Antibiotic-Resistant Gene Behavior in Constructed Wetlands Treating Sewage: A Critical Review
Abstract
:1. Introduction
2. Antibiotic Resistance in Sewage Treated by Constructed Wetlands
2.1. Antibiotic-Resistant Genes
2.2. Mechanisms of Antibiotic-Resistant Gene Reduction in Constructed Wetlands
2.3. Antibiotic-Resistant Gene Reductions in Constructed Wetlands
3. Statistical and Correlation Analyses to Determine the Effects of Operational and Design Parameters on Antibiotic-Resistant Gene Reductions in Constructed Wetlands
3.1. Statistical Analyses to Determine the Effect of Flow Configuration on Antibiotic-Resistant Genes
3.2. Correlation Analyses to Determine the Effects of Operational Parameters on Antibiotic-Resistant Gene Reductions
4. Antibiotic-Resistant Gene Reduction Performance of Constructed Wetlands
4.1. Effects of Flow Configuration on Antibiotic-Resistant Gene Reduction in Constructed Wetlands
4.2. Effects of Operational and Design Parameters on Antibiotic-Resistant Gene Reductions in Constructed Wetlands
4.2.1. Effects of Seasonality
4.2.2. Effects of Monoculture and Polyculture
4.2.3. Effects of the Support Medium
4.2.4. Effects of Hydraulic Retention Time
5. Use of Advanced Sewage Treatment Technologies to Enhance Antibiotic-Resistant- Gene Reduction in Constructed Wetlands
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OMS. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017; 45p.
- Du, L.; Zhao, Y.; Wang, C.; Zhang, H.; Chen, Q.; Zhang, X.; Zhang, L.; Wu, J.; Wu, Z.; Zhou, Q. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. Sci. Total Environ. 2020, 721, 137765. [Google Scholar] [CrossRef] [PubMed]
- García, J.; García-Galán, M.J.; Day, J.W.; Boopathy, R.; White, J.R.; Wallace, S.; Hunter, R.G. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresour. Technol. 2020, 307, 123228. [Google Scholar] [CrossRef] [PubMed]
- Langbehn, R.K.; Michels, C.; Soares, H.M. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environ. Pollut. 2021, 275, 116603. [Google Scholar] [CrossRef] [PubMed]
- Škulcová, B.; Tamášová, K.; Vojs Staňová, A.; Bírošová, L.; Krahulcová, M.; Gál, M.; Konecná, B.; Janíková, M.; Celevá, P.; Gravicová, K.; et al. Effervescent ferrate(VI)-based tablets as an effective means for removal SARS-CoV-2 RNA, pharmaceuticals and resistant bacteria from wastewater. J. Water Process. Eng. 2021, 43, 102223. [Google Scholar] [CrossRef]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2019, 50, 2016–2059. [Google Scholar] [CrossRef]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- De Oliveira, D.; Forde, B.; Kidd, T.; Harris, P.; Schembri, M.; Beatson, S.; Paterson, D.; Walker, M. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Makowska, N.; Bresa, K.; Koczura, R.; Philips, A.; Nowis, K.; Mokracka, J. Urban wastewater as a conduit for pathogenic gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. Sci. Total Environ. 2020, 765, 144176. [Google Scholar] [CrossRef]
- Ávila, C.; García-Galán, M.J.; Borrego, C.M.; Rodríguez-Mozaz, S.; García, J.; Barceló, D. New insights on the combined removal of antibiotics and ARGs in urban wastewater through the use of two configurations of vertical subsurface flow constructed wetlands. Sci. Total Environ. 2021, 755, 142554. [Google Scholar] [CrossRef]
- Sabri, N.; Schmitt, H.; van der Zaan, B.; Gerritsen, H.; Rijnaarts, H.; Langenhoff, A. Performance of full scale constructed wetlands in removing antibiotics and antibiotic resistance genes. Sci. Total Environ. 2021, 786, 147–368. [Google Scholar] [CrossRef]
