Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia
Abstract
:1. The Actuality of the Zinc Deficiency Problem
2. Zn Biofortification
2.1. Conventional Breeding and Genetic/Transgenic Zn Biofortification
2.2. Agronomic Biofortification
2.2.1. Zn Fertilizer Application
Method of Zn Fertilizer Application
Form and Dose of Zn Fertilizer
Timing of Zn Application
2.2.2. Influence of Phosphorus and Nitrogen on Zn Content in Rice Grain
2.2.3. Alternative Crop Establishment Method in Influencing Rice Zn Content
3. The Way Forward: Data-Driven Zn Recommendations for Biofortification at Scale
3.1. Conventional Soil Maps and Limitations
3.2. Digital Soil Mapping (DSM) for Fertilizer Recommendations at Scale
3.3. Data-Driven Spatial Nutrient Recommendations
3.4. Spatially Referenced Information on Soil and Crop Management for Government Programming
4. Policy Options for Scaling Zn Biofortification of Rice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; De Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessells, K.R.; Brown, K.H. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, J.B.; Hamer, D.; Meydani, S.N. Low zinc status: A new risk factor for pneumonia in the elderly? Nutr. Rev. 2010, 68, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Squitti, R.; Picozza, M.; Pawar, A.; Rongioletti, M.; Dutta, A.K.; Sahoo, S.; Goswami, K.; Sharma, P.; Prasad, R. Zinc and COVID-19: Basis of Current Clinical Trials. Biol. Trace Elem. Res. 2020, 199, 2882–2892. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Read, S.A.; Shackel, N.A.; Hebbard, L.; George, J.; Ahlenstiel, G. The Role of Micronutrients in the Infection and Subsequent Response to Hepatitis C Virus. Cells 2019, 8, 603. [Google Scholar] [CrossRef] [Green Version]
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. Int. Rev. J. 2019, 10, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, H.; Roser, M.; Micronutrient Deficiency. Published online at OurWorldInData.org. 2017. Available online: https://ourworldindata.org/micronutrient-deficiency (accessed on 22 April 2022).
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Change 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Riviera, J.J. Maternal and child health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Walker, C.L.F.; Ezzati, M.; Black, R.E.E. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 2009, 63, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Nakandalage, N.; Nicolas, M.; Norton, R.M.; Hirotsu, N.; Milham, P.J.; Seneweera, S. Improving Rice Zinc Biofortification Success Rates Through Genetic and Crop Management Approaches in a Changing Environment. Front. Plant Sci. 2016, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wang, P.; Yamaji, N.; Ma, J.F. Plant Nutrition for Human Nutrition: Hints from Rice Research and Future Perspectives. Mol. Plant 2020, 13, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Shivay, Y.S.; Kumar, D.; Prasad, R. Relative efficiency of zinc sulfate and zinc oxide–coated urea in rice–wheat cropping system. Commun. Soil Sci. Plant Anal. 2008, 39, 1154–1167. [Google Scholar] [CrossRef]
- Cakmak, I. Zinc deficiency in wheat in Turkey. In Micronutrient Deficiencies in Global Crop Production; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 181–200. [Google Scholar]
- Timmer, C.P.P. Food security in Asia and the Pacific: The rapidly changing role of rice. Asia Pac. Policy Stud. 2014, 1, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Bouis, H.E.E. Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? Proc. Nutr. Soc. 2003, 62, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Welch, R.M.M. Biofortification: A sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 2010, 50, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Kishore, A.; Roy, D.; Joshi, K.K. A comparison of the Indian diet with the EAT-Lancet reference diet. BMC Public Health 2020, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.E.; Yakes, E.A.; Hossain, M.B.; Islam, M.M.; Ahmed, T.; Hotz, C.; Lewis, B.; Rahman, A.S.; Jamil, K.M.; Brown, K.H.H. The current high prevalence of dietary zinc inadequacy among children and women in rural Bangladesh could be substantially ameliorated by zinc biofortification of rice. J. Nutr. 2010, 140, 1683–1690. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.-M.B.; Latham, M.C.; Duxbury, J.M.; Hassan, N.; Frongillo, E.A. A Food-Based Approach to Improving Zinc Nutrition Through Increasing the Zinc Content of Rice in Bangladesh. J. Hunger Environ. Nutr. 2007, 2, 19–39. [Google Scholar] [CrossRef]
- Phattarakul, N.; Rerkasem, B.; Li, L.J.; Wu, L.H.; Zou, C.Q.; Ram, H.; Sohu, V.S.; Kang, B.S.; Surek, H.; Kalayci, M.; et al. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 2012, 361, 131–141. [Google Scholar] [CrossRef]
- Tessema, M.; Groote, H.D.; Brouwer, I.D.; Feskens, E.J.M.; Belachew, T.; Zerfu, D.; Belay, A.; Demelash, Y.; Gunaratna, N.S.S. Soil zinc is associated with serum zinc but not with linear growth of children in Ethiopia. Nutrients 2019, 11, 221. [Google Scholar] [CrossRef] [Green Version]
- Welch, R.M. Harvesting Health: Agricultural Linkages for Improving Human Nutrition. In Micronutrients in South and Southeast Asia; Anderson, P., Ed.; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2005; pp. 9–16. [Google Scholar]
- Cakmak, I.I. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. J. Trace Elem. Med. Biol. 2009, 23, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.V.V. Micronutrient nutritional problems in soils of India and improvement for human and animal health. Indian J. Fert. 2009, 5, 11–26. [Google Scholar]
- Shukla, A.K.; Tiwari, P.K. Micro and secondary nutrients and pollutant elements research in India. In Coordinators Report-AICRP on Micro- and Secondary Nutrients and Pollutant Elements in Soils and Plants; ICAR-IISS: Bhopal, India, 2016; pp. 1–196. [Google Scholar]
- Shukla, A.K.; Behera, S.K.; Pakhre, A.; Chaudhari, S.K.K. Micronutrients in soils, plants, animals and humans. Indian J. Fert. 2018, 14, 30–54. [Google Scholar]
- SHC Scheme, India. Available online: https://www.soilhealth.dac.gov.in/ (accessed on 22 April 2022).
