How Impactful Are Public Policies on Environmental Sustainability? Debating the Portuguese Case of PO SEUR 2014–2020
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Main Policy Impacts of PO SEUR
3.2. Policy Intensity
3.3. Regional Sensibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sachs, F. The Age of Sustainable Development; Columbia University Press: New York, NY, USA, 2015. [Google Scholar]
- Medeiros, E. Portugal 2020: An Effective Policy Platform to Promote Sustainable Territorial Development? Sustainability 2020, 12, 1126. [Google Scholar] [CrossRef] [Green Version]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2016. [Google Scholar]
- EC. A European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- EC. Quality of Public Administration. A Toolbox for Practitioners; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Medeiros, E.; Rauhut, D. Territorial Cohesion Cities: A policy recipe for achieving Territorial Cohesion? Reg. Stud. 2020, 54, 120–128. [Google Scholar] [CrossRef]
- Medeiros, E. The territorialisation of the UN Agenda 2030 and cross-cutting issues in energy, environment and health: The case of Portugal. In Sustainable Policies and Practices in Energy, Environment and Health Research; Filho, W.L., Vidal, D.G., Dinis, M.A.P., Dias, R.C., Eds.; Springer: Cham, Switzerland, 2022; pp. 393–411. [Google Scholar]
- CEDRU. PO SEUR. Avaliação Ex-Ante; CEDRU e Augusto Mateus: Lisbon, Portugal, 2014. [Google Scholar]
- Blewitt, J. (Ed.) Understanding Sustainable Development, 3rd ed.; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Boström, M. A missing pillar? Challenges in theorizing and practicing social sustainability: Introduction to the special issue, Sustainability: Science. Pract. Policy 2012, 8, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Despotovic, D.; Cvetanovic, S.; Nedic, V.; Despotovic, M. Economic, social and environmental dimension of sustainable competitiveness of European countries. J. Environ. Plan. Manag. 2016, 59, 1656–1678. [Google Scholar] [CrossRef]
- Murphy, K. The social pillar of sustainable development: A literature review and framework for policy analysis. Sustain. Sci. Pract. Policy 2012, 8, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Wall, G. Beyond sustainable development. Tour. Recreat. Res. 2018, 43, 390–399. [Google Scholar] [CrossRef]
- Freistein, K.; Mahlert, B. The potential for tackling inequality in the Sustainable Development Goals. Third World Q. 2016, 37, 2139–2155. [Google Scholar] [CrossRef]
- Cuiying, Z. Implementing Sustainable Development Strategies. Chin. J. Popul. Resour. Environ. 2004, 2, 49–52. [Google Scholar] [CrossRef]
- Almeida, M. The use of rural areas in Portugal: Historical perspective and the new trends. Rev. Galega Econ. 2020, 29, 1–17. [Google Scholar] [CrossRef]
- Filho, W.; Azeiteiro, U.; Alves, F.; Pace, P.; Mifsud, M.; Brandli, L.; Caeiro, S.; Disterheft, A. Reinvigorating the sustainable development research agenda: The role of the sustainable development goals (SDG). Int. J. Sustain. Dev. World Ecol. 2018, 25, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Güney, T. Renewable energy, non-renewable energy and sustainable development. Int. J. Sustain. Dev. World Ecol. 2019, 26, 389–397. [Google Scholar] [CrossRef]
- Bexell, M.; Jönsson, K. Responsibility and the United Nations’ Sustainable Development Goals. Forum Dev. Stud. 2017, 44, 13–29. [Google Scholar] [CrossRef] [Green Version]
- UN. World Cities Report 2020. The Value of Sustainable Urbanization; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2020. [Google Scholar]
