The Improved Phosphorus Solubility of Mechanochemically Activated Phosphate Rock and Its Effect on Soil-Available Phosphorus in Weakly Acidic Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phosphorus Solubility in Citric Acid Determination
2.2. Infrared Spectroscopy Analysis
2.3. Soil Incubation Experiment
2.4. Data Analysis and Statistics
3. Results
3.1. Variations in the Extractable P Content and P Solubility Rate of Mechanochemically Activated Phosphate Rock
3.2. Changes in Surface Groups of Mechanochemically Activated Phosphate Rock
3.3. Dynamic Release Characteristics of Soil-Available Phosphorus Applied with Mechanochemically Activated Phosphate Rock
4. Discussion
4.1. Effects of Mechanochemically Activated Phosphate Rock on P Solubility
4.2. Effect of Mechanical Activation on Changes in the Surface Groups of Phosphate Rock
4.3. Effects of Mechanochemically Activated Phosphate Rock on Soil-Available P
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bünemann, E.K.; Condron, L.M. Phosphorus and sulphur cycling in terrestrial ecosystems. In Nutrient Cycling in Terrestrial Ecosystems; Marschner, P., Rengel, Z., Eds.; Springer: Berlin, Germany, 2007; pp. 65–92. [Google Scholar]
- Condron, L.M.; Turner, B.L.; Cade-Menun, B.J.; Sims, J.; Sharpley, A. Chemistry and dynamics of soil organic phosphorus, In Phosphorus: Agriculture and the Environment; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; Sims, J.T., Sharpley, A.N., Eds.; Soil Science Society of America: Madison, WI, USA, 2005; pp. 87–121. [Google Scholar]
- Hinsinger, P.; Betencourt, E.; Bernard, L.; Brauman, A.; Plassard, C.; Shen, J.; Zhang, T.F. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 2011, 156, 1078–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.L.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management practices on farms. Nutr. Cycl. Agroecosys. 2016, 104, 393–412. [Google Scholar] [CrossRef]
- Koppelaar, R.H.; Weikard, H.P. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Change 2013, 23, 1454–1466. [Google Scholar] [CrossRef]
- Friesen, D.K.; Sale PW, G.; Blair, G.J. Long-term greenhouse evaluation of partially acidulated phosphate rock fertilizers. II Effect of cogranulation with elemental S on availability of P from two phosphate rocks. Fertil Res. 1987, 13, 45–54. [Google Scholar] [CrossRef]
- Fernandez-Bertran, J.F. Mechanochemistry: An overview. Pure Appl. Chem. 1999, 71, 581–586. [Google Scholar] [CrossRef]
- Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering; Springer: Berlin/Heidelberg, Germany, 2008; pp. 297–405. [Google Scholar]
- Yaneva, V.; Petrov, O.; Petkova, V. Structural and spectroscopic studies of mechanochemically activated nanosized apatite from Syria. Mater. Res. Bull. 2009, 44, 693–699. [Google Scholar] [CrossRef]
- Jin, L.; Sun, L.; Wang, L.; Shi, Y. Studies on the mechanical activation of Huangmailing phosphorite. Res. J. Chem. Environ. 2013, 17, S156–S162. [Google Scholar]
- Tõnsuaadu, K.; Kaljuvee, T.; Petkova, V.; Traksmaa, R.; Bender, V.; Kirsimäe, K. Impact of mechanical activation on physical and chemical properties of phosphorite concentrates. Int. J. Miner. Process. 2011, 100, 104–109. [Google Scholar] [CrossRef]