- White, P.J.; Broadley, M.R.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Praharaj, S.; Skalicky, M.; Maitra, S.; Bhadra, P.; Shankar, T.; Brestic, M.; Hejnak, V.; Vachova, P.; Hossain, A.A. Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules 2021, 26, 3509. [Google Scholar] [CrossRef]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32, S31–S40. [Google Scholar] [CrossRef]
- Cakmak, I.I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Johnson-Beebout, S.E.; Goloran, J.B.; Rubianes, F.H.C.; Jacob, J.D.C.; Castillo, O.B.B. Zn uptake behavior of rice genotypes and its implication on grain Zn biofortification. Sci. Rep. 2016, 6, 38301. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; An, G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 2009, 32, 408–416. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D.D. Agronomic biofortification of cereal grains with iron and zinc. Adv. Agron. 2014, 125, 55–91. [Google Scholar]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, Z.; Rouached, H.; Rakha, A. Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals. Compr. Rev. Food Sci. Food Saf. 2014, 13, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Moose, S.P.; Mumm, R.H. Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement. Plant Physiol. 2008, 147, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wu, Y.; Li, Y.; Ling, H.-Q.; Chu, C. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol. Biol. 2009, 70, 219–229. [Google Scholar] [CrossRef] [PubMed]
- HarvestPlus. Biofortification Progress Briefs. 2014. Available online: http://www.harvestplus.org/sites/default/files/Biofortification_Progress_Briefs_August2014_WEB_0.pdf (accessed on 22 April 2022).
- Garvin, D.F.; Welch, R.M.; Finley, J.W.W. Historical shifts in the seed mineral micronutrient concentrations of US hard red winter wheat germplasm. J. Sci. Food Agric. 2006, 86, 2213–2220. [Google Scholar] [CrossRef]
- Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Sunham, S.J.; McGrath, S.P.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef]
- Shewry, P.R.; Pellny, T.K.; Lovegrove, A.A. Is modern wheat bad for health? Nat. Plants 2016, 2, 1–3. [Google Scholar] [CrossRef]
- Gregorio, G.B. Progress in Breeding for Trace Minerals in Staple Crops. J. Nutr. 2002, 132, 500S–502S. [Google Scholar] [CrossRef]
- Gregorio, G.B.; Senadhira, D.; Htut, H.; Graham, R.D.D. Breeding for trace mineral density in rice. Food Nutr. Bull. 2000, 21, 382–386. [Google Scholar] [CrossRef]
- Kader, A.; Biswas, P.S.; Aditya, T.L.; Anisuzzaman, M.; Hore, T.K.; Haq, E. Zinc Enriched High Yielding Rice Variety BRRI dhan84 for Dry Season Rice Growing Areas of Bangladesh. Asian Plant Res. J. 2020, 6, 6–13. [Google Scholar] [CrossRef]
- Andrade, J.E.; Ali, A.N.M.A.; Chowdhury, R.; Crost, B.; Hoffmann, V.; Mustafa, S.; Shaima, N.A. Rice Fortification in Bangladesh: Technical Feasibility and Regulatory Requirement for Introducing Rice Fortification in Public Modern Storage/Distribution of Fortified Rice through PFDS Channels; International Food Policy Research Institute: Washington, DC, USA, 2021. [Google Scholar]
- Khairul, B.; Lividini, K.; Herrington, C. Results from the Bangladesh High Zinc Rice Adoption Study 2018; HarvestPlus Learning Lab: Hyderabad, India, 2019. [Google Scholar]
- Swamy, B.P.M.; Marundan, S., Jr.; Samia, M.; Ordonio, R.L.; Rebong, D.B.; Miranda, R.; Alibuyog, A.; Rebong, A.T.; Tabil, M.A.; Suralta, R.R.; et al. Development and characterization of GR2E Golden rice introgression lines. Sci. Rep. 2021, 11, 2496. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Datta, K.; Datta, S.K. Rice Biofortification: High Iron, Zinc, and Vitamin-A to Fight against “Hidden Hunger”. Agronomy 2019, 9, 803. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Sui, Y. Efficient and Fast Production of Transgenic Rice Plants by Agrobacterium-Mediated Transformation. Methods Mol. Biol. 2018, 1864, 95–103. [Google Scholar] [CrossRef]
