Defining Priority Areas for the Sustainable Development of the Desalination Industry in Chile: A GIS Multi-Criteria Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study-Site Features: Chilean Far- and Near -North, and Central Zones
2.2. Establishment of Selection Criteria
2.3. Systematization of Geographical Information
2.4. Multi-Criteria Factor Weight Analysis Survey
2.5. Implementation of the Multi-Criteria Assessment
3. Results
3.1. Selected Factors and Constraints
3.2. Survey Application with a Multi-Criteria Approach
3.3. GIS-MCA Site Suitability Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gude, V.G. Desalination and water reuse to address global water scarcity. Rev. Environ. Sci. Bio/Technol. 2017, 16, 591–609. [Google Scholar] [CrossRef]
- Mayor, B. Growth patterns in mature desalination technologies and analogies with the energy field. Desalination 2019, 457, 75–84. [Google Scholar] [CrossRef]
- Tsiourtis, N.X. Criteria and procedure for selecting a site for a desalination plant. Desalination 2008, 221, 114–125. [Google Scholar] [CrossRef]
- Aydin, F.; Sarptas, H. Spatial assessment of site suitability for solar desalination plants: A case study of the coastal regions of Turkey. Clean Technol. Environ. Policy 2020, 22, 309–323. [Google Scholar] [CrossRef]
- Sanver, A.; May, S.C. Site Selection. In The Desalination Processes Site Selection, Layout and Civil Works; EOLSS Publications: Abu Dhabi, United Arab Emirates, 2010; Volume I, p. 278. [Google Scholar]
- Yal, G.P.; Akgün, H. Landfill site selection utilizing TOPSIS methodology and clay liner geotechnical characterization: A case study for Ankara, Turkey. Bull. Eng. Geol. Environ. 2014, 73, 369–388. [Google Scholar] [CrossRef]
- Kharat, M.G.; Kamble, S.J.; Raut, R.D.; Kamble, S.S.; Dhume, S.M. Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Syst. Environ. 2016, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Sepehr, M.; Fatemi, S.M.R.; Danehkar, A.; Moradi, A.M. Application of Delphi method in site selection of desalination plants. Glob. J. Environ. Sci. Manag. GJESM 2017, 3, 89–102. [Google Scholar] [CrossRef]
- Chaudhary, P.; Chhetri, S.K.; Joshi, K.M.; Shrestha, B.M.; Kayastha, P. Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan City, Nepal. Socio-Econ. Plan. Sci. 2016, 53, 60–71. [Google Scholar] [CrossRef]
- Kallali, H.; Anane, M.; Jellali, S.; Tarhouni, J. GIS-based multi-criteria analysis for potential wastewater aquifer recharge sites. Desalination 2007, 215, 111–119. [Google Scholar] [CrossRef]
- Uyan, M. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renew. Sustain. Energy Rev. 2013, 28, 11–17. [Google Scholar] [CrossRef]
- Sadri, S.; Rahmani, F. Desalination site selection process in the coastal areas with the approach of energy cost reduction (Case study: South of Iran). Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–10. [Google Scholar] [CrossRef]
- Kondili, E.; Kaldellis, J.K.; Paidousi, M. A multicriteria analysis for the optimal desalination–RES system. Special focus: The small Greek islands. Desalin. Water Treat. 2013, 51, 1205–1218. [Google Scholar] [CrossRef]
- Chen, J. GIS-based multi-criteria analysis for land use suitability assessment in City of Regina. Environ. Syst. Res. 2014, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Gholamalifard, M.; Ahmadi, B.; Saber, A.; Mazloomi, S.; Kutser, T. Deploying a GIS-Based Multi-Criteria Evaluation (MCE) Decision Rule for Site Selection of Desalination Plants. Water 2022, 14, 1669. [Google Scholar] [CrossRef]
- Dawoud, O.; Ahmed, T.; Abdel-Latif, M.L.; Abunada, Z.J.D. A spatial multi-criteria analysis approach for planning and management of community-scale desalination plants. Desalination 2020, 485, 114426. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef] [Green Version]
