Measuring the Relationship between Physical Geographic Features and the Constraints on Ecosystem Services from Urbanization Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Research Ideas and Methods
2.3.1. Ecosystem Service Evaluation Methods
- Habitat Quality (Habitant Quality)
- 2.
- Water Yield (WY)
- 3.
- Soil retention (SDR)
- 4.
- Net Primary Productivity (NPP)
- 5.
- Carbon Fixation Services (CF)
2.3.2. Evaluation Index Construction of Urbanization Development Level
2.3.3. Exploratory Spatial Data Analysis (ESDA)
2.3.4. Constraint Line Methods
2.3.5. Spatial Regression Model
3. Results
3.1. Spatial and Temporal Evolutionary Characteristics of Various Ecosystem Services in the Study Area and County
3.2. Analysis of Spatial and Temporal Changes in the Level of Urbanization Development and Subsystems in the Study Area
3.3. Measurement of the Spatial Spillover Effect of Urbanization Development on Ecosystem Services
4. Discussion
4.1. Transformation of the Relationship Development between Urbanization Development Patterns and Ecosystem Services in the New Era
4.2. Conservation Strategies for Ecosystem Services in Different Regions
4.3. Shortcomings and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Costanza, R.; Farber, S.; Troy, A. Valuing ecosystem services: Theory, practice, and the need for a transdisciplinary synthesis. Ann. N. Y. Acad. Sci. 2010, 1185, 54–78. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.; Anton, C.; Dawson, T.P.; de Bello, F.; Feld, C.K.; Haslett, J.R.; Kluvankova-Oravska, T.; Kontogianni, A.; Lavorel, S.; Luck, G.W. Ecosystem services and biodiversity conservation: Concepts and a glossary. Biodivers. Conserv. 2010, 19, 2773–2790. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Ding, S. The impact of human activities on ecosystem services flow. Acta Ecol. Sin. 2017, 37, 3232–3242. [Google Scholar]
- Keeble, B.R. The brundtland report: ‘Our common future’. Med. War 1988, 4, 17–25. [Google Scholar] [CrossRef]
- Hao, Z.; Jian, S.; Wei, D.; Li, P. Ecosystem health: Assessment framework, spatial evolution, and regional optimization in southwest china. Chin. Geogr. Sci. 2020, 30, 142–156. [Google Scholar]
- Che, L.; Zhou, L.; Xu, J. Integrating the ecosystem service in sustainable plateau spatial planning: A case study of the yarlung zangbo river basin. J. Geogr. Sci. 2021, 31, 281–297. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Liu, L.; Wang, W. Dynamic analysis of supply and demand coupling of ecosystem services in loess hilly region: A case study of lanzhou, china. Chin. Geogr. Sci. 2021, 31, 276–296. [Google Scholar] [CrossRef]
- Han, H.-Q.; Yang, J.-Q.; Liu, Y.; Zhang, Y.-J.; Wang, J.-W. Effect of the grain for green project on freshwater ecosystem services under drought stress. J. Mt. Sci. 2022, 19, 974–986. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Z.; Xiao, S.; Yan, C. Driving force and ecosystem service values estimation in the extreme arid region from 1975 to 2015: A case study of alxa league, china. Chin. Geogr. Sci. 2021, 31, 1097–1107. [Google Scholar] [CrossRef]
- Zheng, Z.; Fu, B.; Feng, X. Gis-based analysis for hotspot identification of tradeoff between ecosystem services: A case study in yanhe basin, china. Chin. Geogr. Sci. 2016, 26, 466–477. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, L.; Wu, T. Coordinating ecosystem service trade-offs to achieve win–win outcomes: A review of the approaches. J. Environ. Sci. 2019, 82, 103–112. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Feng, X.; Liu, S.; Yin, L.; Chen, Y. Trade-offs and synergies of ecosystem services in karst area of china driven by grain-for-green program. Chin. Geogr. Sci. 2020, 30, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Geng, T.W.; Chen, H.; Zhang, H.; Shi, Q.Q.; Liu, D. Spatiotemporal evolution of land ecosystem service value and its influencing factors in shaanxi province based on gwr. J. Nat. Resour. 2020, 35, 1714–1727. [Google Scholar]