- Vasconcelos, M.W.; Datta, K.; Oliva, N.; Khalekuzzaman, M.; Torrizo, L.B.; Krishnan, S.; Oliveira, M.M.; Goto, F.; Datta, S.K. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 2003, 164, 371–378. [Google Scholar] [CrossRef]
- Masuda, H.; Kobayashi, T.; Ishimaru, Y.; Takahashi, M.; Aung, M.S.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front. Plant Sci. 2013, 4, 132. [Google Scholar] [CrossRef] [Green Version]
- Slamet-Loedin, I.H.; Johnson-Beebout, S.E.; Impa, S.; Tsakirpaloglou, N.N. Enriching rice with Zn and Fe while minimizing Cd risk. Front. Plant Sci. 2015, 6, 121. [Google Scholar] [CrossRef] [Green Version]
- Masuda, H.; Suzuki, M.; Morikawa, K.C.; Kobayashi, T.; Nakanishi, H.; Takahashi, M.; Saigusa, M.; Mori, S.; Nishizawa, N.K. Increase in Iron and Zinc Concentrations in Rice Grains Via the Introduction of Barley Genes Involved in Phytosiderophore Synthesis. Rice 2008, 1, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Shukla, M.; Al-Busaidi, K.T.; Trivedi, M.; Tiwari, R.K. Status of research, regulations and challenges for genetically modified crops in India. GM Crop. Food 2018, 9, 173–188. [Google Scholar] [CrossRef]
- Sanjeeva, R.D.; Neeraja, C.N.; Madhu Babu, P.; Nirmala, B.; Suman, K.; Rao, L.V.S.; Surekha, K.; Raghu, P.; Longvah, T.; Surendra, P.; et al. biofortified rice varieties: Challenges, possibilities, and progress in India. Front. Nutr. 2020, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Chandel, G.; Banerjee, S.; See, S.; Meena, R.; Sharma, D.J.; Verulkar, S.B.B. Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Sci. 2010, 17, 213–227. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic Biofortification with Se, Zn, and Fe: An Effective Strategy to Enhance Crop Nutritional Quality and Stress Defense—A Review. J. Soil Sci. Plant Nutr. 2022, 22, 1129–1159. [Google Scholar] [CrossRef]
- Velu, G.; Ortiz-Monasterio, I.; Cakmak, I.; Hao, Y.; Singh, R.P.P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci. 2014, 59, 365–372. [Google Scholar] [CrossRef]
- Shukla, A.K.; Behera, S.K.; Lenka, N.K.; Tiwari, P.K.; Prakash, C.; Malik, R.S.; Sinha, N.K.; Singh, V.K.; Patra, A.K.; Chaudhary, S.K.K. Spatial variability of soil micronutrients in the intensively cultivated Trans-Gangetic plains of India. Soil Tillage Res. 2016, 163, 282–289. [Google Scholar] [CrossRef]
- Shukla, A.K.; Behera, S.K. Micronutrients research in India: Retrospect and prospects. In Proceedings of the the FAI Annual Seminar 2017: Fertilizers and Farm Income, New Delhi, India, 5–7 December 2017; pp. SII-4/1–SII-4/17. [Google Scholar]
- Bevis, L.E.; Kim, K.; Guerena, D. Soils and South Asian Stunting: Low Soil Zinc Availability Drives Child Stunting in Nepal; Working Paper; The Ohio State University: Columbus, OH, USA, 2019. [Google Scholar]
- Guo, J.X.; Feng, X.M.; Hu, X.Y.; Tian, G.L.; Ling, N.; Wang, J.H.; Shen, Q.R.; Guo, S.W. Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. J. Agric. Sci. 2016, 154, 584–597. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Kumar, D.; Prasad, R.R. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice–wheat cropping system. Nutr. Cycl. Agroecosyst. 2008, 81, 229–243. [Google Scholar] [CrossRef]
- Mabesa, R.Á.; Impa, S.Á.; Grewal, D.; Johnson-Beebout, S.E.E. Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Res. 2013, 149, 223–233. [Google Scholar] [CrossRef]
- Dobermann, A.; Fairhurst, T.H. Nutrient Disorders and Nutrient Management; Potash and Phosphate Institute, PPI of Canada: Saskatoon, SK, Canada; International Rice Research Institute: Singapore, 2000; 192p. [Google Scholar]
- Shivay, Y.S.; Prasad, R.; Singh, R.K.; Pal, M.M. Relative efficiency of zinc-coated urea and soil and foliar application of zinc sulphate on yield, nitrogen, phosphorus, potassium, zinc and iron biofortification in grains and uptake by basmati rice (Oryza sativa L.). J. Agric. Sci. 2015, 7, 161. [Google Scholar] [CrossRef] [Green Version]
