Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment
Abstract
:1. Introduction
2. Urban Sustainability and Related Measuring Indexes
3. The New Method—Integrated Socioeconomic and Environmental Data Mining–Based Multi-Objective Assessment (ISL-DM-MOA)
3.1. Identify Interaction Dimensions Embedded in Regional Integrated Environmental and Socioeconomic Data
3.2. Ecosystem Service Values and Urban Sustainability Index
3.3. Multi-Objective Optimization Analysis—Pareto Front
4. The Case Studies
4.1. PCA and Four Derived Urban Development Indicators (DUDI)
4.2. Ecosystem Service Value-based Urban Sustainability Index (ESV-USI)
4.3. The Results of Multi-Objective Optimization Problems Solution—Pareto Front Analysis
5. Implications of the Study
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bank Urban Development. 2020. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview#1 (accessed on 29 December 2021).
- United Nations 68% of the World Population Projected to Live in Urban Areas by 2050. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 26 June 2022).
- Sarigai, E.; Yang, J.; Zhou, A.; Han, L.; Li, Y.; Xie, Y. Monitoring urban black-odorous water by using hyperspectral data and machine learning. Environ. Pollut. 2021, 269, 116166. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, K.; Wiedmann, T.; Chen, G.; Teh, S.H. Benchmarking urban performance against absolute measures of sustainability—A review. J. Clean. Prod. 2021, 314, 128020. [Google Scholar] [CrossRef]
- Corredor-Ochoa, A.; Antuña-Rozado, C.; Fariña-Tojo, J.; Rajaniemi, J. Challenges in assessing urban sustainability. In Urban Ecology: Emerging Patterns and Social-Ecological Systems; Verma, P., Singh, P., Singh, R., Raghubanshi, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 355–374. ISBN 9780128207307. [Google Scholar] [CrossRef]
- McPhearson, T.; Pickett, S.T.A.; Grimm, N.B.; Niemelä, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S. Advancing Urban Ecology toward a Science of Cities. BioScience 2016, 66, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R. Ecological Economics: The Science and Management of Sustainability; Columbia University Press: New York, NY, USA, 1992. [Google Scholar]
- Hawkes, J. Cultural Development Network. In The fourth Pillar of Sustainability: Culture’s Essential Role in Public Planning; Common Ground: Melbourne, VIC, Australia, 2001. [Google Scholar]
- Lozano, R. Envisioning sustainability three-dimensionally. J. Clean. Prod. 2008, 16, 1838–1846. [Google Scholar] [CrossRef]
- Higgins, K.L. From bud to blossom: Nurturing sustainable stewardship. In Economic Growth and Sustainability; Higgins, K.L., Ed.; Academic Press: SanDiego, CA, USA, 2015; pp. 167–180. [Google Scholar]
- Mapar, M.; Jafari, M.J.; Mansouri, N.; Arjmandi, R.; Azizinejad, R.; Ramos, T.B. Sustainability indicators for municipalities of megacities: Integrating health, safety and environmental performance. Ecol. Indic. 2017, 83, 271–291. [Google Scholar] [CrossRef]
- Gibson, R.B.; Hassan, S.; Holtz, S.; Tansey, J.; Whitelaw, G. Sustainability Assessment: Criteria and Processes; Earthscan: London, UK, 2013. [Google Scholar]
- von Edmund, A.S. Geschichte der Nachhaltigkeit: Vom Werden und Wirkeneines Beliebten Begriffes. Available online: https://www.nachhaltigkeit.info/media/1326279587phpeJPyvC.pdf (accessed on 12 July 2022).
