Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks
Abstract
:1. Introduction
- i.
- Multi-hop directing methods are thought to be energy-effective explanations for wireless device systems, which address a problem known as gathering. On the other hand, the cluster-based directing techniques used in conventional wireless networks might not be appropriate to WSN due to factors such as the presence of an underwater present, a limited bandwidth, a high water compression, a prolonged broadcast latency, and an increased error prospect.
- ii.
- In order to tackle these challenges and achieve energy efficiency in WSNs, the primary focus of this research is on the making of a metaheuristic-based gathering along with a directing procedure for WSNs. This protocol is given the name IMD-EACBR.
- iii.
- The IMD-EACBR technique selects the most advantageous CHs and the most direct paths to the BS. IMD-EACBR is a method that employs the teaching–learning-based optimization (TLBO) optimizer-based gathering in order to select the most suitable CHs and construct appropriate collections.
- iv.
- In order to demonstrate the manner in which the IMD-EACBR technique enhances performance, a number of simulations are carried out, and the results are analysed in a variety of different ways.
2. Literature Review
3. Materials and Methods
3.1. Algorithmic Process of IAOA Technique
3.2. Process Involved in IAOAC Technique
3.3. Design of TLBO-MHR Technique
Algorithm 1: TLBO Algorithm |
Input: Populace size (pop-size), quantity of topics, end condition Initialisation: Create primary people while terminating condition is not met do Teacher phase Choose in people Compute ) of all the subjects for to popsize do Compute if then end end Learner phase for to popsize do Choose if then else end end end end Return Best |
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arjunan, S.; Pothula, S.; Ponnurangam, D. F5N-based unequal clustering protocol (F5NUCP) for wireless sensor networks. Int. J. Commun. Syst. 2018, 31, e3811. [Google Scholar] [CrossRef]
- Rezaeipanah, A.; Amiri, P.; Nazari, H.; Mojarad, M.; Parvin, H. An energy-aware hybrid approach for wireless sensor networks using re-clustering-based multi-hop routing. Wirel. Pers. Commun. 2021, 120, 3293–3314. [Google Scholar] [CrossRef]
- Berlin, M.A.; Tripathi, S.; Devi, V.B.; Bhardwaj, I.; Arulkumar, N. IoT-based traffic prediction and traffic signal control system for smart city. Soft Comput. 2021, 25, 12241–12248. [Google Scholar]
- Norouzi Shad, M.; Maadani, M.; Nesari Moghadam, M. GAPSO-SVM: An IDSS-based energy-aware clustering routing algorithm for IoT perception layer. Wirel. Pers. Commun. 2021, 1–20. [Google Scholar] [CrossRef]
- Satpathy, S.; Prakash, M.; Debbarma, S.; Sengupta, A.S.; Bhattacaryya, B.K. Design a FPGA, fuzzy based, insolent method for prediction of multi-diseases in rural area. J. Intell. Fuzzy Syst. 2019, 37, 7039–7046. [Google Scholar] [CrossRef]
- Famila, S.; Jawahar, A.; Sariga, A.; Shankar, K. Improved artificial bee colony optimization based clustering algorithm for SMART sensor environments. Peer—Peer Netw. Appl. 2020, 13, 1071–1079. [Google Scholar] [CrossRef]