- Neumann, P.; González, Z.; Vidal, G. Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion. Bioresour. Technol. 2017, 234, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Vera, I.; Sáez, K.; Vidal, G. Performance of 14 full-scale sewage treatment plants: Comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption. Environ. Technol. 2013, 34, 2267–2275. [Google Scholar] [CrossRef] [PubMed]
- Korzeniewska, E.; Harnisz, M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Sci. Total Environ. 2018, 639, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Manaia, M.; Rocha, J.; Scaccia, N. Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environ. Int. 2018, 115, 312–324. [Google Scholar] [CrossRef]
- Kumar, A.; Pal, D. Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. J. Environ. Chem. Eng. 2018, 6, 52–58. [Google Scholar] [CrossRef]
- Pärnänen, K.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef] [Green Version]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems–a review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef]
- Pei, M.; Zhang, B.; He, Y.; Su, J.; Gin, K.; Lev, O.; Shen, G.; Hu, S. State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. Environ. Int. 2019, 131, 105026. [Google Scholar] [CrossRef]
- Bueno, I.; Verdugo, C.; Jimenez-Lopez, O.; Alvarez, P.P.; Gonzalez-Rocha, G.; Lima, C.A.; Travis, D.A.; Wass, B.; Zhang, Q.; Ishii, S.; et al. Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. Int. J. Hyg. Environ. Health 2020, 223, 56–64. [Google Scholar] [CrossRef]
- Leiva, A.M.; Piña, B.; Vidal, G. Antibiotic resistance dissemination in wastewater treatment plants: A challenge for the reuse of treated wastewater in agriculture. Rev. Environ. Sci. Biotechnol. 2021, 20, 1043–1072. [Google Scholar] [CrossRef]
- Narciso-da-Rocha, C.; Rocha, J.; Vaz-Moreira, I.; Lira, F.; Tamames, J.; Henriques, I.; Martinez, J.; Manaia, C. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Environ. Int. 2018, 118, 179–188. [Google Scholar] [CrossRef]
- Hiller, C.X.; Hübner, U.; Fajnorova, S.; Schwartz, T.; Drewes, J.E. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. Sci. Total Environ. 2019, 685, 596–608. [Google Scholar] [CrossRef] [PubMed]
- López, D.; Fuenzalida, D.; Vera, I.; Rojas, K.; Vidal, G. Relationship between the removal of organic matter and the production of methane in subsurface flow constructed wetlands designed for wastewater treatment. Ecol. Eng. 2015, 83, 296–304. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Mancilla, R.A.; Zúñiga, J.; Salgado, E.; Schiappacasse, M.C.; Chamy, R. Constructed wetlands for domestic wastewater treatment in a Mediterranean climate region in Chile. Electron. J. Biotechnol. 2013, 16, 1–13. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Zheng, J.; Huang, X.; Wang, Z.; Liu, Y.; Zhu, G. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere 2013, 91, 1088–1093. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X.D.; Liu, Y.S.; Ying, G.G.; Liu, S.S.; He, L.Y.; Su, H.C.; Hu, L.X.; Chen, F.R.; Yang, Y.Q. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Sci. Total Environ. 2016, 565, 240–248. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, Y.; Zhang, Y.; Song, B.; Li, H.; Chen, Z. Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecol. Eng. 2016, 92, 243–250. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, Q.; Nie, X.; Chen, B.; Xiao, Y.; Zhou, Q.; Liang, X. Ocurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland. Chemosphere 2017, 173, 99–106. [Google Scholar] [CrossRef]