- Ali-Toudert, F.; Ji, L. Modeling and measuring urban sustainability in multi-criteria based systems—A challenging issue. Ecol. Indic. 2017, 73, 597–611. [Google Scholar] [CrossRef]
- Batty, M. Inventing Future Cities; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Brandon, P.S.; Lombardi, P. Evaluating Sustainable Development in the Built Environment; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Cole, R.J.; Valdebenito, M.J. The importation of building environmental certification systems: International usages of BREEAM and LEED. Build. Res. Inf. 2013, 41, 662–676. [Google Scholar] [CrossRef]
- Benson, E.M.; Bereitschaft, B. Are LEED-ND developments catalysts of neighborhood gentrification? Int. J. Urban Sustain. Dev. 2019, 12, 73–88. [Google Scholar] [CrossRef]
- Sharifi, A.; Murayama, A. A critical review of seven selected neighborhood sustainability assessment tools. Environ. Impact Assess. Rev. 2013, 38, 73–87. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Ji, L.; Fährmann, L.; Czempik, S. Comprehensive Assessment Method for Sustainable Urban Development (CAMSUD)—A New Multi-Criteria System for Planning, Evaluation and Decision-Making. Prog. Plan. 2020, 140, 100430. [Google Scholar] [CrossRef]
- Chan, P.; Lee, M.-H. Prioritizing Sustainable City Indicators for Cambodia. Urban Sci. 2019, 3, 104. [Google Scholar] [CrossRef] [Green Version]
- Chan, P. Assessing Sustainability of the Capital and Emerging Secondary Cities of Cambodia Based on the 2018 Commune Database. Data 2020, 5, 79. [Google Scholar] [CrossRef]
- Lucchi, E.; Buda, A. Urban green rating systems: Insights for balancing sustainable principles and heritage conservation for neighbourhood and cities renovation planning. Renew. Sustain. Energy Rev. 2022, 161, 112324. [Google Scholar] [CrossRef]
- Razmjoo, A.A.; Sumper, A.; Davarpanah, A. Development of sustainable energy indexes by the utilization of new indicators: A comparative study. Energy Rep. 2019, 5, 375–383. [Google Scholar] [CrossRef]
- Razmjoo, A.; Sumper, A.; Marzband, M.; Davarpanah, A.; Shahhoseini, A.; Sarlak, S. Energy sustainability analyses using feasible indicators for urban areas. Int. J. Energy Water Resour. 2019, 3, 127–140. [Google Scholar] [CrossRef]
- Razmjoo, A.; Østergaard, P.A.; Denaï, M.; Nezhad, M.M.; Mirjalili, S. Effective policies to overcome barriers in the development of smart cities. Energy Res. Soc. Sci. 2021, 79, 102175. [Google Scholar] [CrossRef]
- Tomoiagă, B.; Chindriş, M.; Sumper, A.; Sudria-Andreu, A.; Ila-Robles, R.V.F. Pareto optimal reconfiguration of power distribution systems using a genetic algorithm based on NSGA-II. Energies 2013, 6, 1439–1455. [Google Scholar] [CrossRef] [Green Version]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- Kumar, P.; Thakur, P.K.; Bansod, B.K.S.; Debnath, S.K. Groundwater: A regional resource and a regional governance. Environ. Dev. Sustain. 2017, 20, 1133–1151. [Google Scholar] [CrossRef]
- Le Blanck, D. The sustainable development goals as a network of targets. Monit. Eval. NEWS 2015, 1, 1–4. Available online: http://www.un.org/esa/desa/papers/2015/wp141_2015.pdf (accessed on 12 July 2022).
- UN-HABITAT The City Prosperity Initiative (CPI) Global City Report—2015. Available online: https://smartnet.niua.org/content/ba3a1dcb-3012-44d6-87b5-fbaa28318de7 (accessed on 12 July 2022).
