The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. InVEST Model
2.4. Composite Index of Land Use Intensity
3. Results
3.1. Land Use Characteristics of the Yellow River Basin
3.2. Temporal and Spatial Pattern of Carbon Storage
3.3. Prediction of Carbon Storage under Different Scenarios
3.4. Effect of Land Use on Carbon Storage
3.4.1. Carbon Storage Variation Caused by Land Use Type Transfer
3.4.2. Effect of Land Use Intensity on Carbon Storage
4. Discussion
4.1. Exploring the Relationship between Ecosystem Carbon Storage and Carbon Emissions
4.2. Recommendations for Optimization of Carbon Storage Function
4.3. Application of MFOZ Planning
5. Conclusions
- The carbon storage variation trend of each land use type in the Yellow River Basin from 2000 to 2020 was different, which was mainly manifested as a decrease of cultivated land and unused land, and an increase of forest land, grassland, water, and construction land. The carbon storage in the provincial key development prioritized zone, national development optimized zone, and provincial development optimized zones showed decreasing trends, while the national key development prioritized zone and national major grain producing zone presented a fluctuating decreasing trend.
- From 2000 to 2020, the ecosystem carbon storage was weakened, and part of the carbon sink area was transformed into a carbon source area. The low carbon storage area was distributed in the west of the provincial key ecological function zone, and the high carbon storage area was concentrated in the south and middle of the national key ecological function zone and the east of the provincial key ecological function zone.
- The carbon loss was the largest in urban expansion scenario (UES), followed by the natural development scenario (NDS) and ecological protection scenario (EPS). The correlation coefficients between carbon storage and land use intensity under the NDS, UES, and EPS were 0.629, 0.647, and 0.671, respectively, showing significant positive correlations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, N.; Shao, Q.; Ning, J.; Huang, B. Ecological changes and the tradeoff and synergy of ecosystem services in western China. Acta Geogr. Sin. 2022, 77, 182–195. [Google Scholar] [CrossRef]
- Hussin, F.; Aroua, M.K.; Kassim, M.A.; Ali, U. Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review. Energies 2021, 14, 8421. [Google Scholar] [CrossRef]
- Ahmed, N.; Ahmad, M.; Amed, M. Combined role of industrialization and urbanization in determining carbon neutrality: Empirical story of Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 15551–15563. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ma, J.; Wang, Z.; Li, Y.; Zhang, W. Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers. Sustainability 2022, 14, 4804. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, R.; Ren, B.; Liu, G.; Zhao, X. Carbon sequestration in China’s terrestrial ecosystems under climate change: Progress on ecosystem carbon sequestration from the CAS Strategic Priority Research Program. Bull. Chin. Acad. Sci. 2015, 30, 848–857. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, J.; Cui, P.; Zheng, H.; Zhu, Q. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459. [Google Scholar] [CrossRef]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Pizarro, G.G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Chang. Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef]
- Cao, L.; Liang, Y.; Wang, Y.; Lu, H. Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall. Catena 2015, 129, 1–8. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Hatano, R. Assessing soil organic carbon, soil nutrients and soil erodibility under terraced paddy fields and upland rice in Northern Thailand. Agronomy 2022, 12, 537. [Google Scholar] [CrossRef]