- Zhang, Y.; Wu, D. Multi-scale analysis of ecosystem service trade-offs and associated influencing factors in beijing-tianjin-hebei region. Areal Res. Dev. 2019, 38, 141–147. [Google Scholar]
- Cheng, L.; Jie, Z.; Zhi, Z.; Si, G. Spatiotemporal dynamics and influencing factors of ecosystem service trade in the yangtze river delta urban agglomeration 2022, 1–13, 1000–0933. Acta Ecol. Sin. 2022, 1–13, 1000–0933. [Google Scholar]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang. 2014, 28, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Yang, S.H.; Hu, S.G.; Qu, S.J. Terrain gradient effect of ecosystem service value in middle reach of yangtze river, china. J. Appl. Ecol. 2018, 29, 976–986. [Google Scholar]
- Choi, S.; Lee, W.K.; Son, Y.; Yoo, S.; Lim, J.H. Changes in the distribution of south korean forest vegetation simulated using thermal gradient indices. Sci. China Life Sci. 2010, 53, 784–797. [Google Scholar] [CrossRef]
- Jian, X.; Ji, C.; Yanxu, L.; Fei, F.; Jian, W. Spatio-temporal differentiation of interaction of ecosystem services and regional responses in the“belt and road”area. Acta Ecol. Sin. 2020, 40, 3258–3270. [Google Scholar]
- Cao, J.; Zhang, Z.; Cui, F.; Chen, S.; Yang, Y.; Kuang, T.; Chen, Y. Response of ecosystem services to landscape pattern changes in the new york bay area from 1996 to 2015. World Reg. Stud. 2021, 30, 826–838. [Google Scholar]
- Long-Hui, L.; Fu-Jun, C.; Yue-Qing, X.; An, H.; Ling, H. Ecosystem services transition in beijing-tianjin-hebei region and its spatial patterns. J. Nat. Resour. 2020, 35, 532–545. [Google Scholar] [CrossRef]
- Juan, Z.; Fan, C.; Yuan, J.; Cheng, L.; Dong, Z.; Zhi, L.; Qi, X.; Ying, Q. Impacts of village land use change on ecosystem services and human well-being under different tourism models in hani rice terrace. Acta Ecol. Sin. 2020, 40, 5179–5189. [Google Scholar]
- Yan, L.; Dan, Y.; Bo, F.; Ming, C.; Ji, C. Research progress on the biodiversity and ecosystem service scenario simulations. Acta Ecol. Sin. 2020, 40, 5863–5873. [Google Scholar]
- Bo, F.; Han, T.; Fu, Z.; Wen, Z.; Shuai, W. The impact of global change on ecosystem services. China Basic Sci. 2017, 19, 14–18. [Google Scholar]
- Yu, H.; Gu, X.; Liu, G.; Fan, X.; Zhao, Q.; Zhang, Q. Construction of regional ecological security patterns based on multi-criteria decision making and circuit theory. Remote Sens. 2022, 14, 527. [Google Scholar] [CrossRef]
- Jie, G.; Ling, Y.; Chai, X.; Qing, G. A comparative review of research highlights on ecosystem services of china and USA in the latest 30 years. Acta Ecol. Sin. 2020, 40, 3537–3547. [Google Scholar]
- Liu, Y.; Fu, B.-J.; Zhao, W.; Wang, S. Ecological asset accounting and ecosystem services evaluation: Concept intersection and key research priorities. Acta Ecol. Sin. 2018, 38, 8267–8276. [Google Scholar]
- Zhong, L.; Teng, F.; Li, Z.; Wang, J. Tourism-oriented urbanization from the perspective of ecosystem services: Research framework and prospect. Ecol. Environ. Sci. 2020, 29, 2130–2140. [Google Scholar]
- Les, D.; Hai, L.; Jing, X.; Feng, Z.; Jun, L. Review of bidirectional effects of urbanization and ecosystem services. Ecol. Sci. 2017, 36, 233–240. [Google Scholar]