- Sharifi, A. Urban sustainability assessment: An overview and bibliometric analysis. Ecol. Indic. 2021, 121, 107102. [Google Scholar] [CrossRef]
- Shen, L.Y.; Ochoa, J.J.; Shah, M.N.; Zhang, X. The application of urban sustainability indicators—A comparison between various practices. Habitat Int. 2011, 35, 17–29. [Google Scholar] [CrossRef]
- Verma, P.; Raghubanshi, A.S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 2018, 93, 282–291. [Google Scholar] [CrossRef]
- Huang, L.; Wu, J.; Yan, L. Defining and measuring urban sustainability: A review of indicators. Landsc. Ecol. 2015, 30, 1175–1193. [Google Scholar] [CrossRef]
- Liu, J.; Dou, Y.; Batistella, M.; Challies, E.; Connor, T.; Friis, C.; DA Millington, J.; Parish, E.; Romulo, C.L.; Silva, R.F.B.; et al. Spillover systems in a telecoupled Anthropocene: Typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 2018, 33, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Michalina, D.; Mederly, P.; Diefenbacher, H.; Held, B. Sustainable Urban Development: A Review of Urban Sustainability Indicator Frameworks. Sustainability 2021, 13, 9348. [Google Scholar] [CrossRef]
- Bai, X.; Surveyer, A.; Elmqvist, T.; Gatzweiler, F.W.; Güneralp, B.; Parnell, S.; Prieur-Richard, A.-H.; Shrivastava, P.; Siri, J.G.; Stafford-Smith, M.; et al. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 2016, 23, 69–78. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [Green Version]
- Pupphachai, U.; Zuidema, C. Sustainability indicators: A tool to generate learning and adaptation in sustainable urban development. Ecol. Ind. 2017, 72, 784–793. [Google Scholar] [CrossRef]
- Cutaia, F. The Use of Landscape Indicators in Environmental Assessment BT. In Strategic Environmental Assessment: Integrating Landscape and Urban PlanningStrategic Environmental Assessment: Integrating Landscape and Urban Planning; Cutaia, F., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 29–43. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Shammin, M.R. Can the Genuine Progress Indicator better inform sustainable regional progress? A case study for Northeast Ohio. Ecol. Indic. 2012, 18, 330–341. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Franco, C.; Lawn, P.; Talberth, J.; Jackson, T.; Aylmer, C. Beyond GDP: Measuring and achieving global genuine progress. Ecol. Econ. 2013, 93, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, P. The welfare economic theory of green national accounts. Environ. Resour. Econ. 2009, 42, 3–38. [Google Scholar] [CrossRef]
- Roman, P.; Thiry, G. The inclusive wealth index. A critical appraisal. Ecol. Econ. 2016, 124, 185–192. [Google Scholar] [CrossRef]
- Wong, C. A framework for ‘City Prosperity Index’: Linking indicators, analysis and policy. Habitat Int. 2015, 45, 3–9. [Google Scholar] [CrossRef]
- Merino-Saum, A.; Halla, P.; Superti, V.; Boesch, A.; Binder, C. Indicators for urban sustainability: Key lessons from a systematic analysis of 67 measurement initiatives. Ecol. Indic. 2020, 119, 106879. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, P. Urban sustainability assessment tools: A review. J. Clean. Prod. 2019, 210, 146–158. [Google Scholar] [CrossRef]
- Liang, J.; Xie, Y.; Sha, Z.; Zhou, A. Modeling urban growth sustainability in the cloud by augmenting Google Earth Engine (GEE). Comput. Environ. Urban Syst. 2020, 84, 101542. [Google Scholar] [CrossRef]
- Fu, B.; Li, Y.; Wang, Y.; Zhang, B.; Yin, S.; Zhu, H.; Xing, Z. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 2016, 69, 873–881. [Google Scholar] [CrossRef]
- Xue, M.; Luo, Y. Dynamic variations in ecosystem service value and sustainability of urban system: A case study for Tianjin city, China. Cities 2015, 46, 85–93. [Google Scholar] [CrossRef]
- Mascarenhas, A.; Nunes, L.; Ramos, T. Selection of sustainability indicators for planning: Combining stakeholders’ participation and data reduction techniques. J. Clean. Prod. 2015, 92, 295–307. [Google Scholar] [CrossRef]