- Kavitha, A.; Velusamy, R.L. Simulated annealing and genetic algorithm-based hybrid approach for energy-aware clustered routing in large-range multi-sink wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 2020, 35, 96–116. [Google Scholar] [CrossRef]
- Subbulakshmi, P.; Prakash, M. Mitigating eavesdropping by using fuzzy based MDPOP-Q learning approach and multilevel Stackelberg game theoretic approach in wireless CRN. Cogn. Syst. Res. 2018, 52, 853–861. [Google Scholar] [CrossRef]
- Rajaram, P.V.; Prakash, M. Intelligent deep learning based bidirectional long short term memory model for automated reply of e-mail client prototype. Pattern Recognit. Lett. 2021, 152, 340–347. [Google Scholar]
- Ramalingam, C.; Mohan, P. Addressing semantics standards for cloud portability and interoperability in multi cloud environment. Symmetry 2021, 13, 317. [Google Scholar] [CrossRef]
- Neelakandan, S.; Arun, A.; Bhukya, R.R.; Hardas, B.M.; Kumar, T.; Ashok, M. An Automated Word Embedding with Parameter Tuned Model for Web Crawling. Intell. Autom. Soft Comput. 2022, 32, 1617–1632. [Google Scholar] [CrossRef]
- Mohan, P.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Ulaganathan, S. Improved metaheuristics-based clustering with multihop routing protocol for underwater wireless sensor networks. Sensors 2022, 22, 1618. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, D.; Subramani, N.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Rajagopal, M. Chaotic Search-and-Rescue-Optimization-Based Multi-Hop Data Transmission Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 2867. [Google Scholar] [CrossRef]
- Singh, H.; Ramya, D.; Saravanakumar, R.; Sateesh, N.; Anand, R.; Singh, S.; Neelakandan, S. Artificial intelligence based quality of transmission predictive model for cognitive optical networks. Optik 2022, 257, 168789. [Google Scholar] [CrossRef]
- Subramani, N.; Mohan, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. An Efficient Metaheuristic-Based Clustering with Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 415. [Google Scholar] [CrossRef] [PubMed]
- Subahi, A.F.; Alotaibi, Y.; Khalaf, O.I.; Ajesh, F. Packet Drop Battling Mechanism for Energy Aware Detection inWireless Networks. CMC-Computers. Mater. Contin. 2020, 66, 2077–2086. [Google Scholar]
- Palanisamy, S.; Thangaraju, B.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication. Energies 2021, 14, 6204. [Google Scholar] [CrossRef]
- Pandey, O.J.; Yuvaraj, T.; Paul, J.K.; Nguyen, H.H.; Gundepudi, K.; Shukla, M.K. Improving Energy Efficiency and QoS of LPWANs for IoT Using Q-Learning Based Data Routing. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 365–379. [Google Scholar] [CrossRef]
- Yan, X.; Huang, C.; Gan, J.; Wu, X. Game Theory-Based Energy-Efficient Clustering Algorithm for Wireless Sensor Networks. Sensors 2022, 22, 478. [Google Scholar] [CrossRef]
- Raghavendra, S.; Harshavardhan, A.; Neelakandan, S.; Partheepan, R.; Walia, R.; Rao, V.C.S. Multilayer Stacked Probabilistic Belief Network-Based Brain Tumor Segmentation and Classification. Int. J. Found. Comput. Sci. 2022, 1–24. [Google Scholar] [CrossRef]
- Srilakshmi, U.; Veeraiah, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Subbayamma, B.V. An Improved Hybrid Secure Multipath Routing Protocol for MANET. IEEE Access 2021, 9, 163043–163053. [Google Scholar] [CrossRef]
