How Do Transportation Influencing Factors Affect Air Pollutants from Vehicles in China? Evidence from Threshold Effect
Abstract
:1. Introduction
2. Methodology and Data
2.1. Panel Threshold Regression Model
2.2. Variables Selection
2.2.1. Dependent Variable
2.2.2. Transportation Variables
2.2.3. Control Variables
2.3. Data Sources
3. Estimation Results
3.1. Exploratory Temporal Analysis of Vehicle Air Pollutants
3.2. Spatial Distribution of Vehicle Air Pollutants
3.3. Regression Results for Vehicle Air Pollutants
3.4. Threshold Effect Estimation Results
4. Discussion
4.1. Threshold Effects of Vehicle NOx Emissions
4.2. Threshold Effects of Vehicle CO Emissions
4.3. Threshold Effects of Vehicle HC Emissions
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Backes, C.H.; Nelin, T.; Gorr, M.W.; Wold, L.E. Early life exposure to air pollution: How bad is it? Toxicol. Lett. 2013, 216, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, L.G.; Cole, T.B.; Coburn, J.; Chang, Y.-C.; Dao, K.; Roqué, P.J. Neurotoxicity of traffic-related air pollution. NeuroToxicology 2015, 59, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.; Lelieveld, J. Human health risks in megacities due to air pollution. Atmos. Environ. 2010, 44, 4606–4613. [Google Scholar] [CrossRef]
- Ierodiakonou, D.; Zanobetti, A.; Coull, B.A.; Melly, S.; Postma, D.S.; Boezen, H.M.; Vonk, J.M.; Williams, P.; Shapiro, G.G.; McKone, E.F.; et al. Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J. Allergy Clin. Immunol. 2016, 137, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Kumar, P.; Szulejko, J.E.; Adelodun, A.A.; Junaid, M.F.; Uchimiya, M.; Chambers, S. Toward a better understanding of the impact of mass transit air pollutants on human health. Chemosphere 2017, 174, 268–279. [Google Scholar] [CrossRef]
- Nyhan, M.; McNabola, A.; Misstear, B. Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Sci. Total Environ. 2014, 468–469, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Caiazzo, F.; Ashok, A.; Waitz, I.A.; Yim, S.H.; Barrett, S.R. Air pollution and early deaths in the United States. Part I: Quan-tifying the impact of major sectors in 2005. Atmos. Environ. 2013, 79, 198–208. [Google Scholar] [CrossRef]
- World Health Organization. Burden of Disease from Household Air Pollution for 2012. Available online: http://www.indiaenvironmentportal.org.in/files/Burden%20of%20disease%20from%20Household%20Air%20Pollution%20for%202012.pdf (accessed on 19 July 2022).
- Hettfleisch, K.; Bernardes, L.S.; Carvalho, M.A.; Pastro, L.D.M.; Vieira, S.E.; Saldiva, S.R.D.M.; Saldiva, P.; Francisco, R.P.V. Short-term exposure to urban air pollution and influences on placental vascularization indexes. Environ. Health Perspect. 2017, 125, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Fordyce, T.A.; Leonhard, M.J.; Chang, E.T. A critical review of developmental exposure to particulate matter, autism spectrum disorder, and attention deficit hyperactivity disorder. J. Environ. Sci. Health Part A 2018, 53, 174–204. [Google Scholar] [CrossRef] [PubMed]
- Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; McConnell, R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 2013, 70, 71–77. [Google Scholar] [CrossRef]
- Weisskopf, M.G.; Kioumourtzoglou, M.-A.; Roberts, A. Air pollution and autism spectrum disorders: Causal or confounded? Curr. Environ. Health Rep. 2015, 2, 430–439. [Google Scholar] [CrossRef]