- Arunrat, N.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy 2020, 10, 1061. [Google Scholar] [CrossRef]
- Lal, R. Sequestering Carbon in Soils of Agro-Ecosystems. Food Policy 2011, 36, S33–S39. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, F. Assessing Changes in the Value of Forest Ecosystem Services in Response to Climate Change in China. Sustainability 2022, 14, 4773. [Google Scholar] [CrossRef]
- Rüdisser, J.; Tasser, E.; Peham, T.; Meyer, E.; Tappeiner, U. Hidden Engineers and Service Providers: Earthworms in Agricultural Land-Use Types of South Tyrol, Italy. Sustainability 2021, 13, 312. [Google Scholar] [CrossRef]
- Niu, J.; Zhou, P.; Wang, T.; Zheng, G.; Guo, Q.; Bo, T. Influence and evaluation of land use change on carbon storage on county scale-a case study of Julu county in Heilonggang Basin. Res. Soil Water Conserv. 2018, 25, 292–297. [Google Scholar] [CrossRef]
- Gupta, S.; Ii, A.N.; Anand, S.; Singh, S. Valuation of carbon sequestration in Bidhalna Microwatershed, Uttarakhand, India using InVEST model. Int. J. Adv. Earth Environ. Sci. 2017, 5, 10–15. [Google Scholar] [CrossRef]
- Li, L.; Zhao, F.; Zhu, Q.; He, S.; Ye, P. Geographical detection of ecosystem services trade-offs and their spatial variation mechanism in Qihe River Basin. Acta Ecol. Sin. 2021, 41, 7568–7578. [Google Scholar] [CrossRef]
- Nyamari, N.; Cabral, P. Impact of land cover changes on carbon stock trends in Kenya for spatial implementation of REDD policy. Appl. Geogr. 2021, 133, 102479. [Google Scholar] [CrossRef]
- Zarandian, A.; Badamfirouz, J.; Musazadeh, R.; Rahmati, A.; Azimi, S.B. Scenario modeling for spatial-temporal change detection of carbon storage and sequestration in a forested landscape in Northern Iran. Environ. Monit. Assess. 2018, 190, 474. [Google Scholar] [CrossRef]
- Lahiji, R.N.; Dinan, N.M.; Liaghati, H.; Ghaffarzadeh, H.; Vafaeinejad, A. Scenario-based estimation of catchment carbon storage: Linking multi-objective land allocation with InVEST model in a mixed agriculture-forest landscape. Front. Earth Sci. 2020, 14, 637–646. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Zhou, T.; Wang, L. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Cui, H.; Islam, I.; Xu, L.; Ding, P. Dynamics of plantation forest development and ecosystem carbon storage change in coastal Bangladesh. Ecol. Indic. 2021, 130, 107954. [Google Scholar] [CrossRef]
- Zhao, M.; He, B.; Du, J.; Chen, F.; Lin, F.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the Ca-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Fan, J.; Sun, W.; Yang, S.; Fan, P.; Chen, D. Focusing on the major function-oriented zone: A new spatial planning approach and practice in China and its 12th Five-Year Plan. Asia Pac. Viewp. 2012, 53, 86–89. [Google Scholar] [CrossRef]
- Ma, H.; Xu, X. High-Quality Development Assessment and Spatial Heterogeneity of Urban Agglomeration in the Yellow River Basin. Econ. Geogr. 2020, 40, 11–18. [Google Scholar] [CrossRef]
- Mashizi, K.; Heshmati, G.A.; Mahini, A.S.; Escobedo, F.J. Exploring management objectives and ecosystem service trade-offs in a semi-arid rangeland basin in southeast Iran. Ecol. Indic. 2019, 98, 794–803. [Google Scholar] [CrossRef]
- Deng, J.; Yao, B.; Hou, Y.; Zhang, Y.; Lu, N.; Gong, W.; Wang, F. Assessing the effects of the Green for Grain Program on ecosystem carbon storage service by linking the InVEST and FLUS models: A case study of Zichang county in hilly and gully region of Loess Plateau. J. Nat. Resour. 2020, 35, 826–844. [Google Scholar] [CrossRef]
- Gaglio, M.; Aschonitis, V.; Castaldelli, G.; Fano, E.A. Land use intensification rather than land cover change affects regulating services in the mountainous Adige river basin (Italy). Ecosyst. Serv. 2020, 45, 101158. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhou, M.; Ma, J.; Dang, R.; Ma, J.; Zhu, Y. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model. Acta Ecol. Sin. 2021, 41, 4052–4065. [Google Scholar] [CrossRef]