- Jha, N.; Prashar, D.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S. Blockchain Based Crop Insurance: A Decentralized Insurance System for Modernization of Indian Farmers. Sustainability 2021, 13, 8921. [Google Scholar] [CrossRef]
- Sridevi, M.; Saravanan, C. Deep Learning Approaches for Cyberbullying Detection and Classification on Social Media. Comput. Intell. Neurosci. 2022, 2022, 2163458. [Google Scholar] [CrossRef]
- Sundas, A.; Badotra, S.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. Modified bat algorithm for optimal vm’s in cloud computing. Comput. Mater. Contin. 2022, 72, 2877–2894. [Google Scholar] [CrossRef]
- Sennan, S.; Kirubasri; Alotaibi, Y.; Pandey, D.; Alghamdi, S. EACR-LEACH: Energy-aware cluster-based routing protocol for WSN based IoT. Comput. Mater. Contin. 2022, 72, 2159–2174. [Google Scholar]
- Rawat, S.S.; Alghamdi, S.; Kumar, G.; Alotaibi, Y.; Khalaf, O.I.; Verma, L.P. Infrared Small Target Detection Based on Partial Sum Minimization and Total Variation. Mathematics 2022, 10, 671. [Google Scholar] [CrossRef]
- Li, G.; Liu, F.; Sharma, A.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S. Research on the natural language recognition method based on cluster analysis using neural network. Math. Probl. Eng. 2021, 2021, 9982305. [Google Scholar] [CrossRef]
- Kiran, S.; Neelakandan, S.; Reddy, A.P.; Goyal, S.; Maram, B.; Rao, V.C.S. Wearable Telemedicine Technology for the Healthcare Industry; Academic Press: Cambridge, MA, USA, 2022; pp. 153–168. [Google Scholar] [CrossRef]
- Jain, D.K.; Tyagi, S.K.K.S.; Neelakandan, S.; Prakash, M.; Natrayan, L. Metaheuristic Optimization-based Resource Allocation Technique for Cybertwin-driven 6G on IoE Environment. IEEE Trans. Ind. Inform. 2021, 18, 4884–4892. [Google Scholar] [CrossRef]
- Venu, D.; Mayuri, A.V.R.; Neelakandan, S.; Murthy, G.L.N.; Arulkumar, N.; Shelke, N. An efficient low complexity compression based optimal homomorphic encryption for secure fiber optic communication. Optik 2022, 252, 168545. [Google Scholar] [CrossRef]
- Fathy, A.; Alharbi, A.G.; Alshammari, S.; Hasanien, H.M. Archimedes optimization algorithm based maximum power point tracker for wind energy generation system. Ain Shams Eng. J. 2022, 13, 101548. [Google Scholar] [CrossRef]
- Hemavathi; Akhila, S.R.; Alotaibi, Y.; Khalaf, O.I.; Alghamdi, S. Authentication and Resource Allocation Strategies during Handoff for 5G IoVs Using Deep Learning. Energies 2022, 15, 2006. [Google Scholar] [CrossRef]
- Srilakshmi, U.; Alghamdi, S.; Ankalu, V.V.; Veeraiah, N.; Alotaibi, Y. A secure optimization routing algorithm for mobile ad hoc networks. IEEE Access 2022, 10, 14260–14269. [Google Scholar] [CrossRef]
- Palanisamy, S.; Thangaraju, B.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S. Design and Synthesis of Multi-Mode Bandpass Filter for Wireless Applications. Electronics 2021, 10, 2853. [Google Scholar] [CrossRef]
- Sharma, S.; Chakraborty, S.; Saha, A.K.; Nama, S.; Sahoo, S.K. mLBOA: A Modified Butterfly Optimization Algorithm with Lagrange Interpolation for Global Optimization. J. Bionic Eng. 2022, 1–16. [Google Scholar] [CrossRef]