- Colomb, C.; Santinha, G. European Union Competition Policy and the European Territorial Cohesion Agenda: An Impossible Reconciliation? State Aid Rules and Public Service Liberalization through the European Spatial Planning Lens. Eur. Plan. Stud. 2014, 22, 459–480. [Google Scholar] [CrossRef]
- Yazdi, S.; Shakouri, B. The effect of renewable energy and urbanization on CO2 emissions: A panel data. Energy Sources Part B Econ. Plan. Policy 2018, 13, 121–127. [Google Scholar] [CrossRef]
- Medeiros, E.; van der Zwet, A. Evaluating integrated sustainable urban development strategies: A methodological framework applied in Portugal. Eur. Plan. Stud. 2020, 28, 563–582. [Google Scholar] [CrossRef]
- Hansmann, R.; Mieg, H.; Frischknecht, P. Principal sustainability components: Empirical analysis of synergies between the three pillars of sustainability. Int. J. Sustain. Dev. World Ecol. 2012, 19, 451–459. [Google Scholar] [CrossRef]
- Hanna, K. Routledge Handbook of Environmental Impact Assessment; Routordge: New York, NY, USA, 2022. [Google Scholar]
- Medeiros, E. (Ed.) Territorial Impact Assessment. Advances in Spatial Science; Springer: Cham, Switzerland, 2020. [Google Scholar]
- ESPON 3.2. Spatial Scenarios and Orientations in Relation to the ESDP and Cohesion Policy; Volume 5—Territorial Impact Assessment, Final Report, October 2006; ESPON: Luxembourg, 2006. [Google Scholar]
- ESPON. Territorial Impact Assessment of Policies and EU Directives; A Practical Guidance for Policymakers and Practitioners Based on Contributions from ESPON Projects and the European Commission; ESPON: Luxembourg, 2012. [Google Scholar]
- Alvarenga, A. Towards a Carbon Neutral Economy. How Is Portugal Going to Create Employment and Growth? Técnico Lisboa: Lisbon, Portugal, 2017. [Google Scholar]
- Silva, L.; Sareen, S. Solar photovoltaic energy infrastructures, land use and sociocultural context in Portugal. Local Environ. 2021, 26, 347–363. [Google Scholar] [CrossRef]
- Nunes, L.; Matias, J.; Catalão, J.P.S. Biomass in the generation of electricity in Portugal: A review. Renew. Sustain. Energy Rev. 2017, 71, 373–378. [Google Scholar] [CrossRef]
- Mota, P.; Pinto, J.P. Wave energy potential along the western Portuguese coast. Renew. Energy 2014, 71, 8–17. [Google Scholar] [CrossRef]
- EC. The Strategic Energy Technology (SET) Plan; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Fuinhas, J.A.; Koengkan, M.; Silva, N.; Kazemzadeh, E.; Auza, A.; Santiago, R.; Teixeira, M.; Osmani, F. The Impact of Energy Policies on the Energy Efficiency Performance of Residential Properties in Portugal. Energies 2022, 15, 802. [Google Scholar] [CrossRef]
- Turco, M.; Jerez, S.; Augusto, S.; Tarín-Carrasco, P.; Ratola, N.; Jiménez-Guerrero, P.; Trigo, R. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Marinho, B.; Coelho, C.; Hanson, H.; Tussupova, K. Coastal management in Portugal: Practices for reflection and learning. Ocean Coast. Manag. 2019, 181. [Google Scholar] [CrossRef]
- Zêzere, J.; Ferreira, A.; Rodrigues, M.L. Landslides in the North of Lisbon Region (Portugal): Conditioning and triggering factors. Phys. Chem. Earth Part A 1999, 24, 925–934. [Google Scholar] [CrossRef]
- Pinto, L.; Ferreira, C.S.; Pereira, P. Environmental and socioeconomic factors influencing the use of urban green spaces in Coimbra (Portugal). Sci. Total Environ. 2021, 792. [Google Scholar] [CrossRef]
- Soares, A.; Rego, F.; Mcpherson, E.; Simpson, J.; Peper, P.; Xiao, Q. Benefits and costs of street trees in Lisbon, Portugal. Urban For. Urban Green. 2010, 10, 69–78. [Google Scholar] [CrossRef]