- Alvez, A.; Aitken, D.; Rivera, D.; Vergara, M.; McIntyre, N.; Concha, F. At the crossroads: Can desalination be a suitable public policy solution to address water scarcity in Chile’s mining zones? J. Environ. Manag. 2020, 258, 110039. [Google Scholar] [CrossRef]
- Martínez, C.; Contreras-López, M.; Winckler, P.; Hidalgo, H.; Godoy, E.; Agredano, R. Coastal erosion in central Chile: A new hazard? Ocean Coast. Manag. 2018, 156, 141–155. [Google Scholar] [CrossRef]
- Salinas, C.X.; Mendieta, J. Numerical model to assess the impact of the strategies to mitigate desertification. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 551–566. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Aceituno, P.; Boisier, J.P.; Garreaud, R.; Rondanelli, R.; Rutllant, J.A. Climate and Weather in Chile. In Water Resources of Chile; Fernández, B., Gironás, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 7–29. [Google Scholar]
- Rikalovic, A.; Cosic, I.; Lazarevic, D. GIS Based Multi-criteria Analysis for Industrial Site Selection. Procedia Eng. 2014, 69, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Shahabi, M.P.; Anda, M.; Ho, G. Influence of site-specific parameters on environmental impacts of desalination. Desalin. Water Treat. 2015, 55, 2357–2363. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Company: New York, NY, USA, 1980. [Google Scholar]
- Mendoza, A.; Solano, C.; Palencia, D.; Garcia, D. Application of the Analytical Hierarchy Process (AHP) for decision-making with expert judgment. Ingeniare. Rev. Chil. Ingeniería. 2019, 27, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Voutchkov, N. Desalination Project Cost Estimating and Management; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Heck, N.; Potts, D.; Haddad, B. Predictors of local support for a seawater desalination plant in a small coastal community. Environ. Sci. Policy 2016, 66, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Fragkou, M.C.; McEvoy, J. Trust matters: Why augmenting water supplies via desalination may not overcome perceptual water scarcity. Desalination 2016, 397, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Comisión Chilena del Cobre. Proyección de Consumo de Agua en La Minería del Cobre 2020–2031; COCHILCO: Santiago, Chile, 2020. [Google Scholar]
- Petry, M.; Sanz, M.A.; Langlais, C.; Bonnelye, V.; Durand, J.P.; Guevara, D.; Nardes, W.M.; Saemi, C.H. The El Coloso (Chile) reverse osmosis plant. Desalination 2007, 203, 141–152. [Google Scholar] [CrossRef]
- Donoso, G. Management of Water Resources in Agriculture in Chile and its Challenges. Int. J. Agric. Nat. Resour. 2021, 48, 171–185. [Google Scholar]
- Herrera-Leóna, S.; Cruzb, C.; Kraslawskib, A.; Cisternasc, L.A.J.D. Current situation and major challenges of desalination in Chile. Desalination Water Treat. 2019, 171, 93–104. [Google Scholar] [CrossRef]
- Muñoz, A.A.; Klock-Barría, K.; Alvarez-Garreton, C.; Aguilera-Betti, I.; González-Reyes, Á.; Lastra, J.A.; Chávez, R.O.; Barría, P.; Christie, D.; Rojas-Badilla, M.; et al. Water Crisis in Petorca Basin, Chile: The Combined Effects of a Mega-Drought and Water Management. Water 2020, 12, 648. [Google Scholar] [CrossRef] [Green Version]
- Superintendencia de Servicios Sanitarios. Protocolo de Racionamiento de Agua para el Gran Santiago; SISS: Santiago, Chile, 2022. [Google Scholar]
Geospatial Data | Source | Year |
---|---|---|
Wild Areas Protected by the State | Register of Protected Areas, Chilean Environmental Minister | 2021 |
Populated areas | Chilean Meteorological Directorate | 2016 |
Indigenous communities | National Corporation for Indigenous Development | 2017 |