- Mangueze, A.V.; Pessoa, M.F.; Silva, M.J.; Ndayiragije, A.; Magaia, H.E.; Cossa, V.S.; Reboredo, F.H.; Carvalho, M.L.; Santos, J.P.; Guerra, M.; et al. Simultaneous Zinc and selenium biofortification in rice. Accumulation, localization and implications on the overall mineral content of the flour. J. Cereal Sci. 2018, 82, 34–41. [Google Scholar] [CrossRef]
- Yang, X.; Tian, X.; Lu, X.; Gale William, J.; Cao, Y.Y. Foliar zinc fertilization improves the zinc nutritional value of wheat (Triticum aestivum L.) grain. Afr. J. Biotechnol. 2011, 10, 14778–14785. [Google Scholar]
- Wei, Y.; Shohag, M.J.I.; Yang, X. Biofortification and Bioavailability of Rice Grain Zinc as Affected by Different Forms of Foliar Zinc Fertilization. PLoS ONE 2012, 7, e45428. [Google Scholar] [CrossRef]
- Fu, L.; Wang, R.; Meng, J.; Wan, J.J. Effect of foliar application of zinc and iron fertilizers on distribution of zinc and iron, quality and yield of rice grain. Sci. Agric. Sin. 2010, 43, 5009–5018. [Google Scholar]
- Ramzan, Y.; Hafeez, M.B.; Khan, S.; Nadeem, M.; Saleem-Ur-Rahman; Batool, S.; Ahmad, J. Biofortification with Zinc and Iron Improves the Grain Quality and Yield of Wheat Crop. Int. J. Plant Prod. 2020, 14, 501–510. [Google Scholar] [CrossRef]
- Ram, H.; Rashid, A.; Zhang, W.; Duarte, A.P.; Phattarakul, N.; Simunji, S.; Kalayci, M.; Freitas, R.; Rerkasem, B.; Bal, R.S.; et al. Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil 2016, 403, 389–401. [Google Scholar] [CrossRef]
- Veni, V.G.; Datta, S.P.; Rattan, R.K.; Meena, M.C.; Singh, A.K.; Sharma, K.L.; Sankar, G.R.M.; Rai, A. Effect of variability of zinc on enhancement of zinc density in basmati rice grain grown in three different soils in India. J. Plant Nutr. 2019, 43, 709–724. [Google Scholar] [CrossRef]
- Pooniya, V.; Shivay, Y.S.S. Effect of green manuring and zinc fertilization on productivity and nutrient uptake in basmati rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J. Agron. 2011, 56, 29–35. [Google Scholar]
- Farooq, M.; Ullah, A.; Rehman, A.; Nawaz, A.; Nadeem, A.; Wakeel, A.; Nadeem, F.; Siddique, K.H.H. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Res. 2018, 216, 53–62. [Google Scholar] [CrossRef]
- Bana, R.C.; Gupta, A.K.; Bana, R.S.; Shivay, Y.S.; Bamboriya, S.D.; Thakur, N.P.; Puniya, R.; Gupta, M.; Jakhar, S.R.; Kailash; et al. Zinc-Coated Urea for Enhanced Zinc Biofortification, Nitrogen Use Efficiency and Yield of Basmati Rice under Typic Fluvents. Sustainability 2021, 14, 104. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R. Zinc-coated urea improves productivity and quality of basmati rice (Oryza sativa l.) under zinc stress condition. J. Plant Nutr. 2012, 35, 928–951. [Google Scholar] [CrossRef]
- Meena, R.P.; Prasad, S.K.; Layek, A.; Singh, M.K.; Das, M.M. Nitrogen and zinc scheduling for zinc biofortification in direct seeded rice (Oryza sativa). Indian J. Agric. Sci. 2018, 88, 805–808. [Google Scholar]
- Jat, S.L.; Shivay, Y.S.; Parihar, C.M.M. Zinc fertilization for improving productivity and zinc concentration in aromatic hybrid rice (Oryza sativa L.). Indian J. Agron. 2008, 55, 321–322. [Google Scholar]
- Prom-U-Thai, C.; Rashid, A.; Ram, H.; Zou, C.; Guilherme, L.R.G.; Corguinha, A.P.B.; Guo, S.; Kaur, C.; Naeem, A.; Yamuangmorn, S.; et al. Simultaneous Biofortification of Rice with Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Front. Plant Sci. 2020, 11, 589835. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.E.; Chen, W.R.; Feng, Y.Y. Improving human micronutrient nutrition through biofortification in the soil plant system: China as a case study. Environ. Geochem. Health 2007, 29, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Jalal, A.; Shah, S.; Filho, M.C.M.T.; Khan, A.; Shah, T.; Ilyas, M.; Rosa, P.A.L. Agro-Biofortification of Zinc and Iron in Wheat Grains. Gesunde Pflanz. 2020, 72, 227–236. [Google Scholar] [CrossRef]
- Rehman, H.U.; Aziz, T.; Farooq, M.; Wakeel, A.; Rengel, Z.Z. Zinc nutrition in rice production systems: A review. Plant Soil 2012, 361, 203–226. [Google Scholar] [CrossRef]
