Long-Term Landscape Dynamics to Assess Land Degradation Hypotheses—An Exploratory Study of Evidence from Travelers’ Narrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leake’s Routes and Landscape
2.2. Background Data
- (1)
- A digital elevation model of spatial resolution 25 m (European Digital Elevation Model EU-DEM, version 1.1) was retrieved from the Copernicus database. The slope was calculated based on the above DEM. The 40-year median of mean annual temperature and the median of annual precipitation at 1 km-to-1 km spatial resolution were retrieved from the Copernicus Climate Data Store. Each point associated with a landscape description was assigned a value of these four variables.
- (2)
- Current land cover data for the whole of the area were drawn from the Corine Land Cover program (henceforth CLC). The version 2020_20u1 for the year 2018 that was taken into account provides data of scale 1:100,000, 25 ha minimum mapping unit and 100 m minimum width for linear elements. Additionally, the habitat mapping carried out by the project ‘Development of large scale (1:5000) spatial data infrastructure for terrestrial areas protected under the Νatura 2000 network at a national scale’ was taken into account (Supplementary Material, Map S1). The vector files were obtained from the Greek Ministry of Environment and Energy.
2.3. Landscape Dynamics
2.4. Analysis
- Transition of natural vegetation toward human dominated landscapes: Number of points that changed from natural vegetation to CLC classes 1 (‘Artificial areas’) and 2 (‘Agricultural areas’).
- Transition of agricultural land or dense natural vegetation toward sparsely vegetated landscapes: Number of points switching from agricultural use or other natural vegetation cover types to CLC class 3.3 (‘Open spaces with little or no vegetation’).
- Transition of natural vegetation dominated landscapes toward types characteristic of lower soil fertility and/or higher drought stress: The dynamics of two types of vegetation considered as prone to degradation in the Mediterranean were investigated: supra- and low-montane-Mediterranean Greek fir (Abies cephalonica) forests and meso- and supra-Mediterranean deciduous oak (Quercus sp.) forests. These forests were explicitly referred to by Leake and indirectly derived from CLC, since they comprise the vast majority of CLC class 312 (‘Coniferous forests’), in altitudes greater than 900 m asl in the first case, and of class 311 (‘Broad-leaved forests’) in lower elevations in the second.
3. Results
3.1. Mapping and Environmental Background
3.2. Balance of Natural Vegetation Dominated Landscapes
3.3. Balance of Sparsely Vegetated Areas
3.3.1. Transition to Sparse Vegetation Cover
3.3.2. Transition from Sparse Vegetation Cover
3.4. Balance of Forest Dominated Landscapes
3.4.1. Supra- and Low-Montane-Mediterranean Conifers
3.4.2. Meso- and Supra-Mediterranean Deciduous Oak Forests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mairota, P.; Thornes, J.B.; Geeson, N. Atlas of Mediterranean Environments in Europe: The Desertification Context; John Wiley and Sons: Chichester, NJ, USA, 1998. [Google Scholar]
- Naveh, Z. From Biodiversity to Ecodiversity—Holistic Conservation of the Biological and Cultural Diversity of Mediterranean Landscapes. In Landscape Disturbance and Biodiversity in Mediterranean-Type Ecosystems; Rundel, P.W., Montenegro, G., Jaksic, F.M., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1998; Volume 136, pp. 23–53. ISBN 978-3-642-08416-4. [Google Scholar]
- Butzer, K.W. Environmental History in the Mediterranean World: Cross-Disciplinary Investigation of Cause-and-Effect for Degradation and Soil Erosion. J. Archaeol. Sci. 2005, 32, 1773–1800. [Google Scholar] [CrossRef]
