Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development
Abstract
:1. Introduction
2. Electricity and Drinking Water Supply as Basis for Rural Development
2.1. Electricity in Rural Areas
2.2. Access to Clean Drinking Water
2.2.1. Social Context
2.2.2. Health
2.2.3. Education
2.2.4. Economy and Income
3. Drinking Water Supply and Electricity on Kibumba
3.1. Planning and Design
3.2. Assembly and Commissioning
4. Model for Sustainable Operation
4.1. Sustainable Financing by Individual Responsibility
4.2. Conceptual Framework
4.3. Calculation
4.4. Payment Options
4.4.1. Monthly Subscription
4.4.2. Pay-As-You-Go
4.4.3. Preferred Payment Option
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. 72/178 The Human Rights to Safe Drinking Water and Sanitation: Resolution Adopted by the General Assembly on 19 December 2017. On the Report of the Third Committee (A/72/439/Add.2). 2018. Available online: https://digitallibrary.un.org/record/1466802 (accessed on 3 February 2021).
- Kumar, M.D.; Tortajada, C. (Eds.) Assessing Wastewater Management in India; Springer: Singapore, 2020. [Google Scholar]
- WHO. Drinking-Water. Fact-Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 5 July 2022).
- Prüss-Üstün, A.; Bos, R.; Gore, F.; Bartram, J. Safe Water, Better Health: Costs, Benefits and Sustainability of Interventions to Protect and Promote Health; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- WHO; UNICEF. Joint Monitoring Programme (JMP) for Water Supply, Sanitation and Hygiene: Water and Sanitation. Available online: https://databank.worldbank.org/metadataglossary/health-nutrition-and-population-statistics/series/SH.H2O.BASW.ZS (accessed on 5 July 2022).
- UNICEF; WHO. 1 in 3 People Globally Do Not Have Access to Safe Drinking Water: New Report on Inequalities in Access to Water, Sanitation and Hygiene also Reveals More than Half of The World Does Not Have Access to Safe Sanitation Services. Available online: https://www.who.int/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who (accessed on 5 July 2022).
- MacDonald, A.M.; Bonsor, H.C.; Dochartaigh, B.É.Ó.; Taylor, R.G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 2012, 7, 24009. [Google Scholar] [CrossRef]
- Urama, K.C.; Ozor, N. Impacts of climate change on water resources in Africa: The role of adaptation. African Technology Policy Studies Network (ATPS). Clim. Adapt. 2010, 29, 1–29. [Google Scholar]
- Orubu, C.O.; Omotor, D.G. Environmental quality and economic growth: Searching for environmental Kuznets curves for air and water pollutants in Africa. Energy Policy 2011, 39, 4178–4188. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ipinmoroti, M.O.; Chirenje, T. Environmental pollution in Africa. Environ. Dev. Sustain. 2018, 20, 41–73. [Google Scholar] [CrossRef]
- Achore, M.; Bisung, E.; Kuusaana, E.D. Coping with water insecurity at the household level: A synthesis of qualitative evidence. Int. J. Hyg. Environ. Health 2020, 230, 113598. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Wydra, K.; Becker, P.; Aulich, H. Sustainable solutions for solar energy driven drinking water supply for rural settings in Sub-Saharan Africa: A case study of Nigeria. J. Photonics Energy 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Nya, E.L.; Cao, V.; Gwenzi, W.; Rahman, M.A.; Noubactep, C. Universal Access to Safe Drinking Water: Escaping the Traps of Non-Frugal Technologies. Sustainability 2021, 13, 9645. [Google Scholar] [CrossRef]
- Otter, P.; Sattler, W.; Grischek, T.; Jaskolski, M.; Mey, E.; Ulmer, N.; Grossmann, P.; Matthias, F.; Malakarh, P.; Goldmaier, A.; et al. Economic evaluation of water supply systems operated with solar-driven electro-chlorination in rural regions in Nepal, Egypt and Tanzania. Water Res. 2020, 187, 116384. [Google Scholar] [CrossRef]
- Falk, J.; Nedjalkov, A.; Angelmahr, M.; Schade, W. Applying Lithium-Ion Second Life Batteries for Off-Grid Solar Powered System—A Socio-Economic Case Study for Rural Development. Z. Energ. 2020, 44, 47–60. [Google Scholar] [CrossRef] [Green Version]
- UNECA. Achieving Sdg 7 in Africa: Policy Brief 18. 2018. Available online: https://www.google.com/search?client=firefox-b-e&q=17.+UNECA.+Achieving+Sdg+7+in+Africa%3A+Policy+Brief+18+2018 (accessed on 11 February 2022).