- Descloux, S.; Chanudet, V.; Poilve, H.; Gregoire, A. Co-assessment of biomass and soil organic carbon stocks in a future reservoir area located in Southeast Asia. Environ. Monit. Assess. 2011, 173, 723–741. [Google Scholar] [CrossRef]
- Xie, L.; Sun, B.; Zhou, Z.; Li, P. Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedol. Sin. 2004, 5, 687–699. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, Q.; Zhou, C. Organic carbon storage in urban built-up areas of China in 1997–2006. Chin. J. App. Ecol. 2012, 23, 8. [Google Scholar]
- Zhang, J.; Li, M.; Ao, Q.; Deng, M.; Yang, Y.; Wu, M. Estimation of soil organic carbon storage of terrestrial ecosystem in arid western China. J. Arid Land Resour. Environ. 2018, 32, 6. [Google Scholar]
- Li, R.; Wang, Q.; Cao, K. Carbon storage of vegetation and soil in China. Sci. Chin. 2003, 33, 9. [Google Scholar] [CrossRef]
- Chen, S.; Yang, S.; Liu, Z.; Li, B.; Zhao, C.; Yuan, D. Research review on total belowground carbon allocation in forest ecosystems. J. Subtrop. Resour. Environ. 2007, 2, 34–42. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Giardina, P.; Ryan, G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef]
- Lu, Z.; Lei, P.; Guo, Y.; Ma, L. Changes of land use intensity in the Songnen Plain of different spatial scales and their effects on climatic factors. Acta Ecol. Sin. 2021, 41, 1894–1906. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Gong, J.; Qian, Y. Spatial and temporal relations among land-use intensity, ecosystem services, and human well-being in the Longzhong Loess Hilly Region: A case study of the Anding District, Gansu Pronvince. Acta Ecol. Sin. 2019, 39, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, F.; Liu, Y. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour. 1997, 12, 105–111. [Google Scholar] [CrossRef]
- Wang, F.; Li, F.; Li, Q.; Hu, X.; Wang, S. Monitoring spatio-temporal dynamics and causes of habitat quality in Yellow River Basin from the perspective of major function-oriented zone planning. Contemp. Probl. Ecol. 2022. accepted. [Google Scholar]
- Zhang, M.; Yuan, F.; Zhu, S. Decoupling effects of carbon emissions and reduction path in the Yellow River Basin. Resour. Sci. 2022, 44, 59–69. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Liu, R.; Shi, C.; Cai, M. Spatial Temporal Differences of Carbon Emissions and Carbon Compensation in China Based on Land Use Change. Sci. Geogr. Sin. 2019, 39, 1955–1961. [Google Scholar] [CrossRef]
- Dai, S. Research on the Quota Allocation of Carbon Emissions in Provincial-Level under the Total Control Target; China University of Minning and Technology: Beijing, China, 2017. [Google Scholar]
- Yang, J.; Xie, P.; Zhang, G. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov model. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [Google Scholar] [CrossRef]
- Mikhelkis, L.; Govindarajan, V. Techno-Economic and Partial Environmental Analysis of Carbon Capture and Storage (CCS) and Carbon Capture, Utilization, and Storage (CCU/S): Case Study from Proposed Waste-Fed District-Heating Incinerator in Sweden. Sustainability 2020, 12, 5922. [Google Scholar] [CrossRef]
- Cerretelli, S.; Poggio, L.; Yakob, G.; Boke, S.; Habte, M.; Coull, M.; Peressotti, A.; Black, H.; Gimona, A. The advantages and limitations of global datasets to assess carbon stocks as proxy for land degradation in an Ethiopian case study. Geoderma 2021, 399, 115117. [Google Scholar] [CrossRef]
- Molotoks, A.; Stehfest, E.; Doelman, J.; Albanito, F.; Fitton, N.; Dawson, P.; Smith, P. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Chang. Biol. 2018, 24, 5895–5908. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhao, Y.; Song, Y. Impact of the returning farmland to forest (grassland) project on ecosystem services in the Weihe River Basin, China. Chin. J. Appl. Ecol. 2021, 32, 3893–3904. [Google Scholar]