- Xia, Z.; Nan, H. Study on classification and applicability of comprehensive evaluation methods. Stat. Decis. 2022, 38, 31–36. [Google Scholar]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. Invest User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Potter, C.; Klooster, S.; Hiatt, C.; Genovese, V.; Castilla-Rubio, J.C. Changes in the carbon cycle of amazon ecosystems during the 2010 drought. Environ. Res. Lett. 2011, 6, 034024. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Rundel, P.W. Self-thinning in early postfire chaparral succession: Mechanisms, implications, and a combined approach. Ecology 1998, 79, 579–586. [Google Scholar] [CrossRef]
- Thomson, J.D.; Weiblen, G.; Thomson, B.A.; Alfaro, S.; Legendre, P. Untangling multiple factors in spatial distributions: Lilies, gophers, and rocks. Ecology 1996, 77, 1698–1715. [Google Scholar] [CrossRef]
- Yu, W. Comparison of different methods for estimating average annual rainfall erosivity. J. Soil Water Conserv. 2001, 15, 31–34. [Google Scholar]
- Williams, J.; Jones, C.; Kiniry, J.; Spanel, D.A. The epic crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Lin, M.; Liu, H.; Zhou, R.; Gong, J. Evaluation and trade-offs of ecosystem services in guangdonghong kong-macao greater bay area under multi-scenario simulation. Geogr. Res. 2021, 40, 2657–2669. [Google Scholar]
- Meng, F.; Wen, T.; Wei, L.; Yue, H.; Yan, Z. Ecological risk assessment and spatial identification of ecological restoration from the ecosystem service perspective: A case study in source region of yangtze river. Acta Ecol. Sin. 2021, 41, 3846–3855. [Google Scholar]
- Dan, W.; Chang, Z.; Nai, L.; Meng, X. Tradeoffs and synergies among ecosystem services in the yangtze river economic belt, china. Environ. Ecol. 2021, 3, 1–7. [Google Scholar]
- Anselin, L. Interactive techniques and exploratory spatial data analysis. In Regional Research Institute Working Papers; Regional Research Institute: Morgantown, WV, USA, 1996. [Google Scholar]
- Medinski, T.; Mills, A.; Esler, K.; Schmiedel, U.; Jürgens, N. Do soil properties constrain species richness? Insights from boundary line analysis across several biomes in south western africa. J. Arid Environ. 2010, 74, 1052–1060. [Google Scholar] [CrossRef]
- Anselin, L. Spatial regression. In The SAGE Handbook of Spatial Analysis; Sage: Newcastle upon Tyne, UK, 2009; Volume 1, pp. 255–276. [Google Scholar]
- Lichang, Y.; Xiaofeng, W.; Kun, Z.; Feiyan, X.; Changwu, C.; Xinrong, Z. Trade-offs and synergy between ecosystem services in national barrier zone. Geogr. Res. 2019, 38, 2162–2172. [Google Scholar]
- Baker, S.; Eckerberg, K. A policy analysis perspective on ecological restoration. Ecol. Soc. 2013, 18, 17. [Google Scholar] [CrossRef]
- Borgström, S.; Zachrisson, A.; Eckerberg, K. Funding ecological restoration policy in practice—patterns of short-termism and regional biases. Land Use Policy 2016, 52, 439–453. [Google Scholar] [CrossRef]
Land Use | Cropland | Forest | Grass | Waters | Constructions | Bareland |
---|---|---|---|---|---|---|
P | 0.29 | 0.7 | 0.5 | 0.2 | 0.16 | 0.27 |
C | 0.27 | 0.01 | 0.06 | 0 | 0.2 | 0.35 |
Target Layer | Guideline Layer | Indicator Layer |
---|---|---|
Urbanization (UR) | Population urbanization (PU) | Urban population share (0.03), urban population density (0.06) |
Economic urbanization (ENU) | GDP (0.14), GDP per capita (0.14), fiscal revenue per capita (0.21) | |
Social urbanization (SCU) | Total retail sales of consumer goods per capita (0.0527), health technicians per 10,000 people (0.05), school students per 10,000 people (0.02) | |