- Asha, P.; Natrayan, L.; Geetha, B.T.; Beulah, J.R.; Sumathy, R.; Varalakshmi, G.; Neelakandan, S. IoT enabled environmental toxicology for air pollution monitoring using AI techniques. Environ. Res. 2022, 205, 112574. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Perumal, S.K.; Kallimani, J.S.; Ulaganathan, S.; Bhargava, S.; Meckanizi, S. Controlling energy aware clustering and multihop routing protocol for IoT assisted wireless sensor networks. Concurr. Comput. Pr. Exper. 2022, e7106. [Google Scholar] [CrossRef] [Green Version]
- Prakash, M.; Ravichandran, T. An efficient resource selection and binding model for job scheduling in grid. Eur. J. Sci. Res. 2012, 81, 450–458. [Google Scholar]
- Mohan, P.; Thangavel, R. Resource selection in grid environment based on trust evaluation using feedback and performance. Am. J. Appl. Sci. 2013, 10, 924. [Google Scholar] [CrossRef] [Green Version]
- Veeraiah, N.; Khalaf, O.I.; Prasad, C.V.P.R.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S.A.; Alsufyani, N. Trust aware secure energy efficient hybrid protocol for manet. IEEE Access 2021, 9, 120996–121005. [Google Scholar] [CrossRef]
- Alotaibi, Y. A New Secured E-Government Efficiency Model for Sustainable Services Provision. J. Inf. Secur. Cybercrimes Res. 2020, 3, 75–96. [Google Scholar] [CrossRef]
- Prakash, M.; Sayeed, R.F.; Princey, S.; Priyanka, S. Deployment of MultiCloud Environment with Avoidance of DDOS Attack and Secured Data Privacy. Int. J. Appl. Eng. Res. 2015, 10, 8121–8124. [Google Scholar]
- Ramalingam, C.; Mohan, P. An efficient applications cloud interoperability framework using I-Anfis. Symmetry 2013, 13, 268. [Google Scholar] [CrossRef]
- Mohan, P.; Sundaram, M.; Satpathy, S.; Das, S. An efficient technique for cloud storage using secured de-duplication algorithm. J. Intell. Fuzzy Syst. 2021, 41, 2969–2980. [Google Scholar] [CrossRef]
- Ambeth Kumar, V.D.; Malathi, S.; Kumar, A.; Veluvolu, K.C. Active Volume Control in Smart Phones Based on User Activity and Ambient Noise. Sensors 2020, 20, 4117. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, Y. A New Meta-Heuristics Data Clustering Algorithm Based on Tabu Search and Adaptive Search Memory. Symmetry 2022, 14, 623. [Google Scholar] [CrossRef]
- Anand, J.G. Trust based optimal routing in MANET’s. In Proceedings of the 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 23–24 March 2011; pp. 1150–1156. [Google Scholar] [CrossRef]
- Kamalraj, R.; Neelakandan, S.; Kumar, M.R.; Rao, V.C.S.; Anand, R.; Singh, H. Interpretable filter based convolutional neural network (IF-CNN) for glucose prediction and classification using PD-SS algorithm. Measurement 2021, 183, 109804. [Google Scholar] [CrossRef]
- Kavitha, T.; Mathai, P.P.; Karthikeyan, C.; Ashok, M.; Kohar, R.; Avanija, J.; Neelakandan, S. Deep Learning Based Capsule Neural Network Model for Breast Cancer Diagnosis Using Mammogram Images. Interdiscip. Sci. Comput. Life Sci. 2021, 14, 113–129. [Google Scholar] [CrossRef]
- Cyril, C.P.D.; Beulah, J.R.; Subramani, N.; Mohan, P.; Harshavardhan, A.; Sivabalaselvamani, D. An automated learning model for sentiment analysis and data classification of Twitter data using balanced CA-SVM. Concurr. Eng. Res. Appl. 2021, 29, 386–395. [Google Scholar] [CrossRef]