- Sadeghzadeh, B.B. A review of Zn nutrition and plant breeding. J. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar]
- Kutman, U.B.; Yildiz, B.; Ozturk, L.; Cakmak, I. Biofortification of Durum Wheat with Zinc Through Soil and Foliar Applications of Nitrogen. Cereal Chem. 2010, 87, 1–9. [Google Scholar] [CrossRef]
- Mandal, B.; Mandal, L.N.N. Effect of phosphorus application on transformation of zinc fraction in soil and on the zinc nutrition of lowland rice. Plant Soil 1999, 121, 115–123. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Mandal, L.N.; Haldar, M.M. Interaction of zinc and phosphorus in relation to micronutrient nutrition of rice plant at two different growth stages. Z. Pflanz. Bodenk 1982, 145, 460–469. [Google Scholar] [CrossRef]
- Lal, B.; Majumdar, B.; Venkatesh, M.S.S. Individual and interactive effects of phosphorus and zinc in lowland rice. Indian J. Hill Farming 2000, 13, 44–46. [Google Scholar]
- Fang, Y.; Wang, L.; Xin, Z.; Zhao, L.; An, X.; Hu, Q. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrient concentration and yield of rice grain in China. J. Agric. Food Chem. 2008, 56, 2079–2084. [Google Scholar] [CrossRef]
- Joshi, E.; Gautam, P.; Lal, B.; Kumar, M.M. Management of nutrient deficiencies in direct seeded rice. Pop. Kheti 2013, 1, 40–43. [Google Scholar]
- Kumar, V.; Ladha, J.K.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Kumar, V.; Banik, N.C.; Kumar, V.; Parida, N.; Wasim, I.; Das, A.; Pattnaik, S.; Roul, P.K.; Sarangi, D.R.; et al. Transforming labor requirement, crop yield, and profitability with precision dry-direct seeding of rice and integrated weed management in Eastern India. Field Crop. Res. 2020, 259, 107961. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Jat, M.L.; Gathala, M.K.; Yadav, S.; Rao, A.N.; Ramesha, M.S.; Raman, A.A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.S.S. Zinc availability and dynamics in the transition from flooded to aerobic rice cultivation. J. Plant Biol. Soil Health 2015, 2, 2–5. [Google Scholar]
- Gao, X.; Hoffland, E.; Stomph, T.; Grant, C.A.; Zou, C.; Zhang, F.F. Improving zinc bioavailability in transition from flooded to aerobic rice: A review. Agron. Sustain. Dev. 2012, 32, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, D.; Duan, H.; Tan, G.; Zhang, J. Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains. J. Sci. Food Agric. 2009, 89, 1728–1736. [Google Scholar] [CrossRef]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981. [Google Scholar]
- Tuyogon, D.S.J.; Impa, S.M.; Castillo, O.B.; Larazo, W.; Johnson-Beebout, S.E.E. Enriching rice grain zinc through zinc fertilization and water management. Soil Sci. Soc. Am. J. 2016, 80, 121–134. [Google Scholar] [CrossRef]
- Rerksuppaphol, S.; Rerksuppaphol, L. Zinc Supplementation Enhances Linear Growth in School-Aged Children: A Randomized Controlled Trial. Pediatr. Rep. 2017, 9, 7294. [Google Scholar] [CrossRef] [Green Version]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India: Noida, India, 2016. [Google Scholar]
- Hawkesford, M.J.; Barraclough, P. Zinc in soils and crop nutrition. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Sadeghzadeh, B., Rengel, Z., Eds.; Wiley-Blackwell: Oxford, UK, 2011. [Google Scholar]
- Prasad, R. Rice-wheat cropping system. Adv Agron. 2005, 86, 255–339. [Google Scholar]
- Qadar, A.A. Selecting rice genotypes tolerant to zinc deficiency and sodicity stresses. I. Differences in zinc, iron, manganese, copper, phosphorus concentrations and phosphorus/zinc ratio in their leaves. J. Plant Nutr. 2002, 25, 457–473. [Google Scholar] [CrossRef]
- Haldar, M.; Mandal, L.N. Effect of phosphorus and zinc on the growth and phosphorus, zinc, copper, iron and manganese nutrition of rice. Plant Soil 1981, 59, 415–425. [Google Scholar] [CrossRef]