- Zhou, C.; Xie, Y.; Zhang, A.; Liu, C.; Yang, J. Spatiotemporal analysis of interactions between seasonal water, climate, land use, policy, and socioeconomic changes: Hulun-Buir Steppe as a Case Study. Water Res. 2022, 209, 117937. Available online: https://authors.elsevier.com/a/1eFRN9pi-SbLn (accessed on 12 July 2022). [CrossRef]
- Chen, J.; Lu, J. Effects of Land Use, Topography and Socioeconomic factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China. PLoS ONE 2014, 9, e102714. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, R. Modern spatial econometrics in practice, A guide to GeoDa. In GeoDaSpace and PySAL; GeoDa Press: Chicago, IL, USA, 2014. [Google Scholar]
- Lechner, A.M.; Owen, J.; Ang, M.L.E.; Edraki, M.; Awang, N.A.C.; Kemp, D. Historical socio-environmental assessment of resource development footprints using remote sensing. Remote Sens. Appl. Soc. Environ. 2019, 15, 100236. [Google Scholar] [CrossRef]
- Gupta, A.K.; Negi, M.; Nandy, S.; Kumar, M.; Singh, V.; Valente, D.; Petrosillo, I.; Pandey, R. Mapping socio-environmental vulnerability to climate change in different altitude zones in the Indian Himalayas. Ecol. Indic. 2020, 109, 105787. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M. A composite index of sustainable development at the local scale: Italy as a case study. Ecol. Indic. 2014, 43, 162–171. [Google Scholar] [CrossRef]
- Turner, B.L., II; Robbins, P. Land-change science and political ecology: Similarities, differences, and implications for sustainability science. Annu. Rev. Environ. Resour. 2008, 33, 295–316. [Google Scholar] [CrossRef]
- Li, A. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar]
- Kong, L.; Liu, Z.; Wu, J. A systematic review of big data-based urban sustainability research: State-of-the-science and future directions. J. Clean. Prod. 2020, 273, 123142. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E.S.; Ghodsi, M. A review of data mining applications in crime. Stat. Anal. Data Min. ASA Data Sci. J. 2016, 9, 139–154. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Longo, S.; Montana, S.L.F.; Sanseverino, E.R. A review on optimization and cost-optimal methodologies in low-energy buildings design and environmental considerations. Sustain. Cities Soc. 2019, 45, 87–104. [Google Scholar] [CrossRef]
- Reed, P.M.; Hadka, D.; Herman, J.D.; Kasprzyk, J.R.; Kollat, J.B. Evolutionary multi-objective optimization in water resources: The past, present, and future. Adv. Water Resour. 2013, 51, 438–456. [Google Scholar] [CrossRef] [Green Version]
- Rajapakse, J.C.; Mundra, P.A. Multiclass gene selection using pareto-fronts. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013, 10, 87–97. [Google Scholar] [CrossRef]
- Han, Y.; Gong, D.; Jin, Y.; Pan, Q. Evolutionary multi-objective blocking lot-streaming flow shop scheduling with machine breakdowns. IEEE Trans. Cybern. 2017, 49, 184–1967. [Google Scholar] [CrossRef] [PubMed]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Zadeh, L.A. Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control. 1963, 8, 59–60. [Google Scholar] [CrossRef]
- Geoffrion, A.M. Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 1968, 22, 618–630. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, C.M.; Fleming, P.J. Multiobjective genetic algorithms. In Proceedings of the IEE Colloquium on Genetic Algorithms for Control Systems Engineering, London, UK, 28 May 1993; pp. 6/1–6/5. [Google Scholar]
- Srinivas, N.; Deb, K. Multi-objective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Horn, J.; Nafpliotis, N.; Goldberg, D.E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994. [Google Scholar]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength pareto evolutionary algorithm. TIK-Report 2001, 103. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. PESA-II: Region-based selection in evolutionary multi-objective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco, CA, USA, 7–11 July 2001; pp. 283–290. [Google Scholar]
- IMAR Statistical Bureau. Inner Mongolia Statistical Yearbook. 2000–2017; China Statistical Press: Beijing, China. Available online: http://tj.nmg.gov.cn/files_pub/content/PAGEPACK/b85658190a3644f8b192e45f5221f2fa/indexeh.htm (accessed on 12 July 2022).