- Petkova, V.; Koleva, V.; Kostova, B.; Sarov, S. Structural and thermal transformations on high energy milling of natural apatite. J. Therm. Anal. Calorim. 2015, 121, 217–225. [Google Scholar] [CrossRef]
- Fang, N.; Shi, Y.; Chen, Z.; Sun, X.; Zhang, L.; Yi, Y. Effect of mechanochemical activation of natural phosphorite structure as well as phosphorus solubility. PLoS ONE 2019, 14, e0224423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerald, S.; Bernhard, G.; Ingrid, W.; Michael, C.M. Efficiency developments in phosphate rock mining over the last three decades. Resour. Conserv. Recy. 2015, 105, 235–245. [Google Scholar]
- Wang, S.D.; Zhang, H.Y. Phosphate rock resources and phosphate fertilizer production and its consumption in China. Ind. Miner. Processing 2007, 9, 30–32. (In Chinese) [Google Scholar]
- Xue, K.; Zhang, R.Y. Advances of researches on the distribution and metallogenic characteristics of phosphorus deposits in China. Acta Miner. Sin. 2019, 39, 7–14. [Google Scholar]
- Fang, N.N.; Chen, Z.H.; Liu, Z.Q.; Dai, H.M.; Yang, X.M.; Wang, W. Effects of mechanochemically activated phosphate rock on maize growth and phosphorus use. Plant Soil Environ. 2022, 68, 155–161. [Google Scholar] [CrossRef]
- Zhang, X.M.; Li, Y.; Hu, C.; He, Z.Q.; Wen, M.X.; Gai, G.S.; Huang, Z.H.; Yang, Y.F.; Hao, X.Y.; Li, X.Y. Enhanced Phosphorus Release from Phosphate Rock Activated with Lignite by Mechanical Microcrystallization: Effects of Several Typical Grinding Parameters. Sustainability 2019, 11, 1068. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Soil Agricultural Chemical Routine Analytical Method, 1st ed.; China Science Publishing and Media Ltd.: Beijing, China, 1983. (In Chinese) [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 26, 31–36. [Google Scholar] [CrossRef]
- Bolan, N.S.; White, R.E.; Hedley, M.J. A review of the use of phosphate rocks as fertilizers for direct application in australia and new zealand. Aust. J. Exp. Agric. 1990, 30, 297–313. [Google Scholar] [CrossRef]
- Winand, L.; Dallemagne, M.J.; Duyckaerts, G. Hydrogen bonding in apatitic calcium phosphates. Nature 1961, 190, 164–165. [Google Scholar] [CrossRef]
- Chaikina, M.V. Mechanochemistry of Natural and Synthetic Apatites; Publishing House of SB RAS, Branch “GEO”: Novosibirsk, Russia, 2002; pp. 11–15, 105–107, 114–115, 139. [Google Scholar]
- Pierzynski, G.M.; McDowell, R.W.; Sims, J.T. Chemistry, Cycling, and Potential Movement of Inorganic Phoshphorus in Soils. In Phorphorus: Agriculture and the Environment; Sims, J.R., Sharpley, A.N., Eds.; American Society of Agronomy, Inc.; Crop Sciencce Society of America, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 2005; pp. 53–86. [Google Scholar]
- Hagin, J.; Harrison, R. Phosphate rocks and partially-acidulated phosphate rocks as controlled release P fertilizers. Fertil Res. 1993, 35, 25–32. [Google Scholar] [CrossRef]
No. | SiO2 (%) | Al2O3 (%) | Fe2O3 (%) | MgO (%) | CaO (%) | Na2O (%) | CO2 (%) | P (%) | SO3 (%) | F (%) | H2O (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 2.33 | 0.78 | 2.03 | 0.45 | 51.63 | 0.36 | 5.10 | 5.83 | 2.08 | 2.00 | 0.26 |
B | 3.17 | 3.35 | 1.57 | 0.89 | 28.69 | 0.30 | 2.09 | 4.87 | 0.094 | 1.74 | 1.58 |