- Becerra, T.A.; Wilhelm, M.; Olsen, J.; Cockburn, M.; Ritz, B. Ambient air pollution and autism in Los Angeles county, California. Environ. Health Perspect. 2013, 121, 380–386. [Google Scholar] [CrossRef]
- Goodrich, A.J.; Volk, H.E.; Tancredi, D.J.; McConnell, R.; Lurmann, F.W.; Hansen, R.L.; Schmidt, R.J. Joint effects of prenatal air pollutant exposure and maternal folic acid supplementation on risk of autism spectrum disorder. Autism Res. 2018, 11, 69–80. [Google Scholar] [CrossRef]
- Lim, C.C.; Hayes, R.B.; Ahn, J.; Shao, Y.; Silverman, D.T.; Jones, R.R.; Garcia, C.; Thurston, G.D. Association between long-term exposure to ambient air pollution and diabetes mortality in the US. Environ. Res. 2018, 165, 330–336. [Google Scholar] [CrossRef]
- Chan, T.L.; Ning, Z. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong. Atmos. Environ. 2005, 39, 6843–6856. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, Z.; Zhao, S.; Zheng, M.; Mu, C.; Du, K. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors. Sci. Total Environ. 2016, 547, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Li, T.Z. Emission characteristics of CNG/gasoline dual-fuel taxi. Appl. Mech. Mater. 2014, 505–506, 365–369. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Xing, Z.; Du, K. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx. Sci. Total Environ. 2016, 565, 698–705. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jayed, M.H.; Wazed, M.A. Comparative engine performance and emis-sion analysis of CNG and gasoline in a retrofitted car engine. Appl. Therm. Eng. 2010, 30, 2219–2226. [Google Scholar] [CrossRef]
- Jang, C.; Lee, J. Experimental investigation of the effects of various factors on the emission characteristics of low-emission natural gas vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2005, 219, 825–831. [Google Scholar] [CrossRef]
- Jayaratne, E.; Ristovski, Z.; Meyer, N.; Morawska, L. Particle and gaseous emissions from compressed natural gas and ultralow sulphur diesel-fuelled buses at four steady engine loads. Sci. Total Environ. 2009, 407, 2845–2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liao, W.; Li, L.; Huang, Y.; Xu, W. Vehicle emission trends in China’s Guangdong Province from 1994 to 2014. Sci. Total Environ. 2017, 586, 512–521. [Google Scholar] [CrossRef]
- Huo, H.; Zhang, Q.; He, K.; Yao, Z.; Wang, X.; Zheng, B.; Streets, D.G.; Wang, Q.; Ding, Y. Modeling vehicle emissions in dif-ferent types of Chinese cities: Importance of vehicle fleet and local features. Environ. Pollut. 2011, 159, 2954–2960. [Google Scholar] [CrossRef] [PubMed]
- Montag, J. The simple economics of motor vehicle pollution: A case for fuel tax. Energy Policy 2015, 85, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, H.; Yamashita, J.; Ikoma, Y. Causal analysis of car CO2 emissions and urban infrastructure using structural equation modeling. J. Environ. Inf. Sci. 2009, 37, 103. [Google Scholar]
- Limanond, T.; Jomnonkwao, S.; Srikaew, A. Projection of future transport energy demand of Thailand. Energy Policy 2011, 39, 2754–2763. [Google Scholar] [CrossRef]
- Liang, Y.; Niu, D.; Wang, H.; Li, Y. Factors affecting transportation sector CO2 emissions growth in China: An LMDI decomposition analysis. Sustainability 2017, 9, 1730. [Google Scholar] [CrossRef] [Green Version]