- Brown, D.G.; Agrawal, A.; Sass, D.A.; Wang, J.; Hua, J.; Xie, Y. Responses to climate and economic risks and opportunities across national and ecological boundaries: Changing household strategies on the Mongolian Plateau. Environ. Res. Lett. 2013, 8, 045011. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B. Head/Tail Breaks: A New Classification Scheme for Data with a Heavy-Tailed Distribution. Prof. Geogr. 2013, 65, 482–494. [Google Scholar] [CrossRef]
- Li, S.; Xie, Y. Investigating Coupled Impacts of Climate Change and Socioeconomic Transformation on Desertification by Using Multi-temporal Landsat Images: A Case Study in Central Xilingol, China. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1244–1248. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Deng, L.; Shanguan, Z.; Wu, G.; Chang, X. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Sci. Rev. 2017, 173, 84–95. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Q.; Chen, J.; Wang, M.; Zhao, D.; Duan, C. Environmental Impacts Related to Closed Mines in Inner Mongolia. Sustainability 2021, 13, 13473. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Li, A.; Liang, C. Historical landscape dynamics of Inner Mongolia: Patterns, drivers, and impacts. Landsc. Ecol. 2015, 30, 1579–1598. [Google Scholar] [CrossRef]
- Xie, Y.; Fan, S.; Zhou, C. Examining ecosystem deterioration using a Total socioenvironmental system approach. Sci. Total Environ. 2021, 784, 147171. Available online: https://authors.elsevier.com/a/1cyVJB8ccquVR (accessed on 12 July 2022). [CrossRef]
- Shang, C.; Wu, T.; Huang, G.; Wu, J. Weak sustainability is not sustainable: Socioeconomic and environmental assessment of Inner Mongolia for the past three decades. Resour. Conserv. Recycl. 2019, 141, 243–252. [Google Scholar] [CrossRef]
- Kowarik, I.; Fischer, L.K.; Kendal, D. Biodiversity Conservation and Sustainable Urban Development. Sustainability 2020, 12, 4964. [Google Scholar] [CrossRef]
- Tanguay, G.A.; Rajaonson, J.; Lefebvre, J.-F.; Lanoie, P. Measuring the sustainability of cities: An analysis of the use of local indicators. Ecol. Indic. 2010, 10, 407–418. [Google Scholar] [CrossRef]
- Alexander, C. Sustainability and Morphogenesis: The Birth of a Living world; Schumacher Lecture: Bristol, UK, 2004; Available online: https://www.livingneighborhoods.org/library/schumacher-pages-1-28.pdf (accessed on 12 July 2022).