Administrative Political Division | Geospatial Data Infrastructure | 2019 |
Coastline | Geospatial Data Infrastructure | 2020 |
Power supply grid | National Energy Commission | 2016 |
Alos Palsar Digital Elevation Model | Natural Resources Information Center | 2019 |
Road network | Geospatial Data Infrastructure | 2019 |
Suitability | Pixel Value | Decile |
---|---|---|
Very high | 1 | 10 |
High | 2 | 25 |
Medium | 3 | 50 |
Low | 4 | 75 |
Very low | 5 | >75 |
Factors | ||||||
---|---|---|---|---|---|---|
Feasibility | Altitude [m.a.s.l.] | Populated Settlements [m] | Coastline [m] | Power Supply Grid [m] | Land Slope [°] | Road Network [m] |
Very high | ≤300 | >5000 | ≤100 | ≤200 | ≤3 | ≤100 |
High | 600 | 5000 | 200 | 500 | 5 | 200 |
Medium | 900 | 2000 | 300 | 1500 | 8 | 400 |
Low | 1200 | 400 | 800 | 5000 | 12 | 900 |
Very low | 1500 | ≤100 | >2500 | >5000 | 15 | >900 |
Criteria | Altitude | Populated Areas | Coastline | Power Supply | Road Network | Slope | W |
---|---|---|---|---|---|---|---|
Altitude | 1 | 5 | 1 | 2 | 5 | 4 | 0.289 |
Populated areas | 1/5 | 1 | 1/5 | 1/2 | 1/2 | 1 | 0.057 |
Coastline | 1 | 5 | 1 | 4 | 5 | 6 | 0.351 |
Power supply | 1/2 | 2 | ¼ | 1 | 5 | 5 | 0.176 |
Road network | 1/5 | 2 | 1/5 | 1/5 | 1 | 1/2 | 0.061 |
Slope | 1/4 | 1 | 1/6 | 1/5 | 2 | 1 | 0.065 |
Region | N° | Area | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Very High | High | Medium | Low | Very Low | Total | ||||||||
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | ||
Arica y Parinacota | XV | 110 | 0.10 | 523 | 0.46 | 894 | 0.78 | 1357 | 1.19 | 1271 | 1.11 | 4155 | 3.63 |
Tarapacá | I | 297 | 0.26 | 877 | 0.77 | 3686 | 3.22 | 7782 | 6.80 | 4606 | 4.02 | 17,247 | 15.07 |
Antofagasta | II | 1053 | 0.92 | 2301 | 2.01 | 5206 | 4.55 | 9325 | 8.15 | 14,485 | 12.66 | 32,368 | 28.27 |
Atacama | III | 1039 | 0.91 | 6373 | 5.57 | 7524 | 6.57 | 717 | 6.27 | 7081 | 6.19 | 29,187 | 25.50 |
Coquimbo | IV | 1241 | 1.08 | 3796 | 3.32 | 4377 | 3.82 | 4711 | 4.12 | 5972 | 5.22 | 20,099 | 17.56 |
Valparaíso | V | 800 | 0.70 | 2138 | 1.87 | 1144 | 1.00 | 992 | 0.87 | 1366 | 1.19 | 6439 | 5.63 |
Metropolitana | RM | 656 | 0.57 | 2168 | 1.89 | 1012 | 0.88 | 610 | 0.53 | 515 | 0.45 | 4959 | 4.34 |
Total | 5195 | 4.54 | 18,174 | 15.88 | 23,842 | 20.83 | 31,947 | 27.91 | 35,277 | 30.84 | 114,452 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Bartolomei, E.; Vásquez, V.; Rebolledo, G.; Vivallo, A.; Acuña-Ruz, T.; Rebolledo, J.; Orrego, R.; Barra, R.O. Defining Priority Areas for the Sustainable Development of the Desalination Industry in Chile: A GIS Multi-Criteria Analysis Approach. Sustainability 2022, 14, 7772. https://doi.org/10.3390/su14137772
García-Bartolomei E, Vásquez V, Rebolledo G, Vivallo A, Acuña-Ruz T, Rebolledo J, Orrego R, Barra RO. Defining Priority Areas for the Sustainable Development of the Desalination Industry in Chile: A GIS Multi-Criteria Analysis Approach. Sustainability. 2022; 14(13):7772. https://doi.org/10.3390/su14137772
Chicago/Turabian StyleGarcía-Bartolomei, Enzo, Vanesa Vásquez, Gonzalo Rebolledo, Andrés Vivallo, Tomás Acuña-Ruz, José Rebolledo, Rodrigo Orrego, and Ricardo O. Barra. 2022. "Defining Priority Areas for the Sustainable Development of the Desalination Industry in Chile: A GIS Multi-Criteria Analysis Approach" Sustainability 14, no. 13: 7772. https://doi.org/10.3390/su14137772
APA StyleGarcía-Bartolomei, E., Vásquez, V., Rebolledo, G., Vivallo, A., Acuña-Ruz, T., Rebolledo, J., Orrego, R., & Barra, R. O. (2022). Defining Priority Areas for the Sustainable Development of the Desalination Industry in Chile: A GIS Multi-Criteria Analysis Approach. Sustainability, 14(13), 7772. https://doi.org/10.3390/su14137772