- Sievert, M.; Steinbuks, J. Willingness to Pay for Electricity Access in Extreme Poverty: Evidence from Sub-Saharan Africa. World Dev. 2020, 128, 104859. [Google Scholar] [CrossRef] [Green Version]
- Otter, P.; Malakar, P.; Sandhu, C.; Grischek, T.; Sharma, S.; Kimothi, P.; Nüske, G.; Wagner, M.; Goldmaier, A.; Benz, F. Combination of River Bank Filtration and Solar-driven Electro-Chlorination Assuring Safe Drinking Water Supply for River Bound Communities in India. Water 2019, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.; Ibrik, I. Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid. Renew. Sustain. Energy Rev. 2006, 10, 128–138. [Google Scholar] [CrossRef]
- Nedjalkov, A.; Meyer, J.; Göken, H.; Reimer, M.V.; Schade, W. Blueprint and Implementation of Rural Stand-Alone Power Grids with Second-Life Lithium Ion Vehicle Traction Battery Systems for Resilient Energy Supply of Tropical or Remote Regions. Materials 2019, 12, 2642. [Google Scholar] [CrossRef] [Green Version]
- BloombergNEF (BNEF). Battery Pack Prices Cited Below $100/kWh for the First Time in 2020, While Market Average Sits at $137/kWh. Available online: https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh/ (accessed on 8 February 2021).
- Bobba, S.; Podias, A.; Di Persio, F.; Messagie, M.; Tecchio, P.; Cusenza, M.A.; Eynard, U.; Mathieux, F.; Pfrang, A. Sustainability Assessment of Second Life Application of Automotive Batteries (SASLAB): JRC Exploratory Research (2016–2017): Final Technical Report: August 2018; EUR 29321 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Martinez-Laserna, E.; Gandiaga, I.; Sarasketa-Zabala, E.; Badeda, J.; Stroe, D.-I.; Swierczynski, M.; Goikoetxea, A. Battery second life: Hype, hope or reality? A critical review of the state of the art. Renew. Sustain. Energy Rev. 2018, 93, 701–718. [Google Scholar] [CrossRef]
- Habib, K.; Hansdóttir, S.T.; Habib, H. Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–Resources. Conserv. Recycl. 2020, 154, 104603. [Google Scholar] [CrossRef]
- Gulis, G. Life expectancy as an indicator of environmental health. Eur. J. Epidemiol. 2000, 16, 161–165. [Google Scholar] [CrossRef]
- WHO; UNICEF. 25 Years Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment; WHO: Geneva, Switzerland; UNICEF: New York, NY, USA, 2015. [Google Scholar]
- UNICEF. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017. Available online: https://data.unicef.org/topic/water-and-sanitation/drinking-water/ (accessed on 3 February 2021).