- Rehim, A.; Zafar-ul-Hye, M.; Imran, M.; Ali, M.A.; Hussain, M.M. Phosphorus and zinc application improves rice productivity. Pak. J. Sci. 2014, 66, 134–139. [Google Scholar]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Schulte., E.E. Understanding Plant Nutrients, Soil and Applied Zinc; A2528; University of Wisconsin-Extension: Madison, WI, USA, 2004. [Google Scholar]
- Hewitt, A.E.E. Predictive modelling in soil survey. Soils Fert. 1993, 56, 305–314. [Google Scholar]
- Arrouays, D.; Mulder, V.L.; Richer-de-Forges, A.C.C. Soil mapping, digital soil mapping and soil monitoring over large areas and the dimensions of soil security: A review. Soil Secur. 2021, 5, 100018. [Google Scholar] [CrossRef]
- Kempen, B.; Brus, D.; Stoorvogel, J.; Heuvelink, G.B.; De Vries, F. Efficiency Comparison of Conventional and Digital Soil Mapping for Updating Soil Maps. Soil Sci. Soc. Am. J. 2012, 76, 2097–2115. [Google Scholar] [CrossRef]
- Ramamurthy, V.; Naidu, L.G.K.; Ramesh, S.C.; Srinivas, S.; Hegde, R.R. Soil-based fertilizer recommendations for precision farming. Curr. Sci. 2009, 97, 641–647. [Google Scholar]
- Peng, S.B.; Huang, J.L.; Zhong, X.H.H. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric. Sci. China 2002, 1, 776–785. [Google Scholar]
- Ren, X.; Chen, F.; Ma, T.; Hu, Y. Soil Quality Characteristics as Affected by Continuous Rice Cultivation and Changes in Cropping Systems in South China. Agriculture 2020, 10, 443. [Google Scholar] [CrossRef]
- Government of India; Indian Institute of Soil Science. GIS-Based Soil Fertility Maps Prepared for 19 States; Press Information Bureau, Ministry of Agriculture: New Delhi, India, 2014. [Google Scholar]
- Bora, K. Spatial patterns of fertilizer use and imbalances: Evidence from rice cultivation in India. Environ. Chall. 2022, 7, 100452. [Google Scholar] [CrossRef]
- Wissuwa, M.; Ismail, A.M.; Graham, R.D.D. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 2008, 306, 37–48. [Google Scholar] [CrossRef]
- Duxbury, J.M.; Bodruzzaman, M.; Johnson, S.E.; Lauren, J.G.; Meisner, C.A.; Welch, R.M. Opportunities and constraints for addressing human mineral micronutrient malnutrition through soil management. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PE, USA, 9–15 July 2006; Available online: http://crops.confex.com/crops/wc2006/techprogram/P17411.HTM (accessed on 22 April 2022).
- Terribile, F.; Coppola, A.; Langella, G.; Martina, M.; Basile, A. Potential and limitations of using soil mapping information to understand landscape hydrology. Hydrol. Earth Syst. Sci. 2011, 15, 3895–3933. [Google Scholar] [CrossRef] [Green Version]
- Balkovič, J.; Rampašeková, Z.; Hutár, V.; Sobocká, J.; Skalský, R.R. Digital soil mapping from conventional field soil observations. Soil Water Res. 2013, 8, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Iftikar, W.; Chattopadhayay, G.N.; Majumdar, K.; Sulewski, G.D. Use of Village-Level Soil Fertility Maps as a Fertiliser Decision Support Tool in the Red and Lateritic Soil Zone of India. In Proceedings of the International Plant Nutrition Colloquium XVI, Sacramento, CA, USA, 26–30 August 2009. [Google Scholar]
- Vågen, T.G.; Winowiecki, L.A.; Tondoh, J.E.; Desta, L.T.; Gumbricht, T.T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 2016, 263, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Kempen, B.; Brus, D.J.; de Vries, F.F. Operationalizing digital soil mapping for nationwide updating of the 1:50,000 soil map of the Netherlands. Geoderma 2015, 241, 313–329. [Google Scholar] [CrossRef]
- Hengl, T.; Leenaars, J.G.; Shepherd, K.D.; Walsh, M.G.; Heuvelink, G.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; et al. Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycl. Agroecosyst. 2017, 109, 77–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vista, S.; Gaihre, Y. Fertilizer Management for Horticultural Crops Using Digital Soil Maps. In Proceedings of the Tenth Natinal Horticulture Workshop, Kathmandu, Nepal, 28 February–1 March 2021. [Google Scholar]
- Panday, D.; Maharjan, B.; Chalise, D.; Shrestha, R.K.; Twanabasu, B.; Panday, D. Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS. PLoS ONE 2018, 13, e0206350. [Google Scholar] [CrossRef]
