Environ. Psychol. 1985, 5, 225–241. [Google Scholar] [CrossRef]
- Trice, A. Daylighting Streams: Breathing Life into Urban Streams and Communities. Available online: https://www.americanrivers.org/conservation-resource/daylighting-streams-breathing-life-urban-streams-communities/ (accessed on 18 April 2022).
- Uggeldahl, K.C.; Olsen, S.B. Public preferences for co-benefits of riparian buffer strips in Denmark: An economic valuation study. J. Environ. Manag. 2019, 239, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Upper Midwest Water Science Center. Evaluating the Potential Benefits of Permeable Pavement on the Quantity and Quality of Stormwater Runoff. 2019. Available online: https://www.usgs.gov/centers/upper-midwest-water-science-center/science/evaluating-potential-benefits-permeable-pavement#:~:text=Permeable%20pavement%20is%20a%20porous,of%20pollutants%20and%20runoff%20volume (accessed on 16 June 2022).
- URBACT. Natural Playgrounds of Poznan. 2021. Available online: https://urbact.eu/natural-playgrounds-poznan (accessed on 16 June 2022).
- Velázquez, L.; Ventura-Ramos, E.; Revuelta-Acosta, J.D. Effectiveness of Gabions Dams on Sediment Retention: A Case Study. J. Environ. Sci. Eng. A 2016, 5, 516–521. [Google Scholar] [CrossRef]
- Victoria State Government, Sport and Recreation. Available online: https://sport.vic.gov.au/our-work/participation/active-recreation#:~:text=Active%20recreation%20is%20leisure%20time,living%2C%20active%20transport%20and%20sport (accessed on 16 June 2022).
- Yochum, S.E.; Reynolds, L.V. Guidance for Stream Restoration; Technical Note TN-102.5; U.S. Department of Agriculture Forest Service: Washington, DC, USA; U.S. Department of Interior Bureau of Land Management: Washington, DC, USA; Forest Service National Stream & Aquatic Ecology Center: Fort Collins, CO, USA, 2020. [Google Scholar]
- Wikipedia. Bike Path. Available online: https://en.wikipedia.org/wiki/Bike_path (accessed on 16 June 2022).
- Wikipedia. Botanical Garden. Available online: https://en.wikipedia.org/wiki/Botanical_garden (accessed on 16 June 2022).
- Wikipedia. Compost. Available online: https://en.wikipedia.org/wiki/Compost (accessed on 16 June 2022).
- Wikipedia. Public Toilet. Available online: https://en.wikipedia.org/wiki/Public_toilet (accessed on 16 June 2022).
- Wikipedia. Ronda del Sinú. Available online: https://es.wikipedia.org/wiki/Ronda_del_Sin%C3%BA (accessed on 16 June 2022).
- Wikipedia. Sustainable Drainage System. Available online: https://en.wikipedia.org/w/index.php?title=Sustainable_drainage_system&oldid=1083174153 (accessed on 16 June 2022).
- Winnipeg. Water and Waste Department. Ultraviolet Light Disinfection. Available online: https://winnipeg.ca/waterandwaste/water/treatment/uv.stm (accessed on 16 June 2022).
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Zubala, T.; Patro, M. Rainwater Reservoirs in the Urban Landscape-Case Study. J. Ecol. Eng. 2015, 16, 128–132. [Google Scholar] [CrossRef] [Green Version]
Specific Processes and Associated Concepts | Actions (Practices) |
---|---|
Improve water quality, access, and availability | Aquatic garden Biofiltration “Retrofits” (sidewalk drains to capture rainwater) Construction of marginal drainage for domestic wastewaterConstruction of reservoirs Installation of ultraviolet light treatment plants Permeable pavement Rainwater harvesting Solid waste cleanup Sustainable urban drainage systems |
Restore river hydromorphology and connectivity | “Daylighting” streams and rivers Desilting Floodplain restoration Gabion dams Green areas for water management Hedgerow planting and transplanting J-stone paddles Logs to stabilize banks Reconstruction of meanders Re-establishment of connections between streams Removal of concrete barriers and dams Retention ponds Rocks as bridges Tree planting and transplanting Wetlands |
Restore riparian and aquatic habitats and flora, fauna, and microorganisms | Bioremediation Construction of fish mating areas Control of invasive species Reintroduction of fish species Reintroduction of native plants Row planting with pioneer species Soil bioengineering Sustainable grasslands planted with native species |
Create river cultures | Green riverside areas Pumps to establish a constant flow Shrub planting Planting of grasses Participation of neighbors in planting and caring for plants Food gardens All the actions related to “Generate recreational spaces and integrate the urban landscape” below Compost Educational vegetable garden Environmental education and river cleanup campaigns Blue areas Botanical garden Environmental interpretation signs Ecological zone for environmental education Nature education sites |
Guarantee food production | Food gardens Urban Food Forestry |
Impact public policies | Fines and incentives on river use across a region Multisector water parliament at a regional level Organization of forums on urban rivers Regulatory changes and water use agreements in a region of Europe |
Rehabilitate local economies and integrate the urban landscape | Equine exhibition area Markets Museums Passive and active recreational areas Relocation of families living along the riverbed Re-use of demolition material of old canal structures Sports arenas Stores |
Generate recreational spaces and integrate the urban landscape | Bench areas Bikeways Connectivity to other means of transportation Construction of linear and ecological corridor Construction of marshes and low-lying areas Construction of piers or beaches Construction of willow swamps Cycle paths Green parking lots Green riverside areas Large parks or urban forests Mapping Ornamental trees Playgrounds/green schools Public toilets Rain gardens Sidewalk gardens and plantings Trails and bridges, kayak ports Vegetation in alleys and streets Vertical terrace walls |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Lemus, T.S.; Moreno-Calles, A.I. Agroforestry Contributions to Urban River Rehabilitation. Sustainability 2022, 14, 7657. https://doi.org/10.3390/su14137657
Delgado-Lemus TS, Moreno-Calles AI. Agroforestry Contributions to Urban River Rehabilitation. Sustainability. 2022; 14(13):7657. https://doi.org/10.3390/su14137657
Chicago/Turabian StyleDelgado-Lemus, Tzitzi Sharhí, and Ana Isabel Moreno-Calles. 2022. "Agroforestry Contributions to Urban River Rehabilitation" Sustainability 14, no. 13: 7657. https://doi.org/10.3390/su14137657
APA StyleDelgado-Lemus, T. S., & Moreno-Calles, A. I. (2022). Agroforestry Contributions to Urban River Rehabilitation. Sustainability, 14(13), 7657. https://doi.org/10.3390/su14137657