- Song, H.L.; Zhang, S.; Guo, J.; Yang, Y.L.; Zhang, L.M.; Li, H.; Yang, X.L.; Liu, X. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent. Chemosphere 2018, 203, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Deng, W.J.; Liu, Y.S.; Hu, L.X.; He, L.Y.; Zhao, J.L.; Wang, T.T.; Ying, G.G. Fate and removal of antibiotics and antibiotic resistance genes in hybrid constructed wetlands. Environ. Pollut. 2019, 249, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Abou-Kandil, A.; Shibli, A.; Azaizeh, H.; Wolff, D.; Wick, A.; Jadoun, J. Fate and removal of bacteria and antibiotic resistance genes in horizontal subsurface constructed wetlands: Effect of mixed vegetation and substrate type. Sci. Total Environ. 2021, 59, 144193. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F.; et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The ability of biologically based wastewater treatment systems to remove emerging organic contaminants—A review. Environ. Sci. Pollut. Res. 2014, 21, 11708–11728. [Google Scholar] [CrossRef]
- Peng, S.; Li, H.; Song, D.; Lin, X.; Wang, Y. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. Bioresour. Technol. 2018, 263, 393–401. [Google Scholar] [CrossRef]
- Alonso, A.; Sánchez, P.; Martinez, J. Environmental selection of antibiotic resistance genes. Environ. Microbiol. 2001, 3, 1–9. [Google Scholar] [CrossRef]
- Martínez, J.; Coque, T.; Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 2014, 13, 116–123. [Google Scholar]
- Jiang, Q.; Feng, M.; Ye, C.; Yu, X. Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. Sci. Total Environ. 2022, 806, 150568. [Google Scholar] [CrossRef]
- López, D.; Leiva, A.; Arismendi, W.; Vidal, G. Influence of design and operational parameters on the pathogens reduction in constructed wetland under the climate change scenario. Rev. Environ. Sci. Biotechnol. 2019, 18, 101–125. [Google Scholar] [CrossRef]
- Shirdashtzadeh, M.; Chandrasena, G.; Henry, R.; McCarthy, D. Plants that can kill; improving E. coli removal in stormwater treatment systems using Australian plants with antibacterial activity. Ecol. Eng. 2017, 107, 120–125. [Google Scholar] [CrossRef]
- Chandrasena, G.I.; Shirdashtzadeh, M.; Li, Y.L.; Deletic, A.; Hathaway, J.M.; McCarthy, D.T. Retention and survival of E. coli in stormwater biofilters: Role of vegetation, rhizosphere microorganisms and antimicrobial filter media. Ecol. Eng. 2017, 102, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Shi, M.; Zheng, X.; Zhang, N.; Zheng, H.; Gao, C. A novel method of rural sewage disinfection via root extracts of hydrophytes. Ecol. Eng. 2014, 64, 344–349. [Google Scholar] [CrossRef]
- Dires, S.; Birhanu, T.; Ambelu, A.; Sahilu, G. Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater. J. Environ. Chem. Eng. 2018, 6, 4265–4272. [Google Scholar] [CrossRef]
- Wu, S.; Carvalho, P.N.; Müller, J.A.; Manoj, V.R.; Dong, R. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Sci. Total Environ. 2016, 541, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res. 2019, 162, 320–330. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, L.; Li, P.; Li, N.; He, Y. What’s the cost-effective pattern for rural wastewater treatment? J. Environ. Manag. 2022, 303, 114226. [Google Scholar] [CrossRef]
- He, Y.; Nurul, S.; Schmitt, H.; Sutton, N.B.; Murk, T.A.; Blokland, M.H.; Rijnaarts, H.H.; Langenhoff, A.A. Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents. Sci. Total Environ. 2018, 631–632, 1572–1581. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.-S.; Su, H.-C.; Ying, G.-G.; Liu, F.; Liu, S.-S.; He, L.-Y.; Chen, Z.-F.; Yang, Y.-Q.; Chen, F.R. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland. Environ. Sci. Pollut. Res. 2014, 22, 1794–1803. [Google Scholar] [CrossRef]
- Arias, I.; Carlos, A.; Hans, B. Constructed wetlands for wastewater treatment. Cienc. Ing. Neogranad. 2003, 13, 17–24. [Google Scholar]