- Islam, A.; Hasan, A.; Farukh, M.A. Application of GIS in General Soil Mapping of Bangladesh. J. Geogr. Inf. Syst. 2017, 09, 604–621. [Google Scholar] [CrossRef] [Green Version]
- Wimalasiri, E.M.; Jahanshiri, E.; Suhairi, T.; Mapa, R.B.; Karunaratne, A.S.; Vidhanarachchi, L.P.; Udayangani, H.; Nizar, N.; Azam-Ali, S.N. The first version of nation-wide open 3D soil database for Sri Lanka. Data Brief 2020, 33, 106342. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D.D. Interactions of zinc with other nutrients in soils and plants: A review. Indian J. Fert. 2016, 12, 16–26. [Google Scholar]
- Kihara, J.; Nziguheba, G.; Zingore, S.; Coulibaly, A.; Esilaba, A.; Kabambe, V.; Njoroge, S.; Palm, C.; Huising, J. Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa. Agric. Ecosyst. Environ. 2016, 229, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanlauwe, B.; Tittonell, P.; Mukalama, J. Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. Nutr. Cycl. Agroecosystems 2006, 76, 171–182. [Google Scholar] [CrossRef]
- SIS. Soil Intelligence Systems Annual Report 2020; International Maize and Wheat Improvement Center (CIMMYT): New Delhi, India, 2020. [Google Scholar]
- Amede, T.; Gashaw, T.; Legesse, G.; Tamene, L.; Mekonen, K.; Thorne, P.; Schultz, S. Landscape positions dictating crop fertilizer responses in wheat-based farming systems of East African Highlands. Renew. Agric. Food Syst. 2020, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kishore, A.; Alvi, M.F.; Singh, V.V. Designing better input support programs: Lessons from zinc subsidies in Andhra Pradesh, India. PLoS ONE 2020, 15, e0242161. [Google Scholar] [CrossRef]
- Fishman, R.; Kishore, A.; Rothler, Y.; Ward, P.; Jha, S.; Singh, R. Can Information Help Reduce the Imbalanced Application of Fertilizers in India? Experimental Evidence from Bihar; Discussion Paper 1517; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2016. [Google Scholar]
- Kremer, M.; Miguel, E.E. The illusion of sustainability. Q. J. Econ. 2007, 122, 1007–1065. [Google Scholar] [CrossRef] [Green Version]
S.No | Source of Zn Fertilizer | Amount of Zn Fertilizer (kg Zn ha−1) | Method of Zn Application | Yield in t ha−1 | Yield Gain in % | Zn Content in mg kg−1 | Gain in Zn Content in % | Reference |
---|---|---|---|---|---|---|---|---|
1 | Control | 0 | No Zn | 3.87 | 27.1 | Shivay et al. [65] | ||
ZEU | 1.3 | 0.5% ZEU at 10 DAT and PI | 4.23 (0.36) | 9.3 | 28.4 (1.3) | 5 | ||
ZEU | 2.6 | 1.0% ZEU at 10 DAT and PI | 4.39 (0.52) | 13 | 32.6 (5.5) | 20 | ||
ZEU | 3.9 | 1.5% ZEU at 10 DAT and PI | 4.48 (0.61) | 16 | 35.5 (8.4) | 32 | ||
ZEU | 5.2 | 2.0% ZEU at 10 DAT and PI | 4.60 (0.73) | 18 | 39.0 (12) | 43 | ||
ZEU | 6.5 | 2.5% ZEU at 10 DAT and PI | 4.70 (0.83) | 21 | 41.2 (14) | 51 | ||
ZEU | 7.8 | 3.0% ZEU at 10 DAT and PI | 4.75 (0.88) | 23 | 42.3 (15.2) | 56 | ||
ZEU | 9.1 | 3.5% ZEU at 10 DAT and PI | 4.78 (0.91) | 24 | 43.5 (16.4) | 60 | ||
2 | Control | 0 | No zinc | 6.70 (0) | NA | 16.1 (0) | NA | Phattarakul et al. [21] |
Zn sulfate | 10 | Soil application | 7.00 (0.3) | 4.48 | 16.2 (0.1) | 0.62 | ||
Zn sulfate | 1 | 0.5% foliar application | 6.90 (0.2) | 2.99 | 17.7 (1.6) | 9.94 | ||
Zn sulfate | 11 | Soil + foliar application | 7.00 (0.3) | 4.48 | 18.4 (2.3) | 14.29 | ||
3 | Control | 0 | No zinc | 3.58 | NA | 20.0 | NA | Shivay et al. [68] (Aligarh, Uttar Pradesh site) |
Zn sulfate | 5 | Soil application | 3.93 (0.35) | 9.78 | 21.3 (1.3) | 6.5 | ||
Zn sulfate | 1 | 0.5% foliar application | 3.80 (0.22) | 6.15 | 22.0 (2) | 10 | ||
Zn sulfate | 6 | Soil + foliar application | 4.52 (0.94) | 26.26 | 25.0 (5) | 25 | ||
ZEU | 2.6 | 1.0% ZEU at 10 DAT and PI (soil) | 4.10 (0.52) | 14.53 | 23.8 (3.8) | 19 | ||
4 | Control | 0 | No zinc | 3.92 (0) | NA | 26.1 (0) | NA | Prasad et al. [35] |
Zn sulfate | 5.3 | Soil application | 5.20 (1.28) | 32.65 | 40.3 (14.2) | 54.41 | ||