- Alshehry, A.S.; Belloumi, M. Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 75, 1339–1347. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Chang, Y.-H.; Lu, I.J. Urban transportation energy and carbon dioxide emission reduction strategies. Appl. Energy 2015, 157, 953–973. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Lei, Y. Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transp. Res. Part D Transp. Environ. 2016, 42, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Lin, B. Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Sample splitting and threshold estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Regression kink with an unknown threshold. J. Bus. Econ. Stat. 2017, 35, 228–240. [Google Scholar] [CrossRef]
- Yuan, R.; Zhao, T.; Xu, X.; Kang, J. Regional characteristics of impact factors for energy-related CO2 emissions in China, 1997–2010: Evidence from tests for threshold effects based on the STIRPAT model. Environ. Model. Assess. 2015, 20, 129–144. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Chen, J.; Theller, L.; Gitau, M.W.; Engel, B.A.; Harbor, J.M. Urbanization impacts on surface runoff of the contiguous United States. J. Environ. Manag. 2017, 187, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Zhao, Z.-Y.; Li, H. Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Sci. Total Environ. 2019, 657, 1085–1098. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.; Hao, J.; Liu, H.; Wu, X.; Hu, J.; Walsh, M.P.; Wallington, T.J.; Zhang, K.M.; Stevanovic, S. On-road vehicle emissions and their control in China: A review and outlook. Sci. Total Environ. 2017, 574, 332–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; He, K.; He, D.; Fu, L.; Zhou, Y.; Walsh, M.P.; Blumberg, K.O. Analysis of the impacts of fuel sulfur on vehicle emissions in China. Fuel 2008, 87, 3147–3154. [Google Scholar] [CrossRef]
- Du, Z.; Lin, B. Changes in automobile energy consumption during urbanization: Evidence from 279 cities in China. Energy Policy 2019, 132, 309–317. [Google Scholar] [CrossRef]
- China’s State Council. Atmospheric Pollution Prevention and Control Action Plan. Available online: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 14 July 2022).
- Xu, C.; Yang, L.; Yang, H.; He, Y.; Xiong, F. Research on evaluation index system for ecological sustainability of transport system. Railw. Transp. Econ. 2007, 29, 4–7. [Google Scholar]
- Huang, W.; Fan, H.; Qian, Y. Modeling and efficient quantified risk assessment of haze causation system in China related to vehicle emissions with uncertainty consideration. Sci. Total Environ. 2019, 668, 74–83. [Google Scholar] [CrossRef] [PubMed]
Definition | Variables | Mean | Std. Dev. | Min | Max | Unit |
---|---|---|---|---|---|---|
NOx emission | NOx | 140,288 | 90,781 | 21,858 | 427,946 | tons |
HC emission | HC | 70,784 | 53,932 | 1256 | 352,387 | tons |
CO emission | NO | 140,288 | 90,781 | 21,858 | 427,946 | tons |
Road carrying capacity | RCC | 132,192 | 71,656 | 10,392 | 324,138 | car/km |
Road density | RD | 0.884 | 0.565 | 0.0276 | 2.742 | km/km2 |
NOx emission efficiency | NEE | 423.9 | 232.5 | 29.35 | 1763 | km |
HC emission efficiency | HEE | 350.5 | 410.8 | 9.634 | 3928 | km |
CO emission efficiency | CEE | 33.45 | 30.85 | 0.728 | 195.7 | km |
The proportion of trucks | TRUCK | 0.252 | 0.276 | 0.0403 | 2.186 | % |
Road passenger turnover | RPT | 6397 | 25,422 | 18.60 | 196,871 | man-kilometer |
Road freight turnover | RFT | 1414 | 1645 | 25.40 | 7959 | ton-kilometer |
Urbanization rate | UR | 51.78 | 15.07 | 0.222 | 89.60 | % |
Per capita GDP | PGDP | 3.790 | 2.237 | 0.615 | 11.81 | yuan |