- Reshma, G.; Al-Atroshi, C.; Nassa, V.K.; Geetha, B.; Sunitha, G.; Galety, M.G.; Neelakandan, S. Deep Learning-Based Skin Lesion Diagnosis Model Using Dermoscopic Images. Intell. Autom. Soft Comput. 2022, 31, 621–634. [Google Scholar] [CrossRef]
- Kannan, K.S.; Suma, K.G. A Secured Healthcare Medical System Using Blockchain Technology. In ICCCE 2021; Lecture Notes in Electrical Engineering; Kumar, A., Mozar, S., Eds.; Springer: Singapore, 2022; Volume 828. [Google Scholar] [CrossRef]
- Sunitha, G.; Geetha, K.; Neelakandan, S.; Pundir, A.K.S.; Hemalatha, S.; Kumar, V. Intelligent deep learning based ethnicity recognition and classification using facial images. Image Vis. Comput. 2022, 121, 104404. [Google Scholar] [CrossRef]
- Parthiban, S.; Harshavardhan, A.; Neelakandan, S.; Prashanthi, V.; Alolo, A.-R.A.A.; Velmurugan, S. Chaotic Salp Swarm Optimization-Based Energy-Aware VMP Technique for Cloud Data Centers. Comput. Intell. Neurosci. 2022, 2022, 4343476. [Google Scholar] [CrossRef] [PubMed]
- Bharany, S.; Sharma, S.; Badotra, S.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol. Energies 2021, 14, 6016. [Google Scholar] [CrossRef]
- Harshavardhan, A.; Boyapati, P.; Neelakandan, S.; Akeji, A.A.A.-R.; Pundir, A.K.S.; Walia, R. LSGDM with Biogeography-Based Optimization (BBO) Model for Healthcare Applications. J. Healthc. Eng. 2022, 2022, 2170839. [Google Scholar] [CrossRef]
- Alotaibi, Y. Automated Business Process Modelling for Analyzing Sustainable System Requirements Engineering. In Proceedings of the 2020 6th International Conference on Information Management, London, UK, 27–29 March 2020; pp. 157–161. [Google Scholar]
- Suryanarayana, G.; Chandran, K.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S.A. Accurate Magnetic Resonance Image Super-Resolution Using Deep Networks and Gaussian Filtering in the Stationary Wavelet Domain. IEEE Access 2021, 9, 71406–71417. [Google Scholar] [CrossRef]
- Rout, R.; Parida, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. Skin Lesion Extraction Using Multiscale Morphological Local Variance Reconstruction BasedWatershed Transform and Fast Fuzzy C-Means Clustering. Symmetry 2021, 13, 2085. [Google Scholar] [CrossRef]
- Geetha, B.; Kumar, P.S.; Bama, B.S.; Neelakandan, S.; Dutta, C.; Babu, D.V. Green energy aware and cluster-based communication for future load prediction in IoT. Sustain. Energy Technol. Assess. 2022, 52, 102244–102256. [Google Scholar] [CrossRef]
- Rayen, S.J.; Arunajsmine, J. Social Media Networks Owing To Disruptions For Effective Learning. Procedia Comput. Sci. 2020, 172, 145–151. [Google Scholar] [CrossRef]
- Divyabharathi, S. Large scale optimization to minimize network traffic using MapReduce in big data applications. In Proceedings of the International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), Melmaruvathur, India, 20–21 April 2016; pp. 193–199. [Google Scholar] [CrossRef]
- Neelakandan, S.; Rene Beulah, J.; Prathiba, L.; Murthy GL, N.; Irudaya Raj, E.F.; Arulkumar, N. Blockchain with deep learning-enabled secure healthcare data transmission and diagnostic model. Int. J. Modeling Simul. Sci. Comput. 2022, 2241006. [Google Scholar] [CrossRef]
- Neelakandan, S.; Prakash, M.; Bhargava, S.; Mohan, K.; Robert, N.R.; Upadhye, S. Optimal Stacked Sparse Autoencoder Based Traffic Flow Prediction in Intelligent Transportation Systems. In Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2022; Volume 412. [Google Scholar] [CrossRef]