- Carvalho, J.; Hipólito, D.; Santarém, F.; Martins, R.; Gomes, A.; Carmo, P.; Rodrigues, R.; Grosso-Silva, J.; Fonseca, C. Patterns of Vespa velutina invasion in Portugal using crowdsourced data. Insect Conserv. Divers. 2020, 13, 501–507. [Google Scholar] [CrossRef]
- Prata, J.; Silva, A.; Duarte, A.; Rocha-Santos, T. The road to sustainable use and waste management of plastics in Portugal. Front. Environ. Sci. Eng. 2022, 16, 5. [Google Scholar] [CrossRef]
- Ramos, A.; Afonso Teixeira, C.; Rouboa, A. Environmental Analysis of Waste-to-Energy—A Portuguese Case Study. Energies 2018, 11, 548. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.; Quadrado, M.; Franco, A.; Lacasta, N.; Machado, P. Water reuse in Portugal: New legislation trends to support the definition of water quality standards based on risk characterization. Water Cycle 2020, 1, 41–53. [Google Scholar] [CrossRef]
- Lopes, P.D. Affordability and Disconnections Challenges in Implementing the Human Right to Water in Portugal. Water 2020, 12, 684. [Google Scholar] [CrossRef] [Green Version]
- De la Horra, L.; Perote, J.; de la Fuente, G. Monetary policy and corporate investment: A panel-data analysis of transmission mechanisms in contexts of high uncertainty. Int. Rev. Econ. Financ. 2021, 75, 609–624. [Google Scholar] [CrossRef]
- Fronzek, S.; Carter, T.R.; Pirttioja, N.; Alkemade, R.; Audsley, E.; Bugmann, H.; Flörke, M.; Holman, I.; Honda, Y.; Ito, A.; et al. determining sectoral and regional sensitivity to climate and socio-economic change in Europe using impact response surfaces. Reg. Environ. Chang. 2019, 19, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Camagni, R. The Pioneering Quantitative Model for TIA: TEQUILA. In Territorial Impact Assessment; Advances in Spatial Science; Medeiros, E., Ed.; Springer: Cham, Switzerland, 2020; pp. 27–54. [Google Scholar]
- Marot, N.; Golobič, M.; Fischer, T.B. The ESPON EATIA: A Qualitative Approach to Territorial Impact Assessment. In Territorial Impact Assessment; Advances in Spatial Science; Medeiros, E., Ed.; Springer: Cham, Switzerland, 2020; pp. 77–99. [Google Scholar]
- DGT. PNPOT Alteração, Diagnóstico; Versão para Discussão Pública, 30 de Abril; DG Território: Lisbon, Portugal, 2018. [Google Scholar]
- DGT. PNPOT Alteração, Estratégia e Modelo Territorial; Versão para Discussão Pública, 30 de Abril; DG Território: Lisbon, Porugal, 2018. [Google Scholar]
- DGT. PNPOT Alteração, Agenda para o Território; Versão para Discussão Pública, 30 de Abril; DG Território: Lisbon, Portugal, 2018. [Google Scholar]
- Weng, Q.; Yang, S. An approach to evaluation of sustainability for Guangzhou’s urban ecosystem. Int. J. Sustain. Dev. World Ecol. 2003, 10, 69–81. [Google Scholar] [CrossRef]
- Russ-Eft, F. Human resource development, evaluation, and sustainability: What are the relationships? Hum. Resour. Dev. Int. 2014, 17, 545–559. [Google Scholar] [CrossRef]
- Jacob, K.; Ekins, P. Environmental policy, innovation and transformation: Affirmative or disruptive? J. Environ. Policy Plan. 2020, 22, 709–723. [Google Scholar] [CrossRef]
- Shao, G.; Li, F.; Tang, L. Multidisciplinary perspectives on sustainable development. Int. J. Sustain. Dev. World Ecol. 2011, 18, 187–189. [Google Scholar] [CrossRef]
- Winkler, H.; Höhne, N.; Den Elzen, M. Methods for quantifying the benefits of sustainable development policies and measures (SDPAMs). Clim. Policy 2008, 8, 119–134. [Google Scholar] [CrossRef]
- Quitzow, R. Towards an integrated approach to promoting environmental innovation and national competitiveness. Innov. Dev. 2013, 3, 277–296. [Google Scholar] [CrossRef]