- Halverson, N. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands; Westinghouse Savanna River Company: Aiken, SC, USA, 2004; p. 42. [Google Scholar]
- Hickey, A.; Arnscheidt, J.; Joyce, E.; O’Toole, J.; Galvin, G.; O’Callaghan, M.; Conroy, K.; Killian, D.; Shryane, T.; Hughes, F.; et al. An assessment of the performance of municipal constructed wetlands in Ireland. J. Environ. Manag. 2018, 210, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Xia, L.; Ma, T.; Zhang, Y.; Zhou, Y.; He, X. Achieving short-cut nitrification and denitrification in modified intermittently aerated constructed wetland. Bioresour. Technol. 2017, 232, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zheng, J.; Liu, C.; Liu, L.; Liu, Y.; Fan, H. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type. Chem. Eng. J. 2017, 308, 692–699. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Hu, J.; Shi, W.; Kuang, Y.; Guo, X.; Sun, W. Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China. Sci. Total Environ. 2019, 664, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Dan, A.; Yang, Y.; Dai, Y.; Chen, C.; Wang, S.; Tao, R. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands. Bioresour. Technol. 2013, 146, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.J.; Sudarsan, J.S.; Nithiyanantham, S. Efficiency of constructed wetlands in treating E. coli bacteria present in livestock wastewater. Int. J. Environ. Sci. Technol. 2019, 17, 2153–2162. [Google Scholar]
- Leiva, A.M.; Núñez, R.; Gómez, G.; López, D.; Vidal, G. Performance of ornamental plants in monoculture and polyculture horizontal subsurface flow constructed wetlands for treating wastewater. Ecol. Eng. 2018, 120, 116–125. [Google Scholar] [CrossRef]
- Cardinal, P.; Anderson, J.C.; Carlson, J.C.; Low, J.E.; Challis, J.K.; Beattie, S.A.; Bartel, C.N.; Elliott, A.D.; Montero, O.F.; Lokesh, S.; et al. Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands. Sci. Total Environ. 2014, 482–483, 294–304. [Google Scholar] [CrossRef]
- Licata, M.; Gennaro, M.C.; Tuttolomondo, T.; Leto, C.; La Bella, S. Research focusing on plant performance in constructed wetlands and agronomic application of treated wastewater—A set of experimental studies in Sicily (Italy). PLoS ONE. 2019, 14, e0219445. [Google Scholar] [CrossRef]
- Christofilopoulos, S.; Kaliakatsos, A.; Triantafyllou, K.; Gounaki, I.; Venieri, D.; Kalogerakis, N. Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. New Biotechnol. 2019, 52, 94–103. [Google Scholar] [CrossRef]
- Lopez, D.; Sepúlveda, M.; Vidal, G. Phragmites australis and Schoenoplectus californicus in constructed wetlands: Development and nutrient uptake. J. Soil Sci. Plant Nutr. 2016, 16, 763–777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, W.; Wang, J.; Ge, Y.; Gu, B.; Chang, J. Effects of plant diversity and hydraulic retention time on pollutant removals in vertical flow constructed wetland mesocosms. Ecol. Eng. 2012, 49, 244–248. [Google Scholar] [CrossRef]
- Liu, L.; Chen, S.; Xu, K.; Huang, X.; Liu, C. Influence of hydraulic loading rate on antibiotics removal and antibiotic resistance expression in soil layer of constructed wetlands. Chemosphere 2021, 265, 129100. [Google Scholar] [CrossRef] [PubMed]