- Grove, A.T.; Rackham, O. The Nature of Mediterranean Europe: An. Ecological History; Yale University Press: New Haven, CT, USA; London, UK, 2003; ISBN 978-0-300-10055-6. [Google Scholar]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The Driving Forces of Landscape Change in Europe: A Systematic Review of the Evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.; Bolòs, J.; Kinnaird, T. Changes and Continuities in a Mediterranean Landscape: A New Interdisciplinary Approach to Understanding Historic Character in Western Catalonia. Landsc. Res. 2018, 43, 922–938. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, G.; Levin, N. Reconstructing Nineteenth Century Landscapes from Historical Maps—the Survey of Western Palestine as a Case Study. Landsc. Res. 2016, 41, 360–379. [Google Scholar] [CrossRef]
- Krajewski, P.; Solecka, I.; Mrozik, K. Forest Landscape Change and Preliminary Study on Its Driving Forces in Ślęża Landscape Park (Southwestern Poland) in 1883–2013. Sustainability 2018, 10, 4526. [Google Scholar] [CrossRef] [Green Version]
- Di Pasquale, G.; Saracino, A.; Bosso, L.; Russo, D.; Moroni, A.; Bonanomi, G.; Allevato, E. Coastal Pine-Oak Glacial Refugia in the Mediterranean Basin: A Biogeographic Approach Based on Charcoal Analysis and Spatial Modelling. Forests 2020, 11, 673. [Google Scholar] [CrossRef]
- Nash, D.J.; Adamson, G.C.D.; Ashcroft, L.; Bauch, M.; Camenisch, C.; Degroot, D.; Gergis, J.; Jusopović, A.; Labbé, T.; Lin, K.-H.E.; et al. Climate Indices in Historical Climate Reconstructions: A Global State of the Art. Clim. Past 2021, 17, 1273–1314. [Google Scholar] [CrossRef]
- Boshoff, A.; Landman, M.; Kerley, G. Filling the Gaps on the Maps: Historical Distribution Patterns of Some Larger Mammals in Part of Southern Africa. Trans. R. Soc. S. Afr. 2016, 71, 23–87. [Google Scholar] [CrossRef]
- Marathianou, M.; Kosmas, C.; Gerontidis, S.; Detsis, V. Land-Use Evolution and Degradation in Lesvos (Greece): A Historical Approach. Land Degrad. Dev. 2000, 11, 63–73. [Google Scholar] [CrossRef]
- Kizos, T.; Koulouri, M. Economy, Demographic Changes and Morphological Transformation of the Agri-Cultural Landscape of Lesvos, Greece. Hum. Ecol. Rev. 2005, 12, 183–192. [Google Scholar]
- Gómez-Ortiz, A.; Palacios, D.; Schulte, L.; Salvador-franch, F.; Plana-castellví, J.A. Evidences from Historical Documents of Landscape Evolution after Little Ice Age of a Mediterranean High Mountain Area, Sierra Nevada, Spain (Eighteenth to Twentieth Centuries). Geogr. Ann. Ser. A Phys. Geogr. 2009, 91, 279–289. [Google Scholar] [CrossRef]
- Leake, W.M. Travels in the Morea: With a Map and Plans; John Murray: London, UK, 1830. [Google Scholar]
- Gkadolou, E. Spatial Organization and Semantic Modelling of Historical Data: The Case of the French Scientific Mission, 1828–1829. Int. J. Comput. Methods Herit. Sci. 2019, 3, 43–57. [Google Scholar] [CrossRef]
- Seifried, R.M.; Gardner, C.A.M. Reconstructing Historical Journeys with Least-Cost Analysis: Colonel William Leake in the Mani Peninsula, Greece. J. Archaeol. Sci. Rep. 2019, 24, 391–411. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Lele, S.R.; Keim, J.L.; Solymos, P. ResourceSelection: Resource Selection (Probability) Functions for Use-Availability Data, R Package Version 0.3-5; 2019. Available online: https://cran.r-project.org/package=ResourceSelection (accessed on 26 January 2022).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Sachs, M.C. PlotROC: A Tool for Plotting ROC Curves. J. Stat. Soft. 2017, 79, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Su, Y.-S. Arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. 2021. Available online: https://cran.r-project.org/web/packages/arm (accessed on 26 January 2022).