- Alexander, C. The Nature of Order: An Essay on the Art of Building and the Nature of the Universe; Center for Environmental Structure: Berkeley, CA, USA, 2002–2005. [Google Scholar]
- Jiang, B.; de Rijke, C. Representing geographic space as a hierarchy of recursively defined subspaces for computing the degree of order. Comput. Environ. Urban Syst. 2022, 92, 101750. [Google Scholar] [CrossRef]
- Jiang, B. Geography as a science of the Earth’s surface founded on the third view of space. Ann. GIS 2022, 28, 31–43, Reprinted under the new title “A new kind of city science built on living structure and on the third view of space”, as the cover story in the magazine. Coordinates 2022, February issue, 16–25. [Google Scholar] [CrossRef]
- Xie, Y.; Crary, D.; Bai, Y.; Cui, X.; Zhang, A. Modeling Grassland Ecosystem Responses to Coupled Climate and Socioeconomic Influences in Multi-Spatial-And-Temporal Scales. J. Environ. Inform. 2016, 33, 337. [Google Scholar] [CrossRef]
- Batty, M. The New Science of Cities; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
Abbreviation | Explanation | Unit |
---|---|---|
POP | Population (PP) | 10,000 people |
GDP | Gross Domestic Product (GDP) 2016 | 10,000 yuan |
GOVA | Gross Output Value of Farming, Forestry, Animal Husbandry and Fishery (Agriculture) GOVA-2016 | 10,000 yuan |
AA | Arable Area (AA) | Hectare |
GRAIN | Grain Production (GP) | Ton |
LIVESTOCK | The amount of the livestock by the end of the year (ls) | 10,000 head |
FAI | Fixed Assets Investment (FAI)—2014 | 10,000 yuan |
LGR | Local Government Revenue (LGR)—2014 | 10,000 yuan |
IOFP | Per capita net income of farmers and pastoralists (IOFP) | Yuan |
LOH | The total length of highways (LOH) | Kilometer |
RPOP | Rural Population—RPOP | 10,000 people |
TCRV | Total consumer retail value | 10,000 |
PTE | Number of professional and technical workers | Person |
MHT | Number of middle and high school teachers | Person |
HPB | Number of hospital beds | One |
HMP | Number of health and medical professionals | Person |
PCURDI | The per capita disposable income of urban permanent residents | Yuan |
PIO | Total Output Value—Primary Industry (10,000 yuan) | 10,000 |
SIO | Total Output Value—Secondary Industry (10,000 yuan) | 10,000 |
TIO | Total Output Value—Tertiary Industry (10,000 yuan) | 10,000 |
LandArea | Total Land Area | Sq. kilometers |
Water | Water Area | Sq. kilometers |
Forest | Forestland Area | Sq. kilometers |
Shrub | Shrubland Area | Sq. kilometers |
Grass | Grassland Area | Sq. kilometers |
Wetland | Wetland Area | Sq. kilometers |
Crop | Crop Area without Planted Grassland for Harvest | Sq. kilometers |
ACrop | Crop Area + Planted Grassland for Harvest | Sq. kilometers |
Urban | Urban Land Area | Sq. kilometers |
Snow | Snow Covered Area | Sq. kilometers |
Sand | Sandy Land Area | Sq. kilometers |
Factor | Eigenvalues | % of Variance | Cumulative % |
---|---|---|---|
1 | 10.289 | 46.768 | 46.768 |
2 | 5.230 | 23.773 | 70.541 |
3 | 1.330 | 6.045 | 76.586 |
4 | 1.028 | 4.673 | 81.259 |
5 | 0.816 | 3.708 | 84.967 |
Factors 6–21 were deleted because of their Eigenvalues < 1.0 | |||
22 | 0.005 | 0.024 | 100.000 |
General Progress | Agricultural Progress | Stress on Land Supply | Grassland Resource | |
---|---|---|---|---|
zgdp | 0.974 b | 0.086 | −0.032 | 0.024 |
zfai | 0.962 | 0.055 | −0.009 | 0.035 |
zlgr | 0.961 | −0.015 | −0.038 | 0.019 |
zTCRV | 0.955 | 0.089 | −0.095 | 0.020 |
zTIO | 0.947 | −0.023 | −0.066 | 0.015 |
zHMP | 0.929 | 0.154 | −0.121 | −0.084 |