- Li, P.; Cai, H.; Tian, J.; Zhang, B.; Liao, B. Changes in ecosystem carbon storage caused by land cover conversion in Liping County of Guizhou Province. Bull. Soil Water Conserv. 2020, 40, 92–99. [Google Scholar] [CrossRef]
- Schiller, G.; Blum, A.; Oertel, H. Die Relevanz kleiner Gemeinden und kleinteiliger Flächen für die Innenentwicklung, Ein quantitatives Monitoring am Beispiel Deutschlands. Raumforsch Raumordn. Spat. Res. Plan. 2018, 76, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.; Khne, M.; Rasch, D.; Winnubst, M. After the facts: Producing, using and contesting knowledge in two spatial-environmental conflicts in the Netherlands. Environ. Plan. C-Polit. 2021, 39, 626–645. [Google Scholar] [CrossRef]
- Perrin, M.; Bertrand, N.; Vanpeene, S. Ecological connectivity in spatial planning: From the EU framework to its territorial implementation in the French context. Environ. Sci. Policy 2022, 129, 118–125. [Google Scholar] [CrossRef]
- Huang, X.; Pan, B. Progress, problems and suggestions on the implementation of major function area planning. Nat. Res. Econ. Chin. 2020, 33, 4–9. [Google Scholar] [CrossRef]
- Lang, H. Evaluation and Optimization of Land Space Utilization Efficiency in Hunan Province Based on Main Function Zoning; Hunan Normal University: Changsha, China, 2021. [Google Scholar]
Classification | Definition | Number of Counties |
---|---|---|
National key development prioritized zone | Areas with the best economic foundation and largest development potential; divided by the central government. | 167 |
National development optimized zone | Areas with a high land use density and weak carrying capacity of resources and environment; divided by the central government. | 27 |
National major grain producing zone | Areas significant for food security and basically consisting of traditional farming or pastoral areas, which are highly important for ensuring the grain and meat supply of the country; divided by the central government. | 179 |
National key ecological function zone | Areas consisting of representative natural ecosystems, habitats of rare and endangered wild species, and natural or cultural heritage of special value; divided by the central government. | 152 |
Provincial key development prioritized zone | Areas with the best economic foundation and largest development potential; divided by the provincial governments. | 90 |
Provincial development optimized zone | Areas with a high land use density and weak carrying capacity of resources and environment; divided by the provincial governments. | 13 |
Provincial major grain producing zone | Areas significant for food security, basically consisting of traditional farming or pastoral areas, which are highly important for ensuring the grain and meat supply of the country; divided by the provincial governments. | 41 |
Provincial key ecological function zone | Areas consisting of representative natural ecosystems, habitats of rare and endangered wild species, and natural or cultural heritage of special value; divided by the provincial governments. | 67 |
Land Use Type | Aboveground Biomass | Belowground Biomass | Soil |
---|---|---|---|
Cultivated land | 1.02 | 14.44 | 69.75 |
Forest land | 7.58 | 20.76 | 90.12 |
Grassland | 6.71 | 15.48 | 77.23 |
Water | 0 | 0 | 11.63 |
Construction land | 0.45 | 0 | 64.85 |
Unused land | 0.23 | 0 | 26.11 |
Land Use Type | Cultivated Land | Forest Land | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Land use intensity grade * | 3 | 2 | 2 | 2 | 4 | 1 |
Land Use Type | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Water | Construction Land | Unused Land | Total | ||
2000 | Cultivated land | 31.17 | 2.45 | 8.47 | 0.81 | 4.80 | 0.41 | 48.11 |