- Li, D.; Tang, F.; Jiang, J. Does environmental management system foster corporate green innovation? The moderating effect of environmental regulation. Technol. Anal. Strat. Manag. 2019, 31, 1242–1256. [Google Scholar] [CrossRef]
- Schweizer, R.; Dupuis, J.; de Buren, G. Environmental innovation strategies: When and why NGOs go beyond public regulations. Environ. Politics 2016, 25, 899–920. [Google Scholar] [CrossRef]
- Busch, P.; Jörgens, H. The international sources of policy convergence: Explaining the spread of environmental policy innovations. J. Eur. Public Policy 2005, 12, 860–884. [Google Scholar] [CrossRef]
NUT II | Entity | Regional Level |
---|---|---|
Norte | Comunidade Intermunicipal do Cávado | Intermunicipal |
Norte | Águas do Norte | Regional |
Norte | Comunidade Intermunicipal do Alto Minho | Intermunicipal |
Norte | Câmara Municipal Santa Maria da Feira | Local |
Norte | Comunidade Intermunicipal do Ave | Intermunicipal |
Centro | Comissão de Coordenação e Desenvolvimento Regional do Centro | Regional |
Centro | Comunidade Intermunicipal da Região de Coimbra | Intermunicipal |
Centro | INOVA-Empresa de Desenvolvimento Económico e Social de Cantanhede | Local |
Centro | Comunidade Intermunicipal da Beira Baixa | Intermunicipal |
Centro | APIN—Empresa Intermunicipal de Ambiente do Pinhal Interior | Intermunicipal |
AML | Águas do Tejo Atlântico | Regional |
AML | Comissão de Coordenação e Desenvolvimento Regional de Lisboa e Vale do tejo | Regional |
AML | Hyperion Renewables | Local |
AML | SMAS Sintra | Local |
AML | Câmara Municipal de Palmela | Local |
Alentejo | Comunidade Intermunicipal do Alentejo Litoral | Intermunicipal |
Alentejo | Águas Públicas do Alentejo | Regional |
Alentejo | Câmara Municipal de Odemira | Local |
Alentejo | Comunidade Intermunicipal do Baixo Alentejo | Intermunicipal |
Alentejo | Câmara Municipal de Coruche | Local |
Algarve | Universidade do Algarve Professor Dr. Thomas Panagopoulos | Regional |
Algarve | Comissão de Coordenação e Desenvolvimento Regional do Algarve | Regional |
Algarve | Águas do Algarve | Regional |
Algarve | ALGAR-Valorização e Tratamento de Resíduos Sólidos | Regional |
Algarve | Câmara Municipal de Faro | Local |
Nacional | Direção Geral de Energia | National |
Nacional | ZERO-Associação Sistema Terrestre Sustentável | National |
Nacional | Laboratório Nacional de Energia e Geologia | NAtional |
Nacional | Autoridade de Gestão do POSEUR | National |
Nacional | AMA—Agência para a Modernização Administrativa | National |
Norte | Centro | AML | Alentejo | Algarve | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Analytical Dimension | Indicator | 2013 | 2021 | 2013 | 2021 | 2013 | 2021 | 2013 | 2021 | 2013 | 2021 |
A: Economy with low emissions | Electricity production from renewable energy sources through new technologies (total) MW | 98 | 119.2 | 439.33 | 485.4 | 166 | 183.2 | 3 | 13 | 3 | 16 |
B: Adaptation to climate change | Municipalities’ environmental expenditure per capita (Protection of air quality and climate) (€) | 0 | 0.7 | 0 | 0.5 | 0.1 | 2.4 | 0.1 | 0.2 | 0 | 1.9 |
C: Risk prevention and management | Burnt area %-Rural Fires lasting more than 24 h (No.) | 4.9 | 1.3 | 1.7 | 1.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.6 |
D: Environmental protection | Municipalities’ environmental expenses per capita (Protection of biodiversity and landscape) | 8.8 | 14.9 | 10 | 21.6 | 13.9 | 23.4 | 10.9 | 21.2 | 14.5 | 43.7 |
E: Resource efficiency | Where is selectively collected, on average, per person, more and less garbage? kg/inhabitant-ratio | 52.3 | 85.1 | 36.9 | 78.2 | 58.8 | 139.4 | 50.1 | 96.7 | 180.8 | 270.4 |