zPCUREI | 0.927 | −0.072 | −0.013 | −0.006 |
zPTE | 0.908 | 0.142 | 0.021 | −0.043 |
zSIO | 0.902 | −0.071 | 0.074 | 0.036 |
zMHT | 0.888 | 0.368 | −0.100 | −0.017 |
zpp | 0.816 | 0.496 | −0.060 | 0.062 |
ziofp | 0.433 | −0.126 | −0.281 | −0.052 |
zPIO | 0.225 | 0.909 | 0.169 | −0.069 |
zgova | 0.214 | 0.895 | 0.163 | −0.048 |
zrpop | 0.207 | 0.851 | 0.084 | 0.208 |
zaa | −0.065 | 0.814 | 0.180 | −0.142 |
zgp | −0.174 | 0.792 | 0.215 | −0.189 |
zACrop | 0.025 | 0.738 | −0.077 | −0.491 |
zloh | 0.162 | 0.236 | 0.821 | −0.180 |
zUrban | 0.335 | −0.141 | −0.579 | −0.066 |
zls | −0.068 | 0.511 | 0.568 | 0.142 |
zGrass | 0.010 | −0.190 | −0.035 | 0.944 |
Calculation Steps | Equations | Explanation |
---|---|---|
1 | unit price per hectare (2219.48) = average actual food production of cropland (4415) × 1/7 × average price for grain (3.519) | 4415 kg/ha2 is the average value from 2005 to 2016; 3.519 Yuan/kg is the grain price of 2005. |
2 | VCkf = unit price per hectare (2219.48) × total equivalent weight factor | VCkf is the value coefficient for category k and service function type f. Total equivalent weight factors include 7 land-use types: Forest, Grass, Shrub, Crop, Wetland, Water, and Urban; Forest replaced woodland and Urban replaced built-up. |
3 | refer to the total static ecosystem value. represents the area of LULC category k. | |
4 | are economic values of one weight factor, while is the average value and is calculated by the in current year m during the study period, n refers to the start year. is GDP index. | |
5 | indicates Engel coefficient of cities and towns of entire Inner Mongolia. | |
6 | IOFP was used to replace PCNI. |
City/County Name | Occurrence in PFA | Occurrence Year |
---|---|---|
Baotou City | 14 | 2001,2002,2003,2004,2005,2006,2008,2009,2010,2011,2012,2014,2015,2016 |
Chifeng City | 13 | 2001,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2016 |
Jining District | 9 | 2003,2004,2005,2006,2009,2010,2011,2013,2014 |
Ejinna Banner | 9 | 2002,2003,2004,2006,2010,2014,2015,2016,2017 |
East Ujimqin Banner | 7 | 2001,2002,2003,2004,2006,2007,2008 |
Wuhai City | 5 | 2004,2005,2010,2013,2014 |
Otog Banner | 5 | 2001,2002,2003,2006,2007 |
Hohhot City | 4 | 2001,2002,2003,2011 |
Jarud Banner | 4 | 2003,2004,2005,2007 |
Yakeshi City | 4 | 2001,2002,2003,2005 |
Genhe City | 3 | 2001,2002,2003 |
Manzhouli City | 3 | 2004,2005,2006 |
Ergun City | 3 | 2001,2002,2003 |
Dongsheng District | 2 | 2009,2011 |
Jungar Banner | 2 | 2001,2002 |
Horqin Right Front Banner | 2 | 2001,2003 |
Oroqin Autonomous Banner | 2 | 2001,2002 |
Xilinhot City | 2 | 2001,2004 |
Erenhot City | 1 | 2001 |
Hexigten Banner | 1 | 2005 |
Zhalantun City | 1 | 2001 |
Ongniud Banner | 1 | 2001 |
Dalad Banner | 1 | 2001 |
Ar Horqin Banner | 1 | 2005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Liu, C.; Chang, S.; Jiang, B. Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment. Sustainability 2022, 14, 9142. https://doi.org/10.3390/su14159142
Xie Y, Liu C, Chang S, Jiang B. Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment. Sustainability. 2022; 14(15):9142. https://doi.org/10.3390/su14159142
Chicago/Turabian StyleXie, Yichun, Chao Liu, Shujuan Chang, and Bin Jiang. 2022. "Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment" Sustainability 14, no. 15: 9142. https://doi.org/10.3390/su14159142
APA StyleXie, Y., Liu, C., Chang, S., & Jiang, B. (2022). Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment. Sustainability, 14(15), 9142. https://doi.org/10.3390/su14159142