Variable | NOx Emission | CO Emission | HC Emission |
---|---|---|---|
RPT | 0.2412 *** | 0.310 *** | 0.290 *** |
RFT | 0.5989 *** | 0.685 *** | 0.647 *** |
RCC | −0.0070 | 0.154 *** | 0.161 *** |
RD | −0.0262 | 0.166 ** | 0.189 ** |
TRUCK | 0.5725 *** | −0.0858 * | −0.0352 |
PGDP | −0.0673 * | −0.280 *** | −0.276 *** |
UR | 0.0020 | 0.380 *** | 0.420 *** |
NEE | −0.8418 *** | ||
CEE | −0.981 *** | ||
HEE | −0.944 *** | ||
Obs | 341 | 341 | 341 |
Number of provinces | 31 | 31 | 31 |
Variable | Threshold Value | F Value | Estimation Value (ton) |
---|---|---|---|
NOx emission | Triple threshold | 45.776 *** | 95,037; 159,395; 294,241 |
HC emission | Double threshold | 33.459 *** | 19,505; 54,757 |
CO emission | Triple threshold | 32.888 *** | 205,787; 783,075; 1,275,881 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
NOx ≤ 95,037 | 95,037 < NOx ≤ 159,395 | 159,395 < NOx ≤ 294,241 | NOx > 294,241 | |
RPT | 0.335 *** | 0.230 *** | 0.346 *** | 0.306 *** |
RFT | 0.581 *** | 0.588 *** | 0.514 *** | 0.801 *** |
NEE | −0.877 *** | −0.820 *** | −0.794 *** | −1.092 *** |
RCC | −0.100 *** | 0.0447 * | 0.0815 | 0.306 |
RD | 0.111 | −0.0515 | −0.116 | 0.679 |
TRUCK | 0.613 *** | 0.306 | 0.806 *** | −0.286 |
PGDP | −0.0529 | −0.0492 | −0.0621 | −0.293 |
UR | −0.0211 | −0.0198 ** | −0.281 | 3.072 *** |
Obs | 110 | 110 | 88 | 33 |
Number of provinces | 10 | 10 | 8 | 3 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
205,787 | 783,075 | 1,275,881 | CO > 1,275,881 | |
RPT | 1.118 ** | 0.466 *** | 0.537 *** | 0.412 *** |
RFT | 0.159 | 0.416 *** | 0.429 *** | 0.371 *** |
CEE | −1.226 ** | −0.522 *** | −0.638 *** | −0.464 *** |
RCC | 1.195 | −0.0504 | 0.315 *** | 0.117 |
RD | 0.155 | −0.347 *** | −0.290 *** | 1.354 |
TRUCK | −2.815 | −0.987 ** | 0.166 | −4.223 * |
PGDP | −0.389 | −0.529 *** | −0.525 *** | −0.649 |
UR | 1.257 | 2.457 *** | 0.309 | 3.025 ** |
Obs | 99 | 77 | 132 | 33 |
Number of provinces | 9 | 7 | 12 | 3 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
19,505 | 54,757 | HC > 54,757 | |
RPT | 0.725 *** | 0.635 *** | 0.673 *** |
RFT | 0.165 | 0.585 *** | 0.321 *** |
HEE | −0.873 *** | −0.747 *** | −0.834 *** |
RCC | 1.119 ** | 0.425 *** | −0.0682 ** |
RD | 0.977 *** | −0.385 *** | −0.0317 ** |
TRUCK | 4.918 * | 0.446 | 0.376 |
PGDP | −1.599 | −0.731 *** | 0.206 *** |
UR | −1.769 ** | 0.781 ** | −0.0229 |
Obs | 44 | 99 | 198 |
Number of provinces | 4 | 9 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, H.; Kun, W.; Zhang, Z.; Wu, H. How Do Transportation Influencing Factors Affect Air Pollutants from Vehicles in China? Evidence from Threshold Effect. Sustainability 2022, 14, 9402. https://doi.org/10.3390/su14159402
Liu S, Li H, Kun W, Zhang Z, Wu H. How Do Transportation Influencing Factors Affect Air Pollutants from Vehicles in China? Evidence from Threshold Effect. Sustainability. 2022; 14(15):9402. https://doi.org/10.3390/su14159402
Chicago/Turabian StyleLiu, Shiwen, Hongxiong Li, Wen Kun, Zhen Zhang, and Haotian Wu. 2022. "How Do Transportation Influencing Factors Affect Air Pollutants from Vehicles in China? Evidence from Threshold Effect" Sustainability 14, no. 15: 9402. https://doi.org/10.3390/su14159402
APA StyleLiu, S., Li, H., Kun, W., Zhang, Z., & Wu, H. (2022). How Do Transportation Influencing Factors Affect Air Pollutants from Vehicles in China? Evidence from Threshold Effect. Sustainability, 14(15), 9402. https://doi.org/10.3390/su14159402