Analytical Dimension | Impact Scores (−4/+4)/Counterfactual | Tuning Elements (0–1) | Causality–Development Trends (0–1) | Impact (Score) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos/Neg | End/Exo | Sus/Sho | Mul/Sub | Average | Pol/Int | Reg/Sen | 2014 | 2020 | (−4/+4) | |
A: Economy with low emissions | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 0.5 | 0.5 | 0.45 | 0.55 | 0.598 |
B: Adaptation to climate change | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 0.5 | 0.85 | 0.2 | 0.5 | 2.190 |
C: Risk prevention and management | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.7 | 0.25 | 0.35 | 1.044 |
D: Environmental protection | 3 | 3 | 3 | 3 | 3 | 0.45 | 0.7 | 0.25 | 0.55 | 1.508 |
E: Resource efficiency | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 0.3 | 0.65 | 0.3 | 0.55 | 0.946 |
Average | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 0.5 | 0.5 | 0.45 | 0.55 | 1.257 |
Analytical Dimension | Impact Scores (−4/+4)/Counterfactual | Tuning Elements (0–1) | Causality–Development Trends (0–1) | Impact (Score) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos/Neg | End/Exo | Sus/Sho | Mul/Sub | Average | Pol/Int | Reg/Sen | 2014 | 2020 | (−4/+4) | |
A: Economy with low emissions | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.5 | 0.5 | 0.75 | 1.208 |
B: Adaptation to climate change | 3 | 3 | 3 | 3 | 3 | 0.25 | 0.5 | 0.25 | 0.5 | 0.604 |
C: Risk prevention and management | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.75 | 0.25 | 0.75 | 3.036 |
D: Environmental protection | 3 | 3 | 3 | 3 | 3 | 0.25 | 0.75 | 0.25 | 0.5 | 0.906 |
E: Resource efficiency | 3 | 3 | 3 | 3 | 3 | 0.25 | 0.5 | 0.25 | 0.5 | 0.604 |
Average | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.5 | 0.5 | 0.75 | 1.155 |
Analytical Dimension | Impact Scores (−4/+4)/Counterfactual | Tuning Elements (0–1) | Causality–Development Trends (0–1) | Impact (Score) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos/Neg | End/Exo | Sus/Sho | Mul/Sub | Average | Pol/Int | Reg/Sen | 2014 | 2020 | (−4/+4) | |
A: Economy with low emissions | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.5 | 0.75 | 0.75 | 0.375 |
B: Adaptation to climate change | 4 | 4 | 4 | 4 | 4 | 0.5 | 1 | 0.25 | 0.5 | 3.500 |
C: Risk prevention and management | 3 | 3 | 3 | 3 | 3 | 0.25 | 0.5 | 0.25 | 0.25 | 0.188 |
D: Environmental protection | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.75 | 0.25 | 0.5 | 2.513 |
E: Resource efficiency | 4 | 4 | 4 | 4 | 4 | 0.25 | 0.75 | 0.25 | 0.5 | 1.313 |
Average | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.5 | 0.75 | 0.75 | 1.136 |
Analytical Dimension | Impact Scores (−4/+4)/Counterfactual | Tuning Elements (0–1) | Causality–Development Trends (0–1) | Impact (Score) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos/Neg | End/Exo | Sus/Sho | Mul/Sub | Average | Pol/Int | Reg/Sen | 2014 | 2020 | (−4/+4) | |
A: Economy with low emissions | 4 | 4 | 4 | 4 | 4 | 0.25 | 0.75 | 0.5 | 0.75 | 0.750 |
B: Adaptation to climate change | 4 | 4 | 4 | 4 | 4 | 0.5 | 1 | 0.25 | 0.75 | 3.000 |
C: Risk prevention and management | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.75 | 0.25 | 0.25 | 0.563 |
D: Environmental protection | 3 | 3 | 3 | 3 | 3 | 0.75 | 0.75 | 0.25 | 0.5 | 2.081 |
E: Resource efficiency | 3 | 3 | 3 | 3 | 3 | 0.25 | 0.75 | 0.25 | 0.5 | 0.656 |
Average | 4 | 4 | 4 | 4 | 4 | 0.25 | 0.75 | 0.5 | 0.75 | 1.332 |
Analytical Dimension | Impact Scores (−4/+4)/Counterfactual | Tuning Elements (0–1) | Causality–Development Trends (0–1) | Impact (Score) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos/Neg | End/Exo | Sus/Sho | Mul/Sub | Average | Pol/Int | Reg/Sen | 2014 | 2020 | (−4/+4) | |
