Changing Climatic Scenarios Anticipate Dwindling of Suitable Habitats for Endemic Species of Himalaya—Predictions of Ensemble Modelling Using Aconitum heterophyllum as a Model Plant
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyderski, M.K.; Paz, S.; Frelich, L.E.; Jagodzinski, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- van der Maaten, E.; Hamann, A.; van der Maaten-Theunissen, M.; Bergsma, A.; Hengeveld, G.; van Lammeren, R.; Mohren, F.; Nabuurs, G.J.; Terhurne, R.; Sterck, F. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 2017, 7, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, J.S.; Clark, J.S.; Manos, P.S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 2005, 86, 2088–2098. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Keutgen, N.; Chen, K.; Lenz, F. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 1997, 150, 395–400. [Google Scholar] [CrossRef]
- Benning, T.L.; La Pointe, D.; Atkinson, C.T.; Vitousek, P.M. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modelling the fate of endemic birds using a geographic information system. Proc. Natl. Acad. Sci. USA 2002, 99, 14246–14249. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.T.; Hobbs, R.J. Ecological restoration in the light of ecological history. Science 2009, 325, 567–569. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.; Brotons, L.; Madden, E.; Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Thuiller, W.; Pollock, L.J.; Gueguen, M.; Münkemüller, T. From species distributions to meta-communities. Ecol. Lett. 2015, 18, 1321–1328. [Google Scholar] [CrossRef] [Green Version]
- Booth, T.H. Species distribution modelling tools and databases to assist managing forests under climate change. For. Ecol. Manag. 2018, 430, 196–203. [Google Scholar] [CrossRef]
- Hamann, A.; Wang, T. Potential effects of climate change on ecosystem. Ecology 2006, 87, 2773–2786. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, J.M.; Strayer, D.L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N. Y. Acad. Sci. 2008, 1134, 1–24. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Anderson, R.P.; Martinez-Meyer, E. Modelling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 2004, 116, 167–179. [Google Scholar] [CrossRef]
- Rodriguez, J.P.; Brotons, L.; Bustamante, J.; Seoane, J. The application of predictive modelling of species distribution to biodiversity conservation. Divers. Distrib. 2007, 13, 243–251. [Google Scholar] [CrossRef]
- Jetz, W.; McPherson, J.M.; Guralnick, R.P. Integrating biodiversity distribution knowledge: Toward a global map of life. Trends Ecol. Evol. 2012, 27, 151–159. [Google Scholar] [CrossRef]
- Guisan, A.; Broennimann, O.; Engler, R.; Vust, M.; Yoccoz, N.G.; Lehmann, A.; Zimmermann, N.E. Using Niche-Based models to improve the sampling of rare species. Conserv. Biol. 2006, 20, 501–511. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- de Siqueira, M.F.; Durigan, G.; de Junior, M.P.; Peterson, A.T. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 2009, 17, 25–32. [Google Scholar] [CrossRef]
- Marcer, A.; Saez, L.; Molowny-Horas, R.; Pons, X.; Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Conserv. 2012, 166, 221–230. [Google Scholar] [CrossRef]
- Arcos, J.M.; Becares, J.; Villero, D.; Brotons, L.; Rodriguez, B.; Ruiz, A. Assessing the location and stability of foraging hotspots for pelagic seabirds: An approach to identify marine Important Bird Areas (IBAs) in Spain. Biol. Conserv. 2012, 156, 30–42. [Google Scholar] [CrossRef]
- Fajardo, J.; Lessmann, J.; Bonaccorso, E.; Devenish, C.; Munoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 2014, 9, e0114367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermoso, V.; Kennard, M.J.; Linke, S. Assessing the risks and opportunities of presence-only data for conservation planning. J. Biogeogr. 2015, 42, 218–228. [Google Scholar] [CrossRef]