- Nally, R.M.; Walsh, C.J. Hierarchical Partitioning Public-Domain Software. Biodivers. Conserv. 2004, 13, 659–660. [Google Scholar] [CrossRef]
- Gkadolou, E.; Koutsovoulou, K.; Tolias, G.; Detsis, V. Challenges and Limitations of Modelling Historical Spatial Data on Nature: 19th Century Flora and Fauna of Peloponnese, Greece. AGILE GISci. Ser. 2021, 2, 1–5. [Google Scholar] [CrossRef]
- Pezzi, G.; Donati, D.; Muzzi, E.; Conedera, M.; Krebs, P. Using Chorographic Sources to Reconstruct Past Agro-Forestry Systems. A Methodological Approach Based on the Study Case of the Northern Apennines. Landsc. Res. 2020, 45, 359–376. [Google Scholar] [CrossRef]
- Levers, C.; Müller, D.; Erb, K.; Haberl, H.; Jepsen, M.R.; Metzger, M.J.; Meyfroidt, P.; Plieninger, T.; Plutzar, C.; Stürck, J.; et al. Archetypical Patterns and Trajectories of Land Systems in Europe. Reg. Environ. Chang. 2018, 18, 715–732. [Google Scholar] [CrossRef]
- Németh, G.; Lóczy, D.; Gyenizse, P. Long-Term Land Use and Landscape Pattern Changes in a Marshland of Hungary. Sustainability 2021, 13, 12664. [Google Scholar] [CrossRef]
- Karamesouti, M.; Detsis, V.; Kounalaki, A.; Vasiliou, P.; Salvati, L.; Kosmas, C. Land-Use and Land Degradation Processes Affecting Soil Resources: Evidence from a Traditional Mediterranean Cropland (Greece). CATENA 2015, 132, 45–55. [Google Scholar] [CrossRef]
- Detsis, V.; Ntasiopoulou, G.; Chalkias, C.; Efthimiou, G. Recent Insular Mediterranean Landscape Evolution: A Case Study on Syros, Greece. Landsc. Res. 2010, 35, 361–381. [Google Scholar] [CrossRef]
- Xystrakis, F.; Psarras, T.; Koutsias, N. A Process-Based Land Use/Land Cover Change Assessment on a Mountainous Area of Greece during 1945–2009: Signs of Socio-Economic Drivers. Sci. Total Environ. 2017, 587–588, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, A.; Biró, M.; Malatesta, L.; Molnár, Z.; Mugnoz, S.; Tardella, F.M.; Catorci, A. Land-Use Modifications and Ecological Implications over the Past 160 Years in the Central Apennine Mountains. Landsc. Res. 2021, 46, 932–944. [Google Scholar] [CrossRef]
- Sidiropoulou, A.; Karatassiou, M.; Galidaki, G.; Sklavou, P. Landscape Pattern Changes in Response to Transhumance Abandonment on Mountain Vermio (North Greece). Sustainability 2015, 7, 15652–15673. [Google Scholar] [CrossRef] [Green Version]
- Christopoulou, A.; Kazanis, D.; Fyllas, N.; Arianoutsou, M. Post-Fire Recovery of Abies Cephalonica Forest Communities: The Case of Mt Parnitha National Park, Attica, Greece. iFor.-Biogeosci. For. 2018, 11, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Daskalakou, E.N.; Koutsovoulou, K.; Ioannidis, K.; Koulelis, P.P.; Ganatsas, P.; Thanos, C.A. Masting and Regeneration Dynamics of Abies Cephalonica, the Greek Endemic Silver Fir. Seed Sci. Res. 2019, 29, 227–237. [Google Scholar] [CrossRef]
- Detsis, V.; Efthimiou, G.; Theodoropoulou, O.; Siorokou, S. Determination of the Environmental Factors That Affect the Growth and Survival of Greek Fir Seedlings. Land 2020, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Fauchée, M.M.; Brongniart, A.; Bory de Saint-Vincent, J.B.G.M.; Chaubard, J.B. Expédition Scientifique de Morée. Tome III, 2nd Partie. Botanique; F.G. Levrault: Paris, France, 1832. [Google Scholar]
