Sustainable Retrofitting and Moment Evaluation of Damaged RC Beams Using Ferrocement Composites for Vulnerable Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concrete for Beams, Ferrocement Laminates, and Epoxy Resin
2.2. Experimental Program and Test Setup
2.3. Prediction of the Ultimate Moment for Strengthened RC Beams
- The concrete strain is directly proportional to the strain on the reinforcement.
- The extreme compressive strain in the concrete is 0.0035 in bending.
- The mesh reinforcement in ferrocement laminate has rectilinear flexible stress strain associated with failure.
- Shear deformation is small.
2.4. SEM Analysis
3. Results and Discussion
3.1. First Crack Load
3.2. Ultimate Load
3.3. Load—Deflection Characteristics
3.4. Energy Absorption
3.5. Flexural Performance of Strengthened RC Beams
3.6. General Failure Characteristics
3.7. Analytical Investigation on Flexural Strengthening of RC Beams
3.8. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.-F.; Li, J.-Y.; Ramanathan, G.; Chang, S.-M.; Shen, M.-Y.; Tsai, Y.-K.; Huang, C.-H. An Experimental Study on Mechanical Behaviors of Carbon Fiber and Microwave-Assisted Pyrolysis Recycled Carbon Fiber-Reinforced Concrete. Sustainability 2021, 13, 6829. [Google Scholar] [CrossRef]
- Zhou, S.; Xie, L.; Jia, Y.; Wang, C. Review of Cementitious Composites Containing Polyethylene Fibers as Repairing Materials. Polymers 2020, 12, 2624. [Google Scholar] [CrossRef]
- Xiong, G.; Wang, C.; Zhou, S.; Zheng, Y. Study on dispersion uniformity and performance improvement of steel fibre reinforced lightweight aggregate concrete by vibrational mixing. Case Stud. Constr. Mater. 2022, 16, e01093. [Google Scholar] [CrossRef]
- Shaaban, I.G.; Seoud, O.A. Experimental behavior of full-scale exterior beam-column space joints retrofitted by ferrocement layers under cyclic loading. Case Stud. Constr. Mater. 2018, 8, 61–78. [Google Scholar] [CrossRef]
- Shaaban, I.G.; Shaheen, Y.B.; Elsayed, E.L.; Kamal, O.A.; Adesina, P.A. Flexural behaviour and theoretical prediction of lightweight ferrocement composite beams. Case Stud. Constr. Mater. 2018, 9, e00204. [Google Scholar] [CrossRef]
- Amin, A.; Tamal, S.; Bari, A.K.M.F.; Mazumder, M.; Hasan, A. Strengthening of Fire Damaged Reinforced Beams by using Ferrocement. Turk. J. Eng. 2022, 6, 206–210. [Google Scholar] [CrossRef]
- Sirimontree, S.; Witchayangkoon, B.; Leartpocasombut, K.; Thongchom, C. Flexural Behavior of Re-inforced Concrete Beams Strengthened With Ferrocement. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Abu Maraq, M.A.; Tayeh, B.A.; Ziara, M.M.; Alyousef, R. Flexural behavior of RC beams strengthened with steel wire mesh and self-compacting concrete jacketing—Experimental investigation and test results. J. Mater. Res. Technol. 2020, 10, 1002–1019. [Google Scholar] [CrossRef]
- Jayaprakash, S.; Dhanapal, J.; Deivasigamani, V.; Elias, G. Flexural Behaviour of Chicken Mesh Ferrocement Laminates with Partial Replacement of Fine Aggregate by Steel Slag. Adv. Mater. Sci. Eng. 2021, 2021, 7307493. [Google Scholar] [CrossRef]
- Amin, A.; Pial, A.; Ahmad, M.; Ahamed, M.J. Comparison in Strengthening of RCC Concrete Column Using Ferrocement and Polypropylene Fiber Rope. Eurasian J. Sci. Eng. Technol. 2021, 2, 18–24. [Google Scholar]