- Paulraj, D. A gradient boosted decision tree-based sentiment classification of twitter data. Int. J. Wavelets Multiresolution Inf. Process. 2020, 8, 205027. [Google Scholar] [CrossRef]
- Paulraj, D. An Automated Exploring and Learning Model for Data Prediction Using Balanced CA-SVM. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 4979–4990. [Google Scholar] [CrossRef]
- Rajendran, S.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S. MapReduce-based big data classification model using feature subset selection and hyperparameter tuned deep belief network. Sci. Rep. 2021, 11, 24138. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, M.; Babu, B.S.; Sumathy, B.; Jackulin, T.; Ramkumar, N.; Manimaran, A.; Walia, R.; Neelakandan, S. Convolutional neural networks-based video reconstruction and computation in digital twins. Intell. Autom. Soft Comput. 2022, 34, 1571–1586. [Google Scholar] [CrossRef]
- Pandey, O.J.; Hegde, R.M. Low-Latency and Energy-Balanced Data Transmission Over Cognitive Small World WSN. IEEE Trans. Veh. Technol. 2018, 67, 7719–7733. [Google Scholar] [CrossRef]
Reference No | Published Year | Approach | Advantages | Disadvantages |
---|---|---|---|---|
[11] | 2020 | Simulated annealing and genetic algorithm-based hybrid (SAGA-H) | Self-organization | High communication cost |
[12] | 2018 | Clustering and Sailfish Optimizer (SFO) | Low communication cost | High latency |
[13] | 2021 | Novel hybrid NN based energy-effective routing | Load complementary | High latency, low scalability |
[14] | 2021 | Cluster based routing (CBR) | Fast convergence, low overhead | Low coverage |
[15] | 2022 | Robust cluster-based routing protocol (RCBRP) | Minimum overhead, low latency | Only uniform node distribution |
[16] | 2021 | Stability-aware cluster-based routing (SACR) | Support node heterogeneity | Low scalability |
[17] | 2022 | Metaheuristic artificial intelligence approach based on social behavior of grey wolves | Prolongs network lifetime | Needs parameter adjustments |
Network Lifetime (Rounds) | ||||||
---|---|---|---|---|---|---|
Density of Sensor Nodes | IMD-EACBR | SFO Alg. | GWO Alg. | Genetic Alg. | ALO Alg. | PSO Alg. |
100 | 1719 | 1593 | 1448 | 1415 | 1349 | 1300 |
150 | 1950 | 1739 | 1653 | 1554 | 1442 | 1380 |
200 | 2135 | 1956 | 1791 | 1706 | 1547 | 1456 |
250 | 2438 | 2174 | 2082 | 1818 | 1692 | 1538 |
300 | 2590 | 2392 | 2286 | 2009 | 1871 | 1687 |
350 | 2847 | 2656 | 2570 | 2359 | 2062 | 1984 |
400 | 3092 | 2887 | 2808 | 2643 | 2379 | 2165 |
450 | 3283 | 3098 | 3045 | 2953 | 2630 | 2354 |
500 | 3500 | 3501 | 3395 | 3263 | 2966 | 2684 |
No. of Alive Sensor Nodes | ||||||
---|---|---|---|---|---|---|
No. of Rounds | IMD-EACBR | SFO Alg. | GWO Alg. | Genetic Alg. | ALO Alg. | PSO Alg. |
2000 | 468 | 444 | 404 | 373 | 295 | 278 |
2250 | 451 | 408 | 322 | 260 | 205 | 154 |
2500 | 439 | 392 | 205 | 179 | 132 | 54 |
2750 | 385 | 312 | 176 | 126 | 85 | 33 |
3000 | 337 | 225 | 70 | 25 | 19 | 8 |
3250 | 315 | 176 | 52 | 10 | 5 | 2 |
3500 | 285 | 133 | 22 | 0 | 0 | 0 |
No. of Dead Sensor Nodes | ||||||
---|---|---|---|---|---|---|