- Nõlvak, H.; Truu, M.; Tiirik, K.; Oopkaup, K.; Sildvee, T.; Kaasik, A.; Mander, Ü.; Truu, J. Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland. Sci. Total Environ. 2013, 461–462, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, C.; Li, K.; Su, J.; Zhu, G.; Liu, L. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes. Water Res. 2015, 70, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Berglund, B.; Khan, G.A.; Weisner, S.E.B.; Ehde, P.M.; Fick, J.; Lindgren, P.-E. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Sci. Total Environ. 2014, 476–477, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Helt, C.D.; Weber, K.P.; Legge, R.L.; Slawson, R.M. Antibiotic resistance profiles of representative wetland bacteria and faecal indicators following ciprofloxacin exposure in lab-scale constructed mesocosms. Ecol. Eng. 2012, 39, 113–122. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, B.; Gao, F.-Z.; Xiong, Q.; Feng, Y.; Li, Y.; Zhang, J.-N.; Ying, G.-G. Performance and mechanism in degradation of typical antibiotics and antibiotic resistance genes by magnetic resin-mediated UV-Fenton process. Ecotox. Environ. Saf. 2021, 227, 112908. [Google Scholar] [CrossRef]
- Zhou, C.-S.; Wu, J.-W.; Dong, L.-L.; Liu, B.-F.; Xing, D.-F.; Yang, S.-S.; Wu, X.-K.; Wang, Q.; Fan, J.-N.; Feng, L.-P.; et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater. 2020, 388, 122070. [Google Scholar] [CrossRef]
- Iakovides, I.C.; Michael-Kordatou, I.; Moreira, N.F.F.; Ribeiro, A.R.; Fernandes, T.; Pereira, M.F.R.; Nunes, O.C.; Manaia, C.M.; Silva, A.M.T.; Fatta-Kassinos, D. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Res. 2019, 159, 333–347. [Google Scholar] [CrossRef]
- Michael, S.G.; Michael-Kordatou, I.; Nahim-Granados, S.; Polo-López, M.I.; Rocha, J.; Martínez-Piernas, A.B.; Fernández-Ibáñez, P.; Agüera, A.; Manaia, C.M.; Fatta-Kassinos, D. Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chem. Eng. J. 2020, 388, 124383. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Varella Della Giustina, S.; Rocha, J.; Fernandes, T.; Pablos, C.; Encinas, Á.; Barceló, D.; Rodríguez-Mozaz, S.; Manaia, C.M.; Marugán, J. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes? Sci. Total Environ. 2019, 652, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-H.; Yuan, L.; Gao, S.-X.; Wang, L.; Sheng, G.-P. Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Water Res. 2019, 159, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Kong, X.; Sun, H.; Li, C.; Liu, D. High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. J. Environ. Manag. 2019, 231, 439–445. [Google Scholar] [CrossRef]
- Le, T.-H.; Ng, C.; Tran, N.H.; Chen, H.; Gin, K.Y.-H. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res. 2018, 145, 498–508. [Google Scholar] [CrossRef]
- Ren, S.; Boo, C.; Guo, N.; Wang, S.; Elimelech, M.; Wang, Y. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent. Environ. Sci. Technol. 2018, 52, 8666–8673. [Google Scholar] [CrossRef]
- Kong, L.; He, F.; Xia, S.; Xu, D.; Zhang, Y.; Xiao, E.R.; Wu, Z.B. A combination process of DMBR-IVCW for domestic sewage treatment. Fresenius Environ. Bull. 2013, 22, 665–674. [Google Scholar]
- Azaizeh, H.; Linden, K.G.; Barstow, C.; Kalbouneh, S.; Tellawi, A.; Albalawneh, A.; Gerchman, Y. Constructed wetlands combined with UV disinfection systems for removal of enteric pathogens and wastewater contaminants. Water Sci. Technol. 2013, 67, 651–657. [Google Scholar] [CrossRef]
- Russo, N.; Marzo, A.; Randazzo, C.; Caggia, C.; Toscano, A.; Cirelli, G.L. Constructed wetlands combined with disinfection systems for removal of urban wastewater contaminants. Sci. Total Environ. 2019, 656, 558–566. [Google Scholar] [CrossRef]
Sewage | Flow Configuration | Macrophyte Type | Support Medium | HRT | ARGs | Absolute Abundance (Copies/mL) | Reduction (Ulog) | Range | Ref | |
---|---|---|---|---|---|---|---|---|---|---|
Influent (×106) | Effluent (×106) | |||||||||