C | 5.15 | 1.08 | 0.85 | 2.49 | 47.15 | 0.26 | 6.00 | 5.92 | 0.023 | 2.38 | 0.99 |
pH | Total N g kg−1 | Total P g kg−1 | Total K g kg−1 | Available N mg kg−1 | Available P mg kg−1 | Available K mg kg−1 |
---|---|---|---|---|---|---|
5.94 | 0.75 | 0.07 | 0.26 | 10.53 | 20.36 | 92.51 |
Treatment | Phosphate Rock (g pot−1) |
---|---|
CK | - |
A | 1.53 |
MA | 1.53 |
B | 2.24 |
MB | 2.24 |
C | 1.84 |
MC | 1.84 |
No. | Band Position (cm−1) | Vibrational Mode | ||||||
---|---|---|---|---|---|---|---|---|
0 min | 10 min | 20 min | 30 min | 40 min | 50 min | 60 min | ||
1. | - | - | - | - | 519 | 520 | 520 | Asymmetric O–P–O (ν4) bending mode in β-Ca(PO3)2 (40, 50, 60 min) |
2. | 574 | 576 | 574 | 574 | 575 | 574 | 573 | Doubly degenerate asymmetric O–P–O (ν4) stretching mode in CFAp |
601 | 601 | 603 | 601 | 602 | 604 | 602 | ||
3. | 745 | 743 | 744 | 741 | 736 | 738 | 738 | Degenerate symmetric Si–O–Si (ν1) stretching mode in α-SiO2 |
4. | 872 | 874 | 871 | 873 | - | 873 | 875 | Symmetric O–C–O (ν2) bending mode in CaCO3 and B-type CO32− in CFAp |
5. | 962 | 964 | 963 | 961 | 963 | 963 | 964 | Symmetric P–O–P (ν1) stretching mode of PO43− in CFAp (and/or CFOHAp) |
6. | 1050 | 1048 | 1050 | 1044 | 1046 | 1046 | 1046 | Asymmetric P–O–P (ν3) stretching mode of PO43− in CFAp (and/orCFOHAp), of PO32− in β-Ca(PO3)2 |
1094 | 1093 | 1094 | 1095 | 1092 | 1091 | 1091 | ||
7. | - | - | 1424 | 1426 | 1427 | 1424 | 1424 | Doubly degenerate asymmetric O–C–O (ν3) stretching mode of B-type CO32− in CFAp (and/or CFOHAp) and/or CaCO3 (20, 30, 40, 50, 60 min) |
1445 | 1459 | 1456 | 1459 | 1461 | 1457 | 1458 | ||
8. | 1636 | 1627 | 1630 | 1626 | - | - | - | Degenerate symmetric OH− (ν2) bending mode in crystal water (40, 50, 60 min) |
9. | - | 2962 | - | - | - | - | - | Symmetric OH− (ν1) stretching mode in crystal water (10, 20, 30 min) |
- | - | 3433 | 3367 | - | - | - | ||
10. | 3540 | 3537 | 3535 | 3537 | 3535 | 3535 | 3539 | Symmetric OH− (ν1) stretching mode in structure associate water |
No. | Band Position (cm−1) | Vibrational Mode | ||||||
---|---|---|---|---|---|---|---|---|
0 min | 10 min | 20 min | 30 min | 40 min | 50 min | 60 min | ||
1. | - | 515 | 515 | 516 | 515 | 516 | 515 | Asymmetric O–P–O (ν4) bending mode in β-Ca(PO3)2 (10, 20, 30, 40, 50, 60 min) |
2. | 575 | 575 | 575 | 576 | 575 | 577 | 575 | Doubly degenerate asymmetric O–P–O (ν4) stretching mode in CFAp |
605 | 603 | 603 | 603 | 602 | 603 | 602 | ||
3. | 693 | 694 | 694 | 695 | 694 | 695 | 693 | OH- vibrational mode in OHFAp (and/or CFOHAp) |
4. | 778 | 779 | 778 | 778 | 778 | 778 | 778 | Degenerate symmetric Si–O–Si (ν1) stretching mode in α-SiO2 |
797 | 798 | 797 | 798 | 797 | 799 | 798 | ||
5. | 1049 | 1052 | 1057 | 1061 | 1061 | 1061 | 1058 | Asymmetric P–O–P (ν3) stretching mode of PO43− in CFAp (and/orCFOHAp), of PO32− in β-Ca(PO3)2 |
1093 | 1094 | 1093 | 1095 | 1094 | - | - | ||
6. | - | 1162 | 1162 | 1162 | 1162 | 1165 | 1163 | asymmetric Si–O–Si (ν3) stretching mode in α-SiO2 (10, 20, 30, 40, 50, 60 min) |
7. | 1428 | 1430 | 1427 | 1429 | 1427 | 1427 | 1427 | Doubly degenerate asymmetric O–C–O (ν3) stretching mode of B-type CO32− in CFAp (and/or CFOHAp) and/or CaCO3 |