- Gbemiga, F.; Deborah, O. Inequalities in Households’ Environmental Sanitation Practices in a Developing Nation’s City: The Example of Ile-Ife, Nigeria. In The Relevance of Hygiene to Health in Developing Countries; Potgieter, N., Traore-Hoffman, A.N., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Akoteyon, I.S. Inequalities in Access to Water and Sanitation in Rural: Settlements in Parts of Southwest Nigeria. Ghana J. Geogr. 2019, 11, 158–184. [Google Scholar]
- Morales-Novelo, J.; Rodríguez-Tapia, L.; Revollo-Fernández, D. Inequality in Access to Drinking Water and Subsidies between Low and High Income Households in Mexico City. Water 2018, 10, 1023. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, S.; Adams, E.A.; Neville, G.; Wada, Y.; de Sherbinin, A.; Bernhardt, E.M.; Adamo, S.B. Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Sci. Total Environ. 2017, 607, 497–508. [Google Scholar] [CrossRef]
- Brillaud, L.; Fischer, A.; Manning, L.; Nishikawa, J.; Escobar-Uribe, M.; Yamaguchi, E. Valuating Economic and Social Impacts of Improved Water and Sanitation Services: Wateraid Madagascar Final Report 2008. Available online: https://www.google.com/search?client=firefox-b-e&q=33.+Brillaud%2C+L.%3B+Fischer%2C+A.%3B+Manning%2C+L.%3B+Nishikawa%2C+J.%3B+Escobar-Uribe%2C+M.%3B+Yamaguchi%2C+E.+Valuating+Economic+and+Social+Im-pacts+of+Improved+Water+and+Sanitation+Services%3A+Wateraid+Madagascar+Final+Report+2008 (accessed on 5 July 2022).
- Pommells, M.; Schuster-Wallace, C.; Watt, S.; Mulawa, Z. Gender Violence as a Water, Sanitation, and Hygiene Risk: Uncovering Violence Against Women and Girls as It Pertains to Poor WaSH Access. Violence Against Women 2018, 24, 1851–1862. [Google Scholar] [CrossRef] [PubMed]
- Bruce, M.; Limin, M. Recent Advances on Water Pollution Research in Africa: A Critical Review. Int. J. Sci. Adv. 2021, 386, 96–375. [Google Scholar] [CrossRef]
- Marie, V.; Lin, J. Viruses in the environment—Presence and diversity of bacteriophage and enteric virus populations in the Umhlangane River, Durban, South Africa. J. Water Health 2017, 15, 966–981. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H. Dirty Water: Estimated Deaths from Water-Related Diseases 2000–2020: Pacific Institute Research Report 2002. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=812537 (accessed on 5 July 2022).
- Kapwata, T.; Mathee, A.; Le Roux, W.J.; Wright, C.Y. Diarrhoeal Disease in Relation to Possible Household Risk Factors in South African Villages. Int. J. Environ. Res. Public Health 2018, 15, 1665. [Google Scholar] [CrossRef] [Green Version]
- UNICEF. Tod Durch Verseuchtes Wasser: UNICEF Zum Weltwassertag am März. Täglich Sterben 5.000 Kinder an Durchfall—Wassermangel Trifft die Ärmsten 2014. Available online: https://www.unicef.de/informieren/aktuelles/presse/2009/verseuchtes-wasser/34082 (accessed on 11 December 2021).
- Geere, J.-A.; Cortobius, M. Who Carries the Weight of Water? Fetching Water in Rural and Urban Areas and the Implications for Water Security. Water Altern. 2017, 10, 513–540. [Google Scholar]
- Tchamyou, V.S. Education, lifelong learning, inequality and financial access: Evidence from African countries. J. Acad. Soc. Sci. 2020, 15, 7–25. [Google Scholar] [CrossRef] [Green Version]
- Salecker, L.; Ahmadov, A.K.; Karimli, L. Contrasting Monetary and Multidimensional Poverty Measures in a Low-Income Sub-Saharan African Country. Soc. Indic. Res. 2020, 151, 547–574. [Google Scholar] [CrossRef]
- World Bank. Piecing Together the Poverty Puzzle; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Hutton, G.; Rehfuess, E. Guidelines for Conducting Cost–Benefit Analysis of Household Energy and Health Interventions; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Evaluation of the Costs and Benefits of Water and Sanitation Improvements at the Global Level: Water, Sanitation and Health Protection of the Human Environment; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Sanislav, I.V.; Wormald, R.J.; Dirks, P.H.G.M.; Blenkinsop, T.G.; Salamba, L.; Joseph, D. Zircon U–Pb ages and Lu–Hf isotope systematics from late-tectonic granites, Geita Greenstone Belt: Implications for crustal growth of the Tanzania Craton. Precambrian Res. 2014, 242, 187–204. [Google Scholar] [CrossRef]
- Majiwa, H.; Bukachi, S.A.; Omia, D.; Fèvre, E.M. Knowlwdge of and practices around zoonotic diseases amongst actors in the livestock trade in the lake victoria crescent ecosystemin east africa. medRxiv 2022. [Google Scholar] [CrossRef]
- WHO. Schistosomiasis. Fact Sheet. Available online: https://www.who.int/en/news-room/fact-sheets/detail/schistosomiasis (accessed on 6 February 2021).