A: Economy with low emissions | 3 | 3 | 3 | 3 | 3 | 0.75 | 0.25 | 0.25 | 0.25 | 0.281 |
B: Adaptation to climate change | 3 | 3 | 3 | 3 | 3 | 0.5 | 1 | 0.25 | 0.25 | 0.750 |
C: Risk prevention and management | 3 | 3 | 3 | 3 | 3 | 0.75 | 0.75 | 0.25 | 0.25 | 0.844 |
D: Environmental protection | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.75 | 0.25 | 0.5 | 1.350 |
E: Resource efficiency | 4 | 4 | 4 | 4 | 4 | 0.25 | 0.5 | 0.25 | 0.5 | 0.500 |
Average | 3 | 3 | 3 | 3 | 3 | 0.75 | 0.25 | 0.25 | 0.25 | 0.858 |
NUTS 2 PT MAINLAND | ||||||
---|---|---|---|---|---|---|
Norte | Centro | AML | Alentejo | Algarve | Portugal(Mainland) | |
Analytical Dimension | (%) | (%) | (%) | (%) | (%) | (%) |
A: Economy with low emissions | 5 | 2 | 10 | 5 | 3 | 5 |
B: Adaptation to climate change | 1 | 9 | 0 | 2 | 8 | 3 |
C: Risk prevention and management | 10 | 17 | 9 | 10 | 10 | 12 |
D: Environmental protection | 32 | 22 | 16 | 22 | 13 | 24 |
E: Resource efficiency | 52 | 50 | 65 | 61 | 67 | 56 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Analytical Dimension | 1000€ | 1000€ | 1000€ | 1000€ | 1000€ | 1000€ |
A: Economy with low emissions | 33,301 | 12,998 | 39,570 | 9588 | 1902 | 97,362 |
B: Adaptation to climate change | 6235 | 46,053 | 1560 | 3606 | 5837 | 63,291 |
C: Risk prevention and management | 66,842 | 88,314 | 37,669 | 19,765 | 7145 | 219,737 |
D: Environmental protection | 212,316 | 113,335 | 64,238 | 41,752 | 9283 | 440,927 |
E: Resource efficiency | 346,864 | 264,210 | 270,433 | 118,396 | 48,113 | 1,048,018 |
Total | 665,560 | 524,912 | 413,472 | 193,109 | 72,282 | 1,869,337 |
Analytical Dimension | Impact Scores (−4/+4)/Counterfactual | Tuning Elements (0–1) | Causality–Development Trends (0–1) | Impact (Score) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos/Neg | End/Exo | Sus/Sho | Mul/Sub | Average | Pol/Int | Reg/Sen | 2014 | 2020 | (−4/+4) | |
A: Economy with low emissions | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.5 | 0.25 | 0.25 | 0.375 |
B: Adaptation to climate change | 3 | 3 | 3 | 3 | 3 | 0.75 | 0.75 | 0 | 0.5 | 3.094 |
C: Risk prevention and management | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.75 | 0.25 | 0.25 | 0.563 |
D: Environmental protection | 3 | 3 | 3 | 3 | 3 | 0.25 | 0.5 | 0.25 | 0.75 | 0.688 |
E: Resource efficiency | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.75 | 0.5 | 0.75 | 1.313 |
Average | 3 | 3 | 3 | 3 | 3 | 0.5 | 0.5 | 0.25 | 0.25 | 1.138 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, E.; Valente, B.; Gonçalves, V.; Castro, P. How Impactful Are Public Policies on Environmental Sustainability? Debating the Portuguese Case of PO SEUR 2014–2020. Sustainability 2022, 14, 7917. https://doi.org/10.3390/su14137917
Medeiros E, Valente B, Gonçalves V, Castro P. How Impactful Are Public Policies on Environmental Sustainability? Debating the Portuguese Case of PO SEUR 2014–2020. Sustainability. 2022; 14(13):7917. https://doi.org/10.3390/su14137917
Chicago/Turabian StyleMedeiros, Eduardo, Bernardo Valente, Vasco Gonçalves, and Paula Castro. 2022. "How Impactful Are Public Policies on Environmental Sustainability? Debating the Portuguese Case of PO SEUR 2014–2020" Sustainability 14, no. 13: 7917. https://doi.org/10.3390/su14137917
APA StyleMedeiros, E., Valente, B., Gonçalves, V., & Castro, P. (2022). How Impactful Are Public Policies on Environmental Sustainability? Debating the Portuguese Case of PO SEUR 2014–2020. Sustainability, 14(13), 7917. https://doi.org/10.3390/su14137917