Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Timing
2.2. Experimental Material
2.3. Experimentation
2.4. Laboratory Analyses
2.5. Agronomic Data Collection
2.6. Statistical Analysis
3. Results
3.1. Spike m−2, Grains Spike−1 and Plant Height (cm) of Wheat
3.2. Thousand Grains Weight, Biological and Grain Yield (kg ha−1) of Wheat
3.3. Concentration of P (mg kg−1) in the Wheat Leaves at Tillering and Anthesis Stage
3.4. Phosphorus Use Efficiency (PUE%)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Principles of plant nutrition. Ann. Bot. 2004, 93, 479–480. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Tariq, M.; Haq, I.; Ali, J.; Adnan, M.; Fahad, S.; Manzoor Ahmad, D.; Romman, M.; Hamzah Saleem, M.; Ahmad, S.; et al. Co-application of Phosphorus and Sulfur Improve Yield, Quality, and Nutrients Uptake in Nicotiana tabaccum L. Philipp. Agric. Sci. 2022, 105, 61–68. [Google Scholar]
- Saleem, M.H.; Ali, S.; Rehman, M.; Rana, M.S.; Rizwan, M.; Kamran, M.; Imran, M.; Riaz, M.; Soliman, M.H.; Elkelish, A. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 2020, 248, 126032. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, I.; Biswas, A.K. Phosphorus Sorption Characteristics of Soils for Managing the Fertilizer Phosphorus in Three Dominant Soil Types of India. Chem. Sci. Rev. Lett. 2018, 7, 725–731. [Google Scholar]
- Ullah, I.; Muhammad, D.; Mussarat, M.; Khan, S.; Adnan, M.; Fahad, S.; Ismail, M.; Ahmad Mian, I.; Ali, A.; Hamzah Saleem, M.; et al. Comparative effects of biochar and NPK on wheat crops under different management systems. Crop Pasture Sci. 2022. [Google Scholar] [CrossRef]
- Sjonnesen, K.H. Breeding for Phosphorus Use Efficiency in Winter Wheat (Triticum aestivum L.). Doctoral Dissertation, University of Guelph, Guelph, ON, Canada, 2021. [Google Scholar]
- Sher, A.; Barbanti, L.; Ansar, M.; Manaf, A.; Kaleem, S. Late harvest associated with P and S fertilization enhances yield and quality of forage sorghum (Sorghum bicolor (L.) Moench), grown as a rainfed crop in Pakistan. Afr. J. Agri. Res. 2011, 6, 6232–6239. [Google Scholar]
- Alizadeh, P.; Fallah, S.; Raiesi, F. Potential N mineralization and availability to irrigated maize in a calcareous soil amended with organic manures and urea under field conditions. Int. J. Plant Prod. 2012, 6, 493–512. [Google Scholar]
- Leytem, A.B.; Mikkelsen, R.L. The nature of phosphorus in calcareous soils. Better Crop. 2005, 89, 11–13. [Google Scholar]
- Shah, S.A.; Shah, S.M.; Wisal, M.; Shafi, M.; Haq, N.; Samreen, S.; Amir, M. Effect of integrated use of organic and inorganic nitrogen sources on wheat yield. Sarhad J. Agri. 2010, 26, 559–563. [Google Scholar]
- Hussain, I.; Khan, M.A.; Khan, E.A. Bread wheat varieties as influenced by different nitrogen levels. J. Zhejiang Uni. Sci. B 2006, 7, 70–78. [Google Scholar] [CrossRef]
- Heidaryan, J.; Feilinezhad, A. On the Effect of Biofertilizers on the Yield and Yield Components of Wheat (Triticum aestivum) under Eyvan Climate Condition. Biol. Forum. 2015, 7, 581. [Google Scholar]
- Ali, B.; Wang, X.; Saleem, M.H.; Azeem, M.A.; Afridi, M.S.; Nadeem, M.; Ghazal, M.; Batool, T.; Qayyum, A.; Alatawi, A.; et al. Bacillus mycoides PM35 Reinforces Photosynthetic Efficiency, Antioxidant Defense, Expression of Stress-Responsive Genes, and Ameliorates the Effects of Salinity Stress in Maize. Life 2022, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Wang, X.; Saleem, M.H.; Hafeez, A.; Afridi, M.S.; Khan, S.; Zaib-Un-Nisa; Ullah, A.I.; Amaral Júnior, A.T.; Alatawi, A.; et al. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants 2022, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Richard, L.A. Diagnosis and improvement of saline and alkaline soils. Soil Sci. 1947, 64, 432. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Schwab, A.P. A new soil test for simultaneous extraction of macro- and micro-nutrients in alkaline soils. Comm. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Jones, J.B.; Wolf, B.; Mills, H.A. Plant analysis handbook. In A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing, Inc.: Athens, GA, USA, 1991. [Google Scholar]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedure of Statistics, 2nd ed.; Mc, Graw Hill: New York, NY, USA, 1984. [Google Scholar]