Spatial urbanization (STU) | Urban road area per capita (0.06), built-up area owned per capita (0.11) | |
Ecological urbanization (ECU) | Greening coverage rate of built-up areas (0.11), park green space per capita (0.02) |
Variables | 2000 | 2010 | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R-squared | 0.377 *** | 0.342 *** | 0.258 *** | |||||||||
Adjusted R-squared | 0.320 | 0.575 | 0.190 | |||||||||
Akaike info criterion | −94.0367 | −122.247 | −85.027 | |||||||||
Coefficient | PU | −4.095 * | PU | −0.898 * | PU | −3.593 * | ||||||
ENU | 1.218 * | ENU | 0.939 * | ENU | 0.389 * | |||||||
ELU | 1.734 * | ELU | 2.755 * | ELU | −0.219 * | |||||||
STU | −0.521 * | STU | −1.380 * | STU | −0.240 * | |||||||
SCU | −1.125 * | SCU | 0.520 * | SCU | 0.052 * | |||||||
DIAGNOSTICS FOR SPATIAL DEPENDENCE | MI/DF | VALUE | PROE | MI/DF | VALUE | PROE | MI/DF | VALUE | PROE | |||
Moran’s I (error) | 0.7556 | 6.1458 | 0.00 | 0.4852 | 4.019 | 0.00 | 0.7975 | 6.5551 | 0.00 | |||
Lagrange Multiplier (lag) | 1 | 37.747 | 0.00 | 1 | 28.263 | 0.00 | 1 | 0.1680 | 0.00 | |||
Robust LM (lag) | 1 | 6.524 | 0.01 | 1 | 17.131 | 0.00 | 1 | 0.0086 | 0.92 | |||
Lagrange Multiplier (error) | 1 | 31.514 | 0.00 | 1 | 12.995 | 0.00 | 1 | 6.0741 | 0.00 | |||
Robust LM (error) | 1 | 0.292 | 0.59 | 1 | 1.864 | 0.04 | 1 | 5.9147 | 0.01 | |||
Lagrange Multiplier (SARMA) | 2 | 38.0386 | 0.00 | 2 | 30.127 | 0.00 | 2 | 6.0827 | 0.00 |
Variables | 2000 (SLM & SEM) | 2010 (SLM & SEM) | 2020 (SLM & SEM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R-squared | 0.867 *** | 0.823 *** | 0.888 *** | 0.881 *** | 0.875 *** | 0.852 *** | ||||||
Akaike info criterion | −160.871 | −174.283 | −122.247 | −166.276 | −89.5468 | −67.527 | ||||||
Coefficient | PU | −1.029 *** | PU | −1.029 *** | PU | −0.341 *** | PU | 0.419 | PU | −2.862 *** | PU | −1.372 ** |
ENU | −0.312 ** | ENU | −0.912 | ENU | −0.097 * | ENU | 1.076 | ENU | 0.353 * | ENU | 0.123 | |
ELU | 0.481 ** | ELU | 0.401 ** | ELU | 1.059 ** | ELU | 0.626 | ELU | 0.295 *** | ELU | 1.520 | |
STU | −0.140 ** | STU | −0.153 ** | STU | −0.509 *** | STU | −0.207 *** | STU | −0.101 * | STU | −0.223 * | |
SCU | −0.127 * | SCU | −0.127 | SCU | 0.229 * | SCU | 0.005 | SCU | 0.036 * | SCU | 0.256 * | |
CONSTANT | 0.106 | 0.306 | 0.108 | 0.412 | 0.638 | 0.504 | ||||||
Schwarz criterion | −146.21 | −155.62 | −162.228 | −153.71 | −76.981 | −50.981 | ||||||
Log likelihood | 95.444 | 91.233 | 95.4441 | 89.138 | 50.773 | 88.773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ji, Y.; Yu, H.; Lai, X. Measuring the Relationship between Physical Geographic Features and the Constraints on Ecosystem Services from Urbanization Development. Sustainability 2022, 14, 8149. https://doi.org/10.3390/su14138149
Wang Y, Ji Y, Yu H, Lai X. Measuring the Relationship between Physical Geographic Features and the Constraints on Ecosystem Services from Urbanization Development. Sustainability. 2022; 14(13):8149. https://doi.org/10.3390/su14138149
Chicago/Turabian StyleWang, Yongzheng, Yiwen Ji, Haoran Yu, and Xiaoying Lai. 2022. "Measuring the Relationship between Physical Geographic Features and the Constraints on Ecosystem Services from Urbanization Development" Sustainability 14, no. 13: 8149. https://doi.org/10.3390/su14138149
APA StyleWang, Y., Ji, Y., Yu, H., & Lai, X. (2022). Measuring the Relationship between Physical Geographic Features and the Constraints on Ecosystem Services from Urbanization Development. Sustainability, 14(13), 8149. https://doi.org/10.3390/su14138149