No. of Rounds | IMD-EACBR | SFO Alg. | GWO Alg. | Genetic Alg. | ALO Alg. | PSO Alg. |
2000 | 32 | 56 | 96 | 127 | 205 | 222 |
2250 | 49 | 92 | 178 | 240 | 295 | 346 |
2500 | 61 | 108 | 295 | 321 | 368 | 446 |
2750 | 115 | 188 | 324 | 374 | 415 | 467 |
3000 | 163 | 275 | 430 | 475 | 481 | 492 |
3250 | 185 | 324 | 448 | 490 | 495 | 498 |
3500 | 215 | 367 | 478 | 500 | 500 | 500 |
Energy Consumption (mJ) | ||||||
---|---|---|---|---|---|---|
Density of Sensor Nodes | IMD-EACBR | SFO Alg. | GWO Alg. | Genetic Alg. | ALO Alg. | PSO Alg. |
100 | 0.047 | 0.078 | 0.113 | 0.153 | 0.203 | 0.246 |
150 | 0.106 | 0.149 | 0.186 | 0.231 | 0.321 | 0.368 |
200 | 0.125 | 0.193 | 0.262 | 0.323 | 0.415 | 0.442 |
250 | 0.240 | 0.271 | 0.349 | 0.431 | 0.502 | 0.568 |
300 | 0.288 | 0.337 | 0.429 | 0.523 | 0.563 | 0.657 |
350 | 0.401 | 0.417 | 0.580 | 0.573 | 0.625 | 0.686 |
400 | 0.417 | 0.476 | 0.596 | 0.658 | 0.714 | 0.736 |
450 | 0.495 | 0.509 | 0.622 | 0.705 | 0.773 | 0.782 |
500 | 0.524 | 0.561 | 0.625 | 0.754 | 0.818 | 0.846 |
Throughput (Mbps) | ||||||
---|---|---|---|---|---|---|
Density of Sensor Nodes | IMD-EACBR | SFO Alg. | GWO Alg. | Genetic Alg. | ALO Alg. | PSO Alg. |
100 | 0.975 | 0.934 | 0.891 | 0.861 | 0.804 | 0.704 |
150 | 0.967 | 0.930 | 0.877 | 0.805 | 0.788 | 0.677 |
200 | 0.958 | 0.916 | 0.855 | 0.781 | 0.762 | 0.658 |
250 | 0.955 | 0.895 | 0.838 | 0.771 | 0.728 | 0.636 |
300 | 0.945 | 0.903 | 0.801 | 0.745 | 0.691 | 0.616 |
350 | 0.945 | 0.878 | 0.776 | 0.707 | 0.656 | 0.573 |
400 | 0.929 | 0.844 | 0.776 | 0.692 | 0.619 | 0.569 |
450 | 0.913 | 0.830 | 0.738 | 0.667 | 0.594 | 0.548 |
500 | 0.902 | 0.819 | 0.728 | 0.632 | 0.565 | 0.522 |
Packet Delivery Ratio (%) | ||||||
---|---|---|---|---|---|---|
Density of Sensor Nodes | IMD-EACBR | SFO Alg. | GWO Alg. | Genetic Alg. | ALO Alg. | PSO Alg. |
100 | 98.83 | 98.40 | 96.47 | 95.65 | 94.37 | 93.79 |
150 | 98.46 | 97.90 | 96.47 | 95.54 | 94.07 | 93.16 |
200 | 98.46 | 97.64 | 96.43 | 95.35 | 93.73 | 92.82 |
250 | 98.25 | 97.68 | 96.34 | 95.13 | 93.53 | 92.52 |
300 | 98.03 | 97.40 | 96.10 | 94.81 | 93.29 | 92.34 |
350 | 97.62 | 96.58 | 95.85 | 94.50 | 92.88 | 91.97 |
400 | 97.19 | 96.60 | 95.39 | 94.35 | 92.71 | 91.72 |
450 | 96.97 | 96.15 | 95.00 | 93.94 | 92.52 | 91.48 |
500 | 96.56 | 95.20 | 94.66 | 93.47 | 92.30 | 91.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshmanna, K.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalafand, O.I.; Nanda, A.K. Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks. Sustainability 2022, 14, 7712. https://doi.org/10.3390/su14137712
Lakshmanna K, Subramani N, Alotaibi Y, Alghamdi S, Khalafand OI, Nanda AK. Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks. Sustainability. 2022; 14(13):7712. https://doi.org/10.3390/su14137712
Chicago/Turabian StyleLakshmanna, Kuruva, Neelakandan Subramani, Youseef Alotaibi, Saleh Alghamdi, Osamah Ibrahim Khalafand, and Ashok Kumar Nanda. 2022. "Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks" Sustainability 14, no. 13: 7712. https://doi.org/10.3390/su14137712
APA StyleLakshmanna, K., Subramani, N., Alotaibi, Y., Alghamdi, S., Khalafand, O. I., & Nanda, A. K. (2022). Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks. Sustainability, 14(13), 7712. https://doi.org/10.3390/su14137712