- Naseer, M. Role of Rock Phosphate Crop Production in Alkaline Calcareous Soil. Doctoral Dissertation, The University of Agriculture, Peshawar, Pakistan, 2014. [Google Scholar]
- de Marchi Soares, T.; Raniro, H.R.; Pavinato, P.S. Sugarcane Byproduct Influence on Mineral Fertilizer Solubility and Phosphorus Dynamics in the Soil. J. Soil Sci. Plant Nutr. 2022, 22, 1458–1467. [Google Scholar] [CrossRef]
- Pongrac, P.; Fischer, S.; Thompson, J.A.; Wright, G.; White, P.J. Early responses of Brassica oleracea roots to zinc supply under sufficient and sub-optimal phosphorus supply. Front. Plant Sci. 2020, 10, 1645. [Google Scholar] [CrossRef]
- Mao, Q.; Lu, X.; Mo, H.; Gundersen, P.; Mo, J. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Sci. Total Environ. 2018, 610, 555–562. [Google Scholar] [CrossRef]
- Suhan, B.K.; Shuchi, S.B.; Nahid, A. Present Scenario, Difficulties and Qualitative Development Policy Analysis of Urea Fertilizer Industrial Sector in Bangladesh: A Review. Agric. Rev. 2021, 42, 381–389. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, A.; Li, G.; Wei, Y.; He, S.; Lin, Z.; Wang, Q. Effect of different components of single superphosphate on organic matter degradation and maturity during pig manure composting. Sci. Total Environ. 2019, 646, 587–594. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, Z.; Niu, Z.; Coulter, J.A.; Niu, J.; Zhang, J.; Wang, L. Yield, oil content, and fatty acid profile of flax (Linum usitatissimum L.) as affected by phosphorus rate and seeding rate. Indus. Crops Prod. 2020, 145, 112087. [Google Scholar] [CrossRef]
- Liang, S.; Deng, J.; Jiang, Y.; Wu, S.; Zhou, Y.; Zhu, W. Functional Distribution of Bacterial Community under Different Land Use Patterns Based on FaProTax Function Prediction. Pol. J. Environ. Stud. 2020, 29, 1245–1261. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, A.; Saxena, K.K.; Shukla, A.; Goyal, S.K. Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage. Mater. Today Proc. 2021, 44, 12–16. [Google Scholar] [CrossRef]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Zhang, D. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Ghosh, D.; Brahmachari, K.; Skalický, M.; Roy, D.; Das, A.; Sarkar, S.; Hossain, A. The combination of organic and inorganic fertilizers influence the weed growth, productivity and soil fertility of monsoon rice. PLoS ONE 2022, 17, e0262586. [Google Scholar] [CrossRef]
- Volf, M.R.; Rosolem, C.A. Soil P diffusion and availability modified by controlled-release P fertilizers. J. Soil Sci. Plant Nutr. 2021, 21, 162–172. [Google Scholar] [CrossRef]
- Yu, W.; Ding, X.; Xue, S.; Li, S.; Liao, X.; Wang, R. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. J. Soil Sci. Plant Nutr. 2013, 13, 1003–1017. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, K.N. Phosphorus and potassium fertilization reduces dry weather and late harvest risks. Fert. Knowl. 2002, 2, 1–2. [Google Scholar]
- Kaushal, A.K.; Kumar, A.; Kumar, R.; Kumar, A.; Kumar, D.; Singh, C.; Bharti, A.K. Impact of hydropriming and organic manure on seed emergance, seed vigour and grain yield of wheat (Triticum durum L.) under rainfed condition. J. Pharm. Phytochem. 2022, 11, 171–174. [Google Scholar]