- Angelieri, C.C.S.; Adams-Hosking, C.; de Barroz, K.M.P.M.; Perreira de Souza, M.; McAlpine, C.A. Using species distribution models to predict potential landscape restoration effects on puma conservation. PLoS ONE 2016, 11, e0145232. [Google Scholar] [CrossRef] [PubMed]
- Clavero, M.; Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 2015, 52, 960–968. [Google Scholar] [CrossRef]
- Dhar, U.; Kachroo, P. Alpine Flora of Kashmir Himalaya; Scientific Publishers: Jodhpur, India, 1983. [Google Scholar]
- Rai, K.L.; Prasad, P.; Sharma, E. Conservation threats to some important medicinal plants of the Sikkim Himalaya. Biol. Conserv. 2000, 93, 27–33. [Google Scholar] [CrossRef]
- Paramanick, D.; Panday, R.; Shukla, S.S.; Sharma, V. Primary Pharmacological and other important findings on the medicinal plant “Aconitum heterophyllum” (Aruna). J. Pharmacop. 2017, 20, 89–92. [Google Scholar]
- Rajakrishnan, R.; Lekshmi, R.; Samuel, D. Analytical standards for the root tubers of ativisha-Aconitum heterophyllum Wall. ex Royle. Int. J. Sci. Res. Publ. 2016, 6, 531–534. [Google Scholar]
- Buddhadev, S.G.; Buddhadev, S.S. A complete review on Ativisha-Aconitum heterophyllum. Pharm. Sci. Mon. 2017, 8, 111–114. [Google Scholar]
- Raina, R.; Chauhan, R.; Naithani, R.A. Note on the floral morphology of Aconitum heterophyllum Wall. (Ranunculaceae)—An important temperate medicinal plant. Open Access J. Med. Aro Plants 2011, 2, 1–4. [Google Scholar]
- Nyirimigabo, E.; Xu, Y.; Li, Y.; Wang, Y.; Agyemang, K.; Zhang, Y. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J. Pharm. Pharmacol. 2015, 67, 1–19. [Google Scholar] [CrossRef]
- Ganie, A.H.; Tali, B.A.; Khuroo, A.A.; Reshi, Z.A.; Nawchoo, I.A. Impact assessment of anthropogenic threats to high-valued medicinal plants of Kashmir Himalaya, India. J. Nat. Conserv. 2019, 50, 125715. [Google Scholar] [CrossRef]
- Wani, Z.A.; Pant, S. Aconitum heterophyllum Wall. ex Royle: An endemic, highly medicinal and critically endangered plant species of Northwestern Himalaya in Peril. Curr. Tradit. Med. 2021, 7, 2–7. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Steven, P.; John, L.; Jane., E. Dismo: Species Distribution Modelling, R Package Version 1.1–4; The R Project for Statistical Computing: Vienna, Austria, 2017.
- Peterson, A.T.; Soberon, A.J.; Pearson, R.G.; Andersen, R.P.; Martinez, E.; Nakamura, M.; Araujo, M.B. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leatwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecograp 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Cade, B.; Engler, R.; Araujo, M.B. BIOMOD a platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Zimmermann, N.E., Ed.; Habitat Suitability and Distribution Models with Applications in R. Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Rather, Z.A.; Ahmad, R.; Dar, T.H.; Khuroo, A.A. Ensemble modelling enables identification of suitable sites for habitat restoration of threatened biodiversity under climate change: A case study of Himalayan Trillium. Ecol. Eng. 2022, 176, 106534. [Google Scholar] [CrossRef]
- Thuiller, W.; Araujo, M.B.; Lavorel, S. Do we need land-cover data to model species distributions in Europe? J. Biogeog. 2004, 31, 353–361. [Google Scholar] [CrossRef]
- Santiz, E.C.; Lorenzo, C.; Carrillo-Reyes, A.; Navarrete, D.A.; Islebe, G. Effect of climate change on the distribution of a critically threatened species. Therya 2016, 7, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Mehta, P.; Chandra Sekar, K.; Bhatt, D.; Tewari, A.; Bisht, K.; Upadhyay, S.; Negi, V.S.; Soragi, B. Conservation and prioritization of threatened plants in Indian Himalayan Region. Biodivers. Conserv. 2020, 29, 1723–1745. [Google Scholar] [CrossRef]
- Dad, M.D.; Khan, A.B. Threatened medicinal plants of Gurez Valley, Kashmir Himalaya: Distribution pattern and current conservation status. Int. J. Biodivers. Sci. Ecol. Ser. Manag. 2011, 7, 20–26. [Google Scholar] [CrossRef]
- Baig, B.A.; Ranamoorthy, R.; Bhat, T.A. Threatened medicinal plants of Menwarsar Pahalgam, Kashmir Himalayas: Distribution pattern and current conservation status. Proc. Int. Acad. Ecol. Environ. Sci. 2013, 1986, 25–35. [Google Scholar]