Zn sulfate | 1.2 | 0.2% foliar application | 4.99 (1.07) | 27.30 | 28.8 (2.7) | 10.34 | ||
ZEU | 2.6 | 1.0% ZEU at 10 DAT and PI | 4.69 (0.77) | 19.64 | 34.1 (8) | 30.65 | ||
ZEU | 5.2 | 2.0% ZEU at 10 DAT and PI | 5.27 (1.35) | 34.44 | 42.1 (16) | 61.30 | ||
5 | Control | 0 | No zinc | 3.00 | 0 | 17.6 | 0 | Veni et al. [75] |
Zn sulfate | 5 | Soil application | 3.60 (0.6) | 20 | 20.2 (2.6) | 14.77 | ||
Zn sulfate | 1 | 0.5% foliar application | 3.50 (0.5) | 16.67 | 17.8 (0.2) | 1.14 | ||
Zn sulfate | 6 | Soil + 0.5% foliar application | 3.60 (0.6) | 20 | 21.9 (4.3) | 24.43 | ||
6 | Control | 0 | No zinc | 3.36 | NA | NA | NA | Pooniya and Shivay. [76] |
Zn sulfate | 5 | 2.0% ZEU (Zn sulfate coating with urea) | 3.79 (0.43) | 12.80 | NA | NA | ||
Zn sulfate | 5 | Soil application | 3.67 (0.31) | 9.23 | NA | NA | ||
Zn sulfate | 1 | 0.5% foliar application | 3.60 (0.24) | 7.14 | NA | NA | ||
7 | Control | 0 | No zinc | 3.50 | 0 | Faisalabad site | NA | Farooq et al. [77] |
Zn sulfate | 10 | Soil application | 4.60 (1.1) | 31.43 | NA | |||
Zn sulfate | 1 | 0.5% foliar application | 4.50 (1.0) | 28.57 | NA | |||
Control | 0 | No zinc | 3.40 | 0 | Sialkot site | NA | ||
Zn sulfate | 10 | Soil application | 4.70 (1.3) | 38.24 | NA | |||
Zn sulfate | 1 | 0.5% foliar application | 4.90 (1.5) | 44.12 | NA | |||
8 | Control | 0 | NA | 2.76 | NA | 23.25 (0) | NA | Bana et al. [78] |
ZEU | 1.3 | 2% ZEU through ZnO | NA | NA | 25.15 (1.90) | 8.17 | ||
ZEU | 1.3 | 2% ZEU through ZnSO4·7H2O | NA | NA | 27.41 (4.16) | 17.89 | ||
ZEU | 2.6 | 4% ZEU through ZnO | NA | NA | 27.78 (4.53) | 19.48 | ||
ZEU | 2.6 | 4% ZEU through ZnSO4·7H2O | NA | NA | 29.59 (6.34) | 27.27 | ||
9 | Control | 0 | Uncoated PU | 3.90 (0) | NA | 30.10 (0) | NA | Shivay and Prasad. [79] |
ZEU | 1.3 | 0.5% Zn (ZnO)-coated PU | 4.25 (0.35) | 8.97 | 33.30 (3.20) | 10.63 | ||
ZEU | 2.6 | 1.0% Zn (ZnO)-coated PU | 4.50 (0.6) | 15.38 | 38.40 (8.30) | 27.57 | ||
ZEU | 3.9 | 1.5% Zn (ZnO)-coated PU | 4.78 (0.88) | 22.56 | 41.80 (11.70) | 38.87 | ||
ZEU | 5.2 | 2.0% Zn (ZnO)-coated PU | 5.15 (1.25) | 32.05 | 45.00 (14.90) | 49.50 | ||
10 | Control | 0 | NA | 3.00 (0) | NA | 21.98 (0) | NA | Meena et al. [80] |
ZnSO4 | 0.3% | 0.3% at anthesis—foliar spray | 4.82 (1.82) | 60.67 | 23.03 (1.05) | 4.78 | ||
ZnSO4 | 0.3% | 0.3% at early milking—foliar spray | 4.44 (1.44) | 48.00 | 28.84 (6.86) | 31.21 | ||
ZnSO4 | 0.3% | 0.3% at dough stage—foliar spray | 4.25 (1.35) | 41.67 | 36.75 (14.77) | 67.20 | ||
11 | Control | 0 | NA | 6.74 (0) | NA | 17.00 (0) | NA | Jat et al. [81] |
ZEU | 5.0 | 2.0% ZEU (ZnSO4.7H2O) soil application | 7.53 (0.79) | 11.72 | 23.00 (6.00) | 35.29 | ||
ZEU | 5.0 | 2.0% ZEU (ZnO) soil application | 7.30 (0.56) | 8.31 | 20.00 (3.00) | 17.65 | ||
ZnSO4 | 5.0 | 5.0 kg Zn/ha (ZnSO4.7H2O) soil application | 7.17 (0.43) | 6.38 | 21.10 (4.10) | 24.12 | ||
ZnO | 5.0 | 5.0 kg Zn/ha (ZnO) soil application | 7.04 (0.3) | 4.45 | 19.20 (2.20) | 12.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peramaiyan, P.; Craufurd, P.; Kumar, V.; Seelan, L.P.; McDonald, A.J.; Balwinder-Singh; Kishore, A.; Singh, S. Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia. Sustainability 2022, 14, 7747. https://doi.org/10.3390/su14137747
Peramaiyan P, Craufurd P, Kumar V, Seelan LP, McDonald AJ, Balwinder-Singh, Kishore A, Singh S. Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia. Sustainability. 2022; 14(13):7747. https://doi.org/10.3390/su14137747
Chicago/Turabian StylePeramaiyan, Panneerselvam, Peter Craufurd, Virender Kumar, Lavanya P. Seelan, Andrew J. McDonald, Balwinder-Singh, Avinash Kishore, and Sudhanshu Singh. 2022. "Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia" Sustainability 14, no. 13: 7747. https://doi.org/10.3390/su14137747
APA StylePeramaiyan, P., Craufurd, P., Kumar, V., Seelan, L. P., McDonald, A. J., Balwinder-Singh, Kishore, A., & Singh, S. (2022). Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia. Sustainability, 14(13), 7747. https://doi.org/10.3390/su14137747