- Tabakovic, M.; Simic, M.; Stanisavljevic, R.; Milivojevic, M.; Secanski, M.; Postic, D. Effects of shape and size of hybrid maize seed on germination and vigour of different genotypes. Chil. J. Agr. Res. 2020, 80, 381–392. [Google Scholar] [CrossRef]
- Ayoub, M.; Guertin, S.; Lussier, S.; Smith, D.L. Timing and level of nitrogen fertility effects on spring wheat yield in eastern Canada. Crop Sci. 1994, 34, 748–756. [Google Scholar] [CrossRef]
- Khan, M.A.; Basir, A.; Fahad, S.; Adnan, M.; Saleem, M.H.; Iqbal, A.; Amanullah; Al-Huqail, A.A.; Alosaimi, A.A.; Saud, S.; et al. Biochar Optimizes Wheat Quality, Yield, and Nitrogen Acquisition in Low Fertile Calcareous Soil Treated with Organic and Mineral Nitrogen Fertilizers. Front. Plant Sci. 2022, 13, 879788. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Bhattacharyya, R.; Prakash, V.; Ghosh, B.N.; Gupta, H.S. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean–wheat rotation in a sandy loam soil of the Indian Himalayas. Soil Tillage Res. 2007, 92, 87–95. [Google Scholar] [CrossRef]
- Patra, S.S.; Mehera, B.; Rout, S.; Tomar, S.S.; Singh, M.; Kumar, R. Effect of hydropriming and different sowing dates on growth and yield attributes of Wheat (Triticum aestivum L.). J. Appl. Nat. Sci. 2016, 8, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Ahmad, M.; El-Naggar, A.H.; Usman, A.R.; Abduljabbar, A.; Vithanage, M.; Al-Wabel, M.I. Aging effects of organic and inorganic fertilizers on phosphorus fractionation in a calcareous sandy loam soil. Pedosphere 2018, 28, 873–883. [Google Scholar] [CrossRef]
- Khalil, S.K.; Khan, S.; Rahman, A.; Khan, A.Z.; Khalil, I.H.; Amanullah, S.W.; Khan, A. Seed priming and phosphorus application enhance phenology and dry matter production of wheat. Pak. J. Bot. 2010, 42, 1849–1856. [Google Scholar]
- Tilahun, T.F.; Nigussie, D.; Wondimu, B.; Setegn, G. Effect of farmyard manure and inorganic fertilizers on the growth, yield and moisture stress tolerance of rain-fed lowland rice. Am. J. Res. Comm. 2013, 1, 275–301. [Google Scholar]
- Ibrahim, M.; Jamal, Y.; Basir, A.; Adnan, M. Response of Sesame (Sesamum indicum L.) to various levels of Nitrogen and Phosphorus in agro-climatic condition of Peshawar. Pure Appl. Biol. 2021, 5, 121–126. [Google Scholar] [CrossRef]
- Ottman, M.J. Response of Wheat and Barley Varieties to Phosphorus Fertilizer; University of Arizona: Tucson, AZ, USA, 2010. [Google Scholar]
- Badaruddin, M.; Reynolds, M.P.; Ageeb, O.A. Wheat management in warm environments: Effect of organic and inorganic fertilizers, irrigation frequency, and mulching. Agron. J. 1999, 91, 975–983. [Google Scholar] [CrossRef]
- Naing Oo, A.; Banterng, P.; Polthanee, A.; Trelo-Ges, V. The effect of different fertilizers management strategies on growth and yield of upland black glutinous rice and soil property. Asian J. Plant Sci. 2010, 9, 414–422. [Google Scholar]
- Adekiya, A.O.; Olaniran, A.F.; Adenusi, T.T.; Aremu, C.; Ejue, W.S.; Iranloye, Y.M.; Olayanju, A. Effects of cow dung and wood biochars and green manure on soil fertility and tiger nut (Cyperus esculentus L.) performance on a savanna Alfisol. Sci. Rep. 2020, 10, 21021. [Google Scholar] [CrossRef] [PubMed]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef]
- Demirkaya, M.; Gunes, A. Effects of different phosphorus and potassium doses on yield and amino acid composition of capia pepper. Fresenius Environ. Bull. 2020, 29, 1121–1128. [Google Scholar]
- Maqbool, M.M.; Ahmad, M.; Ali, A.; Mehmood, R.; Ahmad, M.; Sarwar, M. Optimizing the method and source of phosphatic nutrition for wheat (Triticum astivum L.) under agro-climate of Dera Ghazi Khan, Pakistan. Pak. J. Nutr. 2012, 11, 787. [Google Scholar]
Organic Amendments (10 t ha−1) | Spike m−2 | Grains Spike−1 | Plant Height (cm) |