1454 | 1454 | 1454 | 1453 | 1455 | 1456 | 1455 | ||
8. | 1619 | 1631 | 1619 | 1615 | 1631 | 1621 | 1622 | Degenerate symmetric OH− (ν2) bending mode in crystal water |
9. | - | - | 2349 | - | 2925 | - | - | Symmetric OH− (ν1) stretching mode in crystal water |
- | - | - | - | 2976 | - | - | ||
3440 | 3431 | 3411 | 3434 | 3417 | 3425 | 3423 | ||
10. | 3618 | - | - | - | - | - | - | Symmetric OH− (ν1) stretching mode in structure associate water (0 min) |
No. | Band Position (cm−1) | Vibrational Mode | ||||||
---|---|---|---|---|---|---|---|---|
0 min | 10 min | 20 min | 30 min | 40 min | 50 min | 60 min | ||
1. | - | - | - | - | 518 | 519 | 520 | Asymmetric O–P–O (ν4) bending mode in β-Ca(PO3)2 (40, 50, 60 min) |
2. | 574 | 575 | 575 | 573 | 573 | 575 | 575 | Doubly degenerate asymmetric O–P–O (ν4) stretching mode in CFAp |
602 | 602 | 603 | 604 | 604 | 603 | 604 | ||
3. | - | 693 | 693 | 694 | 692 | 694 | 695 | OH− vibrational mode in OHFAp (and/or CFOHAp) (10, 20, 30, 40, 50,60 min) |
4. | 726 | 728 | 729 | 731 | 739 | - | - | Degenerate symmetric Si–O–Si (ν1) stretching mode in α-SiO2 |
- | 797 | 799 | 798 | 799 | 799 | 799 | ||
5. | 879 | 880 | 871 | 868 | 868 | 868 | 868 | Symmetric O–C–O (ν2) bending mode in CaCO3 and B-type CO32− in CFAp |
6. | 963 | 963 | 964 | 963 | 963 | 963 | 964 | Symmetric P–O–P (ν1) stretching mode of PO43− in CFAp (and/or CFOHAp) |
7. | 1040 | 1047 | 1025 | 1060 | 1061 | 1051 | 1047 | Asymmetric P–O–P (ν3) stretching mode of PO43− in CFAp (and/orCFOHAp), of PO32− in β-Ca(PO3)2 |
1095 | 1095 | - | - | - | 1093 | 1090 | ||
8. | 1428 | - | 1430 | 1426 | 1425 | 1424 | 1424 | Doubly degenerate asymmetric O–C–O (ν3) stretching mode of B-type CO32− in CFAp (and/or CFOHAp) and/or CaCO3 (0, 20, 30, 40, 50, 60 min) |
1455 | 1457 | 1456 | 1455 | 1456 | 1456 | 1455 | ||
9. | 2880 | 3047 | 3037 | 3396 | 3390 | 2987 | 3135 | Symmetric OH− (ν1) stretching mode in crystal water |
10. | 3688 | 3541 | 3535 | 3534 | 3531 | 3534 | 3537 | Symmetric OH− (ν1) stretching mode in structure associate water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, N.; Liang, S.; Dai, H.; Xiao, H.; Han, X.; Liu, G. The Improved Phosphorus Solubility of Mechanochemically Activated Phosphate Rock and Its Effect on Soil-Available Phosphorus in Weakly Acidic Soil. Sustainability 2022, 14, 7869. https://doi.org/10.3390/su14137869
Fang N, Liang S, Dai H, Xiao H, Han X, Liu G. The Improved Phosphorus Solubility of Mechanochemically Activated Phosphate Rock and Its Effect on Soil-Available Phosphorus in Weakly Acidic Soil. Sustainability. 2022; 14(13):7869. https://doi.org/10.3390/su14137869
Chicago/Turabian StyleFang, Nana, Shuai Liang, Huimin Dai, Hongye Xiao, Xiaomeng Han, and Guodong Liu. 2022. "The Improved Phosphorus Solubility of Mechanochemically Activated Phosphate Rock and Its Effect on Soil-Available Phosphorus in Weakly Acidic Soil" Sustainability 14, no. 13: 7869. https://doi.org/10.3390/su14137869
APA StyleFang, N., Liang, S., Dai, H., Xiao, H., Han, X., & Liu, G. (2022). The Improved Phosphorus Solubility of Mechanochemically Activated Phosphate Rock and Its Effect on Soil-Available Phosphorus in Weakly Acidic Soil. Sustainability, 14(13), 7869. https://doi.org/10.3390/su14137869