- Christopoulou, A.; Mallinis, G.; Vassilakis, E.; Farangitakis, G.-P.; Fyllas, N.M.; Kokkoris, G.D.; Arianoutsou, M. Assessing the Impact of Different Landscape Features on Post-Fire Forest Recovery with Multitemporal Remote Sensing Data: The Case of Mount Taygetos (Southern Greece). Int. J. Wildland Fire 2019, 28, 521. [Google Scholar] [CrossRef] [Green Version]
- Fyllas, N.M.; Christopoulou, A.; Galanidis, A.; Michelaki, C.Z.; Giannakopoulos, C.; Dimitrakopoulos, P.G.; Arianoutsou, M.; Gloor, M. Predicting Species Dominance Shifts across Elevation Gradients in Mountain Forests in Greece under a Warmer and Drier Climate. Reg. Environ. Chang. 2017, 17, 1165–1177. [Google Scholar] [CrossRef]
- Baudena, M.; Santana, V.M.; Baeza, M.J.; Bautista, S.; Eppinga, M.B.; Hemerik, L.; Garcia Mayor, A.; Rodriguez, F.; Valdecantos, A.; Vallejo, V.R.; et al. Increased Aridity Drives Post-fire Recovery of Mediterranean Forests towards Open Shrublands. New Phytol. 2020, 225, 1500–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarova, M.; Koutsios, A.; Kontopoulos, N. Holocene Vegetation History of the Kotihi Lagoon (Northwest Peloponnesus, Greece). Quat. Int. 2012, 261, 138–145. [Google Scholar] [CrossRef]
- Jouffroy-Bapicot, I.; Pedrotta, T.; Debret, M.; Field, S.; Sulpizio, R.; Zanchetta, G.; Sabatier, P.; Roberts, N.; Tinner, W.; Walsh, K.; et al. Olive Groves around the Lake. A Ten-Thousand-Year History of a Cretan Landscape (Greece) Reveals the Dominant Role of Humans in Making This Mediterranean Ecosystem. Quat. Sci. Rev. 2021, 267, 107072. [Google Scholar] [CrossRef]
- Esper, J.; Klippel, L.; Krusic, P.J.; Konter, O.; Raible, C.C.; Xoplaki, E.; Luterbacher, J.; Büntgen, U. Eastern Mediterranean Summer Temperatures since 730 CE from Mt. Smolikas Tree-Ring Densities. Clim. Dyn. 2020, 54, 1367–1382. [Google Scholar] [CrossRef]
- Klesse, S.; Ziehmer, M.; Rousakis, G.; Trouet, V.; Frank, D. Synoptic Drivers of 400 Years of Summer Temperature and Precipitation Variability on Mt. Olympus, Greece. Clim. Dyn. 2015, 45, 807–824. [Google Scholar] [CrossRef]
- Jouffroy-Bapicot, I.; Vannière, B.; Iglesias, V.; Debret, M.; Delarras, J.-F. 2000 Years of Grazing History and the Making of the Cretan Mountain Landscape, Greece. PLoS ONE 2016, 11, e0156875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plieninger, T.; Schaich, H.; Kizos, T. Land-Use Legacies in the Forest Structure of Silvopastoral Oak Woodlands in the Eastern Mediterranean. Reg. Environ. Chang. 2011, 11, 603–615. [Google Scholar] [CrossRef] [Green Version]
Elevation | Slope | Temperature | |
---|---|---|---|
slope | 0.55 | ||
temperature | −0.97 | −0.54 | |
precipitation | 0.44 | 0.25 | −0.52 |
Artificial Areas | Agricultural Areas | Forest and Semi-Natural Areas | Wetlands | Water Bodies | Total | |
---|---|---|---|---|---|---|
Agricultural areas | 13 | 157 | 24 | 0 | 1 | 195 |
Forest and semi-natural areas | 2 | 86 | 147 | 0 | 0 | 235 |
Wetlands | 0 | 10 | 1 | 6 | 0 | 17 |
Water bodies | 1 | 7 | 0 | 4 | 5 | 17 |
total | 16 | 260 | 172 | 10 | 6 | 464 |
Artificial Areas | Agricultural Areas | Forest and Semi-Natural Areas | Water Bodies | |