- Miah, M.J.; Miah, M.S.; Alam, W.B.; Lo Monte, F.; Li, Y. Strengthening of RC beams by ferrocement made with unconventional concrete. Mag. Civ. Eng. 2019, 89, 94–105. [Google Scholar] [CrossRef]
- Patil, S.S.; Ogale, R.A.; Dwivedi, A.K. Performances of chicken mesh on strength of beams retrofitted using ferrocement jackets. IOSR J. Eng. 2012, 2, 1–10. [Google Scholar] [CrossRef]
- Rajkumar, D.; Vidivelli, B. Performances of SBR latex modified ferrocement for repairing reinforced concrete beams. Aust. J. Basic Appl. Sci. 2010, 4, 520–531. [Google Scholar]
- Ganesan, N.; Thadathil, S.P. Rehabilitation of reinforced concrete flexural elements using ferrocement jacketing. J. Struct. Eng. 2005, 3, 275–280. [Google Scholar]
- Gandomi, A.; Roke, D.; Sett, K. Genetic programming for moment capacity modeling of ferrocement members. Eng. Struct. 2013, 57, 169–176. [Google Scholar] [CrossRef]
- Palani, B.; Subramanian, R. Behaviour of RC beams strengthened with high performance ferrocement. In Proceedings of the Ninth International Symposium on Ferrocement and Thin Reinforced Cement Composites, Green Technology for Housing and Infrastructure Construction, Bali, Indonesia, 18–20 May 2009; pp. 89–98. [Google Scholar]
- Jeyasekar, A.C.; Vidivelli, B.; Sumangala, K. Prediction of flexural strength of RC beams rehabilitated with ferrocement lam-inates using artificial neural networks. In Proceedings of the International Symposium on Ferrocement and Thin Reinforced Cement Composites (FERRO 9) Green Technology for Housing and Infrastructure Construction, Bali, Indonesia, 18–20 May 2009; pp. 183–197. [Google Scholar]
- Naaman, A.E.; Sotiropoulos, A. High performance ferrocement as beam—Column confinement for seismic loading. In Proceedings of the International Symposium on Ferrocement and thin Reinforced Cement Composites (FERRO9), Green Technology for Housing and Infrastructure Construction, Bali, Indonesia, 18–20 May 2009; pp. 129–149. [Google Scholar]
- Jurkiewiez, B.; Meaud, C.; Michel, L. Non linear behaviour of steel–concrete epoxy bonded composite beams. J. Constr. Steel Res. 2011, 67, 389–397. [Google Scholar] [CrossRef]
- Abadel, A.A. Experimental investigation for shear strengthening of reinforced self-compacting concrete beams using different strengthening schemes. J. Mater. Res. Technol. 2021, 15, 1815–1829. [Google Scholar] [CrossRef]
- Mansour, W.; Tayeh, B.A. Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems. Adv. Civ. Eng. 2020, 2020, 2139054. [Google Scholar] [CrossRef]
- Javidan, M.M.; Chun, S.; Kim, J. Experimental study on steel hysteretic column dampers for seismic retrofit of structures. Steel Compos. Struct. 2021, 40, 495. [Google Scholar] [CrossRef]
- Javidan, M.M.; Nasab, M.S.E.; Kim, J. Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers. Steel Compos. Struct. 2021, 39, 645–664. [Google Scholar] [CrossRef]
- Khan, S.U.; Rafeeqi, S.F.A.; Ayub, T. Strengthening of RC beams in flexure using ferrocement. Trans. Civ. Eng. 2013, 37, 353–365. [Google Scholar]
- IS: 383-1970; Specifications for Coarse and Fine Aggregates from Natural Sources for Concrete. Bureau of Indian Standards (BIS): New Delhi, India, 1970.
- ACI 549.1R-93; Guide for the Design, Construction and Repair of Ferrocement. American Concrete Institute ACI Committee 549: Farmington Hills, MI, USA, 1999.
- IS 10262-2019; Concrete Mix Proportioning -Guidelines. Bureau of Indian Standards (BIS): New Delhi, India, 2019.