Urban | HSSF, VSSF, SF, VSSF–HSSF | P. australis, T. angustifolia, T. dealbata, C. alterfolius, I. tectorum | tuff, gravel, sand, zeolite | 0.18–6 | sul1 | 8.18 | 7.10 | 0.33 | −0.49–1.01 | [10,11,29,30,33,34,49] |
sul2 | 8.95 | 7.48 | 0.35 | 0.04–0.9 | ||||||
sul3 | 6.92 | 6.04 | 0.13 | −0.27–0.75 | ||||||
ermB | 4.25 | 1.56 | 0.21 | 0.08–0.82 | ||||||
ermC | 4.43 | 1.62 | 0.42 | 0.30–0.67 | ||||||
tetM | 0.91 | 0.25 | 0.36 | 0.34–0.63 | ||||||
tetO | 0.01 | 0.04 | 0.34 | 0.32–0.90 | ||||||
tetX | 0.04 | 0.005 | 0.60 | 0.31–0.69 | ||||||
floR | 0.00007 | 0.00004 | 0.75 | −0.02–0.88 | ||||||
cmlA | 2.64 | 0.07 | 0.36 | 0.29–0.74 | ||||||
Rural | SF–VSSF, SF | P. australis, T. dealbata, T. orientalis, P. cordata, M. vercillatum, I. tectorum | chaff, soil | 0.25–1.5 | sul1 | 1.14 | 0.05 | 0.70 | 0.42–1.55 | [31,50] |
sul2 | 0.01 | 0.001 | 0.65 | 0.41–1.34 | ||||||
sul3 | 1.47 | 0.003 | 0.78 | 0.22–0.78 | ||||||
tetM | 1.02 | 0.01 | 0.66 | 0.30–2.69 | ||||||
tetO | 0.42 | 0.002 | 0.73 | 0.51–1.69 | ||||||
ermB | 0.83 | 0.007 | 2.03 | 0.12–2.03 | ||||||
ermC | 0.02 | 0.01 | 0.24 | 0.14–0.27 |
Parameter | ARGs | p-Value | Significant Difference |
---|---|---|---|
CW configuration: HSSF, VSSF, SF, VSSF–HSSF, SF–SF, SF–VSSF | sul1 | 2.85 | No |
sul2 | 4.05 | No | |
sul3 | 0.52 | No | |
ermB | 5.56 | No | |
ermC | 0.89 | No | |
tetO | 0.66 | No | |
tetX | 0.52 | No | |
tetG | 0.51 | No | |
tetM | 0.55 | No | |
floR | 0.52 | No | |
cmlA | 0.89 | No |
Operating Parameter | Comparison | p-Value ARG Reduction | Significant Difference | |||
---|---|---|---|---|---|---|
sul1 | sul2 | ermB | tetM | |||
Seasonality | Warm–Cold | 0.99 | 0.57 | 0.33 | * | No |
Support medium | Gravel–Zeolite | 0.19 | 0.18 | 0.60 | * | No |
Plantation pattern | Monoculture–Polyculture | 0.97 | 0.97 | * | 0.21 | No |
HRT | (0.5–2 h), (6–24 h), and (48–96 h) | 5.14 | 4.36 | 4.23 | * | No |
Technology | Process | ARG | Reduction (ulog) | Range | References |
---|---|---|---|---|---|
AOPs | UV–Fenton, ozonation, UV-activated persulfate, and UV-C/H2O2 | sul1 | 1.23 ± 1.00 | 0.38–2.44 | [70,71,72,73,74] |
sul2 | 1.45 ± 1.16 | 0.24–2.57 | |||
qnrS | 2.21 ± 2.22 | 0.44–3.79 | |||
tetO | 1.92 ± 2.37 | 0.25–3.60 | |||
tetW | 1.71 ± 1.62 | 0.57–2.86 | |||
cmlA | 2.16 ± 0.93 | 1.50–2.82 | |||
blaOXA | 1.38 ± 1.12 | 0.58–2.17 | |||
blaTEM | 0.90 ± 0.88 | 0.27–1.53 | |||
Membrane filtration | Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, microfiltration, membrane bioreactor, and ultrafiltration | sul1 | 3.26 ± 1.03 | 2.65–4.45 | [75,76,77,78] |
sul2 | 3.71 ± 0.40 | 1.50–4.00 | |||
tetW | 3.42 ± 3.76 | 0.76–6.09 | |||
tetM | 3.98 ± 3.58 | 1.45–6.51 | |||
tetA | 4.88 ± 1.58 | 3.76–6.00 | |||
ermB | 0.94 ± 1.00 | 0.23–1.65 | |||
qnrA | 0.91 ± 0.70 | 0.41–1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monsalves, N.; Leiva, A.M.; Gómez, G.; Vidal, G. Antibiotic-Resistant Gene Behavior in Constructed Wetlands Treating Sewage: A Critical Review. Sustainability 2022, 14, 8524. https://doi.org/10.3390/su14148524
Monsalves N, Leiva AM, Gómez G, Vidal G. Antibiotic-Resistant Gene Behavior in Constructed Wetlands Treating Sewage: A Critical Review. Sustainability. 2022; 14(14):8524. https://doi.org/10.3390/su14148524
Chicago/Turabian StyleMonsalves, Naomi, Ana María Leiva, Gloria Gómez, and Gladys Vidal. 2022. "Antibiotic-Resistant Gene Behavior in Constructed Wetlands Treating Sewage: A Critical Review" Sustainability 14, no. 14: 8524. https://doi.org/10.3390/su14148524
APA StyleMonsalves, N., Leiva, A. M., Gómez, G., & Vidal, G. (2022). Antibiotic-Resistant Gene Behavior in Constructed Wetlands Treating Sewage: A Critical Review. Sustainability, 14(14), 8524. https://doi.org/10.3390/su14148524