Forest land | 2.18 | 12.52 | 5.34 | 0.13 | 0.23 | 0.32 | 20.72 | |
Grassland | 8.37 | 5.66 | 76.13 | 1.30 | 0.96 | 9.78 | 102.20 | |
Water | 0.66 | 0.10 | 1.04 | 2.55 | 0.14 | 0.65 | 5.14 | |
Construction land | 3.03 | 0.09 | 0.39 | 0.21 | 1.76 | 0.05 | 5.53 | |
Unused land | 0.69 | 0.41 | 11.72 | 1.08 | 0.28 | 58.49 | 72.67 | |
Total | 46.10 | 21.23 | 103.09 | 6.08 | 8.17 | 69.70 | 254.40 |
Scenarios | Land Use | National Key Development Prioritized Zone 1 | Provincial Key Development Prioritized Zone 2 | National Development Optimized Zone 3 | Provincial Development Optimized Zone 4 | National Major Grain Producing Zone 5 | Provincial Major Grain Producing Zone 6 | National Key Ecological Function Zone 7 | Provincial Key Ecological Function Zone 8 |
---|---|---|---|---|---|---|---|---|---|
NDS a | Cultivated land | 425.89 | 470.73 | 111.37 | 23.27 | 1222.24 | 313.41 | 925.44 | 393.60 |
Forest land | 331.00 | 128.11 | 12.73 | 18.47 | 286.46 | 179.38 | 1011.18 | 622.61 | |
Grassland | 988.88 | 267.67 | 7.02 | 4.30 | 323.74 | 863.56 | 5149.13 | 1778.16 | |
Water | 14.57 | 6.32 | 2.15 | 0.39 | 13.38 | 9.03 | 40.46 | 28.67 | |
Construction land | 245.14 | 159.03 | 58.26 | 21.65 | 271.31 | 54.21 | 135.71 | 105.74 | |
Unused land | 67.86 | 19.34 | 0.86 | 0.00 | 119.51 | 16.87 | 428.03 | 1112.90 | |
UES b | Cultivated land | 411.86 | 451.88 | 105.11 | 21.29 | 1186.86 | 309.98 | 919.58 | 391.84 |
Forest land | 328.23 | 127.47 | 12.36 | 18.22 | 283.99 | 178.89 | 1010.38 | 619.76 | |
Grassland | 963.96 | 263.35 | 6.57 | 4.13 | 314.84 | 856.89 | 5133.47 | 1767.20 | |
Water | 14.49 | 6.30 | 2.13 | 0.38 | 13.39 | 9.05 | 40.55 | 28.67 | |
Construction land | 275.72 | 177.08 | 63.64 | 23.46 | 307.07 | 61.84 | 152.13 | 115.76 | |
Unused land | 67.21 | 19.17 | 0.79 | 0.00 | 118.80 | 16.51 | 426.59 | 1109.61 | |
EPS c | Cultivated land | 482.21 | 516.90 | 130.04 | 28.57 | 1302.11 | 324.91 | 942.91 | 403.61 |
Forest land | 349.89 | 137.82 | 18.89 | 22.77 | 301.35 | 183.03 | 1024.57 | 636.39 | |
Grassland | 1090.79 | 296.22 | 10.30 | 4.96 | 359.87 | 892.43 | 5232.66 | 1819.48 | |
Water | 15.11 | 6.62 | 2.23 | 0.41 | 13.58 | 8.86 | 39.60 | 28.56 | |
Construction land | 107.78 | 96.39 | 37.96 | 14.64 | 177.16 | 23.17 | 59.46 | 65.33 | |
Unused land | 73.44 | 19.94 | 0.86 | 0.00 | 119.46 | 17.77 | 430.25 | 1112.34 |
National Key Development Prioritized Zone | Provincial Key Development Prioritized Zone | National Development Optimized Zone | Provincial Development Optimized Zone | National Major Grain Producing Zone | Provincial Major Grain Producing Zone | National Key Ecological Function Zone | Provincial Key Ecological Function Zone | |
---|---|---|---|---|---|---|---|---|
2000 | 10.20 | 8.37 | 5.03 | 3.30 | 10.93 | 61.96 | 113.07 | 73.08 |
2005 | 5.66 | 4.41 | 1.69 | 1.15 | 5.71 | 33.88 | 55.25 | 42.52 |
2010 | 3.54 | 2.96 | 1.17 | 0.84 | 3.87 | 19.33 | 33.71 | 25.80 |
2015 | 3.07 | 2.73 | 1.16 | 0.87 | 3.44 | 15.79 | 28.35 | 22.00 |
2020 | 2.69 | 2.44 | 0.99 | 0.77 | 2.98 | 14.03 | 25.30 | 19.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, L.; Li, Q.; Wang, S.; Liu, X.; Li, Y. The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning. Sustainability 2022, 14, 7963. https://doi.org/10.3390/su14137963
Wang J, Li L, Li Q, Wang S, Liu X, Li Y. The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning. Sustainability. 2022; 14(13):7963. https://doi.org/10.3390/su14137963
Chicago/Turabian StyleWang, Jinfeng, Lingfeng Li, Qing Li, Sheng Wang, Xiaoling Liu, and Ya Li. 2022. "The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning" Sustainability 14, no. 13: 7963. https://doi.org/10.3390/su14137963
APA StyleWang, J., Li, L., Li, Q., Wang, S., Liu, X., & Li, Y. (2022). The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning. Sustainability, 14(13), 7963. https://doi.org/10.3390/su14137963