---|---|---|---|
Control | 304 c | 44 c | 90.2 b |
FYM | 389 a | 57 a | 91.2 a |
Bagasse | 327 b | 54 b | 82.0 c |
LSD (α = 0.05) | 19.195 | 1.897 | 3.394 |
P Sources(90 kg ha−1) | |||
Control | 267 f | 42 f | 79.4 f |
Rock Phosphate (RP) | 301 e | 46 e | 84.3 e |
50% Acidulated RP | 321 d | 49 d | 86.7 d |
100% Acidulated RP | 351 c | 55 c | 89.9 c |
SSP | 419 a | 61 a | 91.5 a |
DAP | 382 b | 58 b | 95.1 b |
LSD (α = 0.05) | 21.622 | 4.209 | 3.754 |
Organic Amendments * P Sources | |||
LSD (α = 0.05) | NS | 4.648 (Figure 1) | NS |
Organic Amendments (10 t ha−1) | Thousand Grains weight (g) | Biological Yield (kg ha−1) | Grain Yield (kg ha−1) |
---|---|---|---|
Control | 36.0 c | 8398.5 c | 3606.4 c |
FYM | 38.8 a | 9981.1 a | 4058.0 a |
Bagasse | 37.7 b | 9591.2 b | 3701.0 b |
LSD (α = 0.05) | 1.516 | 309.269 | 154.945 |
P Sources(90 kg ha−1) | |||
Control | 34.9 f | 7812.7 f | 3533.8 f |
Rock Phosphate (RP) | 36.0 e | 8509.4 e | 3661.8 e |
50% Acidulated RP | 37.1 d | 8996.6 d | 3777.0 d |
100% Acidulated RP | 38.0 c | 9485.3 c | 3819.3 c |
SSP | 39.7 a | 11,022.9 a | 4021.9 a |
DAP | 39.2 b | 10,114.8 b | 3917.1 b |
LSD (α = 0.05) | 1.981 | 544.496 | 161.187 |
Organic Amendments * P sources | |||
LSD (α = 0.05) | NS | NS | NS |
Organic Amendments (10 t ha−1) | Leaves P (mg g−1) | Soil P (mg kg−1) | ||
---|---|---|---|---|
Tillering Stage | Anthesis Stage | Heading Stage | Post-Harvest | |
Control | 2.423 b | 2.298 c | 1.021 c | 1.322 c |
FYM | 2.530 a | 2.409 a | 2.006 a | 1.458 a |
Bagasse | 2.412 b | 2.351 b | 1.430 b | 1.409 b |
LSD (α = 0.05) | 0.0479 | 0.0315 | 0.0967 | 0.0433 |
P Sources(90 kg ha−1) | ||||
Control | 2.278 d | 2.165 d | 1.368 b | 1.204 e |
Rock Phosphate (RP) | 2.356 c | 2.248 c | 1.406 b | 1.334 d |
50% Acidulated RP | 2.461 b | 2.384 b | 1.482 b | 1.392 cd |
100% Acidulated RP | 2.502 b | 2.405 b | 1.510 b | 1.477 b |
SSP | 2.635 a | 2.499 a | 1.731 a | 1.559 a |
DAP | 2.499 b | 2.416 b | 1.421 b | 1.412 c |
LSD (α=0.05) | 0.0834 | 0.0549 | 0.1685 | 0.0754 |
Organic Amendments * P Sources | ||||
LSD (α=0.05) | 0.1802 (Figure 2) | NS | 0.3638 (Figure 3) | 0.1628 (Figure 4) |
Phosphorus Sources (90 kg ha−1) | Organic Amendments (10 t ha−1) | Means | ||
---|---|---|---|---|
Control | FYM | Bagasse | ||
Control | 5.2 i | 7.2 gh | 6.6 h | 6.3 f |
Rock Phosphate (RP) | 5.3 i | 7.6 fg | 6.9 gh | 6.6 e |
50% Acidulated RP | 5.4 i | 8.5 de | 6.8 h | 6.9 d |
100% Acidulated RP | 5.6 i | 8.8 cd | 7.2 gh | 7.2 c |
SSP | 8.0 ef | 12.5 a | 10.9 b | 10.5 a |
DAP | 5.8 i | 9.5 c | 8.6 de | 8.0 b |
Means | 5.9 c | 9.0 a | 7.8 b | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Ishaq, M.; Shah, W.A.; Adnan, M.; Fahad, S.; Saleem, M.H.; Khan, F.U.; Mussarat, M.; Khan, S.; Ali, B.; et al. Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils. Sustainability 2022, 14, 7669. https://doi.org/10.3390/su14137669
Ahmad M, Ishaq M, Shah WA, Adnan M, Fahad S, Saleem MH, Khan FU, Mussarat M, Khan S, Ali B, et al. Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils. Sustainability. 2022; 14(13):7669. https://doi.org/10.3390/su14137669
Chicago/Turabian StyleAhmad, Manzoor, Muhammad Ishaq, Wajid Ali Shah, Muhammad Adnan, Shah Fahad, Muhammad Hamzah Saleem, Fahim Ullah Khan, Maria Mussarat, Shadman Khan, Baber Ali, and et al. 2022. "Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils" Sustainability 14, no. 13: 7669. https://doi.org/10.3390/su14137669
APA StyleAhmad, M., Ishaq, M., Shah, W. A., Adnan, M., Fahad, S., Saleem, M. H., Khan, F. U., Mussarat, M., Khan, S., Ali, B., Mostafa, Y. S., Alamri, S., & Hashem, M. (2022). Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils. Sustainability, 14(13), 7669. https://doi.org/10.3390/su14137669