- Jeelani, S.M.; Siddique, M.A.A.; Rani, S. Variations of morphology, ecology and chromosomes of Aconitum heterophyllum Wall., an endangered Alpine medicinal plant in Himalayas. Caryologia 2016, 68, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Becklin, K.M.; Anderson, J.T.; Gerhart, L.M.; Wadgymar, S.M.; Wessinger, C.A.; Ward, J.K. Examining plant physiological responses to climate change through an Evolutionary lens. Plant Physiol. 2016, 172, 635–649. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, X.; Zhang, L.; Baskin, J.M.; Baskin, C.C.; Carol, C.; Liu, H.; Zhang, D. Effects of increased precipitation on the life history of spring- and autumn-germinated plants of the cold desert annual Erodium oxyrhynchum (Geraniaceae). AoB Plants 2019, 11, plz004. [Google Scholar] [CrossRef] [Green Version]
Biovariables | GLM | GBM | GAM | CTA | ANN | SRE | FDA | RF | MARS | MaxEnt | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
bio1 | 0.073 | 0.058 | 0.502 | 0.130 | 0.090 | 0.219 | 0.100 | 0.110 | 0.165 | 0.068 | 0.151 |
bio2 | 0.043 | 0.018 | 0.521 | 0 | 0.007 | 0.212 | 0.008 | 0.153 | 0.049 | 0.045 | 0.105 |
bio4 | 0.086 | 0.226 | 0.560 | 0.201 | 0.120 | 0.109 | 0.455 | 0.259 | 0.382 | 0.406 | 0.280 |
bio8 | 0.181 | 0.101 | 0.479 | 0.041 | 0.073 | 0.213 | 0.188 | 0.050 | 0.269 | 0.231 | 0.282 |
bio12 | 0.901 | 0.706 | 0.832 | 0.863 | 0.001 | 0.556 | 0.971 | 0.457 | 0.900 | 0.949 | 0.713 |
bio15 | 0.055 | 0.012 | 0.426 | 0 | 0.078 | 0.267 | 0.003 | 0.042 | 0.034 | 0.080 | 0.099 |
Scenario | Ensemble Type | Loss | Absent | Stable | Gain | Loss (%) | Gain (%) | Range Change (%) |
---|---|---|---|---|---|---|---|---|
RCP4.5 2050 | Committee averaging | 14,495 | 281,129 | 16,475 | 2622 | 43.80 | 8.46 | −38.33 |
RCP4.5 2070 | Committee averaging | 18,857 | 281,217 | 12,113 | 2534 | 60.88 | 8.18 | −52.70 |
RCP8.5 2050 | Committee averaging | 18,312 | 281,725 | 12,658 | 2026 | 59.12 | 6.54 | −52.58 |
RCP8.5 2070 | Committee averaging | 20,715 | 280,563 | 10,255 | 3188 | 66.88 | 10.29 | −56.59 |
RCP4.5 2050 | Weighted mean | 15,013 | 281,510 | 14,119 | 4079 | 51.53 | 14.02 | −37.53 |
RCP4.5 2070 | Weighted mean | 18,000 | 281,659 | 11,132 | 3930 | 61.78 | 13.49 | −48.29 |
RCP8.5 2050 | Weighted mean | 17,983 | 281,478 | 11,149 | 4111 | 61.72 | 14.11 | −47.61 |
RCP8.5 2070 | Weighted mean | 19,919 | 280,331 | 9213 | 5258 | 68.37 | 18.04 | −50.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, Z.A.; Ridwan, Q.; Khan, S.; Pant, S.; Siddiqui, S.; Moustafa, M.; Ahmad, A.E.; Yassin, H.M. Changing Climatic Scenarios Anticipate Dwindling of Suitable Habitats for Endemic Species of Himalaya—Predictions of Ensemble Modelling Using Aconitum heterophyllum as a Model Plant. Sustainability 2022, 14, 8491. https://doi.org/10.3390/su14148491
Wani ZA, Ridwan Q, Khan S, Pant S, Siddiqui S, Moustafa M, Ahmad AE, Yassin HM. Changing Climatic Scenarios Anticipate Dwindling of Suitable Habitats for Endemic Species of Himalaya—Predictions of Ensemble Modelling Using Aconitum heterophyllum as a Model Plant. Sustainability. 2022; 14(14):8491. https://doi.org/10.3390/su14148491
Chicago/Turabian StyleWani, Zishan Ahmad, Qamer Ridwan, Sajid Khan, Shreekar Pant, Sazada Siddiqui, Mahmoud Moustafa, Ahmed Ezzat Ahmad, and Habab M. Yassin. 2022. "Changing Climatic Scenarios Anticipate Dwindling of Suitable Habitats for Endemic Species of Himalaya—Predictions of Ensemble Modelling Using Aconitum heterophyllum as a Model Plant" Sustainability 14, no. 14: 8491. https://doi.org/10.3390/su14148491
APA StyleWani, Z. A., Ridwan, Q., Khan, S., Pant, S., Siddiqui, S., Moustafa, M., Ahmad, A. E., & Yassin, H. M. (2022). Changing Climatic Scenarios Anticipate Dwindling of Suitable Habitats for Endemic Species of Himalaya—Predictions of Ensemble Modelling Using Aconitum heterophyllum as a Model Plant. Sustainability, 14(14), 8491. https://doi.org/10.3390/su14148491