---|---|---|---|---|
elevation | ||||
mean | 225.23 | 283.63 | 440.92 | 417.10 |
median | 27.83 | 127.92 | 376.05 | 417.10 |
sd | 343.21 | 299.41 | 326.67 | - |
slope | ||||
mean | 5.85 | 5.07 | 18.34 | 0 |
median | 2.41 | 2.66 | 17.73 | 0 |
sd | 5.73 | 5.78 | 7.25 | - |
temperature | ||||
mean | 16.68 | 16.46 | 15.37 | 15.20 |
median | 17.81 | 17.10 | 15.36 | 15.20 |
sd | 2.15 | 1.96 | 2.17 | - |
precipitation | ||||
mean | 637.78 | 704.53 | 743.52 | 820.58 |
median | 676.45 | 705.43 | 738.07 | 820.58 |
sd | 205.93 | 167.20 | 127.79 | - |
Artificial Areas | Agricultural Areas | Forest and Semi-Natural Areas | |
---|---|---|---|
elevation | |||
mean | 49.57 | 250.93 | 785.80 |
median | 49.57 | 162.20 | 793.45 |
sd | 4.86 | 251.23 | 491.10 |
slope | |||
mean | 6.00 | 8.52 | 17.98 |
median | 6.00 | 7.58 | 17.14 |
sd | 6.85 | 7.08 | 10.30 |
temperature | |||
mean | 17.42 | 16.51 | 13.62 |
median | 17.42 | 16.96 | 13.27 |
sd | 0.25 | 1.59 | 2.98 |
precipitation | |||
mean | 655.71 | 800.17 | 831.44 |
median | 655.71 | 881.32 | 891.82 |
sd | 405.18 | 151.08 | 162.19 |
Estimate | 2.5% | 97.5% | |
---|---|---|---|
19th century Agricultural areas, Hosmer–Lemeshow test p = 0.28 | |||
(Intercept) | −3.455 | −4.502 | −2.554 |
sqrt(slope) | 0.773 | 0.485 | 1.089 |
19th century Forest and semi-natural areas, Hosmer–Lemeshow test p = 0.39 | |||
(Intercept) | −8.81 | −17.99 | 0.044 |
elevation | −0.004 | −0.005 | −0.003 |
log10(precipitation) | 3.47 | 0.36 | 6.69 |
CLC Class | 312 | 321 | 323 | 324 |
---|---|---|---|---|
N | 24 | 1 | 1 | 9 |
no change | change | |||
median altitude (m asl) | 1282 | 1361 | ||
median slope (°) | 19.9 | 25.0 | ||
long-term median of mean annual temperature (°C) | 10.7 | 10.1 | ||
long-term median of annual precipitation (mm/yr) | 931 | 948 |
Class 2: Agricultural Areas (40%) | Class 3.1: Forests (20%) | Class 3.2: Shrubs and/or Herbaceous Vegetation Associations (40%) | |||||||
---|---|---|---|---|---|---|---|---|---|
CLC class | 211 | 212 | 223 | 243 | 311 | 312 | 313 | 323 | 324 |
N | 1 | 2 | 3 | 10 | 3 | 2 | 3 | 11 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Detsis, V.; Gkadolou, E.; Koutsovoulou, K.; Tolias, G. Long-Term Landscape Dynamics to Assess Land Degradation Hypotheses—An Exploratory Study of Evidence from Travelers’ Narrations. Sustainability 2022, 14, 8543. https://doi.org/10.3390/su14148543
Detsis V, Gkadolou E, Koutsovoulou K, Tolias G. Long-Term Landscape Dynamics to Assess Land Degradation Hypotheses—An Exploratory Study of Evidence from Travelers’ Narrations. Sustainability. 2022; 14(14):8543. https://doi.org/10.3390/su14148543
Chicago/Turabian StyleDetsis, Vassilis, Eleni Gkadolou, Katerina Koutsovoulou, and Georgios Tolias. 2022. "Long-Term Landscape Dynamics to Assess Land Degradation Hypotheses—An Exploratory Study of Evidence from Travelers’ Narrations" Sustainability 14, no. 14: 8543. https://doi.org/10.3390/su14148543
APA StyleDetsis, V., Gkadolou, E., Koutsovoulou, K., & Tolias, G. (2022). Long-Term Landscape Dynamics to Assess Land Degradation Hypotheses—An Exploratory Study of Evidence from Travelers’ Narrations. Sustainability, 14(14), 8543. https://doi.org/10.3390/su14148543