- Mhadeshwar, S.N.; Naik, A.M. Experimental performance, mathematical modelling and development of stress block param-eter of ferrocement beams with rectangular trough shaped skeletal steel. Int. Res. J. Eng. Technol. 2017, 4, 1387–1393. [Google Scholar]
- Eskandari, H.; Madadi, A. Investigation of ferrocement channels using experimental and finite element analysis. Eng. Sci. Technol. Int. J. 2015, 18, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.A.; Assi, D.K. Tensile stress-strain relationship for ferrocement structures. Al-Rafidain Eng. 2010, 20, 27–40. [Google Scholar]
- Matalkah, F.; Bharadwaj, H.; Soroushian, P.; Wu, W.; Almalkawi, A.; Balachandra, A.M.; Peyvandi, A.A. Development of sandwich composites for building construction with locally available materials. Constr. Build. Mater. 2017, 147, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Naaman, A.E. Ferrocement: Progress review and critical need for the future. In Proceedings of the FERRO-11-11th International Symposium on Ferrocement and 3rd ICTRC International Conference on Textile Reinforced Concrete, Aachen, Germany, 7–10 June 2015; pp. 9–14. [Google Scholar]
- El-Wafa, M.A.; Fukuzawa, K. Flexural behavior of lightweight ferrocement sandwich composite beams. J. Sci. Technol. 2010, 15, 3–16. [Google Scholar]
- Gaidhankar, D.G.; Kulkarni, M.S.; Jaiswal, A.R. Ferrocement composite beams under flexure. Int. Res. J. Eng. Technol. 2017, 4, 117–124. [Google Scholar]
- Shaheen, Y.B.I.; Eltehawy, E.A. Structural behavior of ferrocement channels slabs for low cost housing. Chall. Concr. Res. Lett. J. 2017, 8, 48–64. [Google Scholar] [CrossRef]
Beam Designation | Vr (%) of Mesh | Description | No. of Beams |
---|---|---|---|
RCSF00 | - | Control beam | 2 |
RCSF01 | 1.76 | Beam with a conventional mortar ferrocement composite | 2 |
RCSF02 | 1.76 | Beam with 30% steel slag replacement in ferrocement composite | 2 |
RCSF03 | 2.35 | Beam with conventional mortar ferrocement composite | 2 |
RCSF04 | 2.35 | Beam with 30% steel slag replacement in ferrocement composite | 2 |
Beam Designation | Ae | Py (kN) | Pe1 (kN) | Pe2 (kN) | F1 | F2 | ||
---|---|---|---|---|---|---|---|---|
RCSF00 | 422.1 | 27 | 3.8 | 78.87 | 9 | 66.316 | 1 | 1 |
RCSF01 | 429.8 | 31.3 | 3.27 | 90.41 | 7.92 | 75.32 | 1.14 | 1.13 |
RCSF02 | 440 | 31.6 | 2.7 | 101.32 | 7.8 | 91 | 1.28 | 1.37 |
RCSF03 | 446.23 | 34.6 | 2.47 | 111 | 7.2 | 99.40 | 1.40 | 1.50 |
RCSF04 | 464.31 | 45.2 | 1.92 | 147.53 | 6.3 | 147.656 | 1.87 | 2.23 |
S. No | Beam Designation | Mexp (kNm) | Mthe (kNm) | Mexp/Mthe |
---|---|---|---|---|
1 | RCSF00 | 11.92 | 12.01 | 0.99 |
2 | RCSF01 | 13.84 | 12.04 | 1.15 |
3 | RCSF02 | 14.17 | 13.74 | 1.03 |
4 | RCSF03 | 15.50 | 14.88 | 1.04 |
5 | RCSF04 | 18.67 | 17.93 | 1.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soundararajan, M.; Balaji, S.; Sridhar, J.; Ravindran, G. Sustainable Retrofitting and Moment Evaluation of Damaged RC Beams Using Ferrocement Composites for Vulnerable Structures. Sustainability 2022, 14, 9220. https://doi.org/10.3390/su14159220
Soundararajan M, Balaji S, Sridhar J, Ravindran G. Sustainable Retrofitting and Moment Evaluation of Damaged RC Beams Using Ferrocement Composites for Vulnerable Structures. Sustainability. 2022; 14(15):9220. https://doi.org/10.3390/su14159220
Chicago/Turabian StyleSoundararajan, Muthumani, Shanmugam Balaji, Jayaprakash Sridhar, and Gobinath Ravindran. 2022. "Sustainable Retrofitting and Moment Evaluation of Damaged RC Beams Using Ferrocement Composites for Vulnerable Structures" Sustainability 14, no. 15: 9220. https://doi.org/10.3390/su14159220
APA StyleSoundararajan, M., Balaji, S., Sridhar, J., & Ravindran, G. (2022). Sustainable Retrofitting and Moment Evaluation of Damaged RC Beams Using Ferrocement Composites for Vulnerable Structures. Sustainability, 14(15), 9220. https://doi.org/10.3390/su14159220