- Olsen, A.; Kinung’hi, S.; Magnussen, P. Schistosoma mansoni infection along the coast of Lake Victoria in Mwanza region, Tanzania. Am. J. Trop. Med. Hyg. 2015, 92, 1240–1244. [Google Scholar] [CrossRef] [Green Version]
- PVGIS. Geographical Assessment Geographical Assessment of Solar Resource and Performance of Photovoltaic. Photovaltaic Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP (accessed on 6 February 2021).
- Mwakitalima, I.J.; Rizwan, M.; Narendra, K. Design of Small Wind Turbine Electric System for Household Electricity and Water Supply for Irrigation in Rural Tanzania. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 11–13 December 2020. [Google Scholar]
- DESTATIS. Wasserwirtschaft Deutschland. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Wasserwirtschaft/_inhalt.html;jsessionid=2E84E4AFF6994A97F90EC6E9D244A9DD.internet731 (accessed on 15 February 2021).
- United Nations. Water Use around the World: Water Facts and Trends. Available online: http://www.unwater.org/downloads/water_facts_and_trends (accessed on 30 December 2021).
- Global Product Prices. Botteled Water Prices: Tanzania—Bottled Water—Price. Available online: https://www.globalproductprices.com/Tanzania/mineral_water_prices/ (accessed on 30 January 2022).
- World Bank. Reaching for the SDGs: The Untapped Potential of Tanzania’s Water Supply, Sanitation, and Hygiene Sector: WASH Poverty Diagnostic; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Kamruzzaman, A.K.M.; Said, I.; Osman, O. Overview on Management Patterns in Community, Private and Hybrid Management in Rural Water Supply. JSD 2013, 6, 26. [Google Scholar] [CrossRef]
- The United Republic of Tanzania. The Water Supply ans Sanitation Act: Act Supplement. Gaz. United Repub. Tanzan. 2019, 100, 8. [Google Scholar]
- Lemmens, R.; Lungo, J.; Georgiadou, Y.; Verplanke, J. Monitoring Rural Water Points in Tanzania with Mobile Phones: The Evolution of the SEMA App. IJGI 2017, 6, 316. [Google Scholar] [CrossRef] [Green Version]
- Wilson, Z.; Malakoana, M.; Gounden, T. Trusting consumers: Involving communities in municipal water service decision making in Durban, South Africa. Water SA 2008, 34, 141–146. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Lending Interest Rate (%)—Tanzania. Available online: https://data.worldbank.org/indicator/FR.INR.LEND?locations=TZ (accessed on 28 March 2022).
- Urmersbach, B. Tansania: Inflationsrate von 1980 bis 2021 und Prognosen bis 2027. Available online: https://de.statista.com/statistik/daten/studie/372356/umfrage/inflationsrate-in-tansania/#professional (accessed on 10 July 2022).
- Bundesbank, D. Wechselkurs Euro in Tansania Schilling: Kurs per Monatsende. Statistische Fachreihe. Wechselkursstatistik. 2021, 38. Available online: https://www.bundesbank.de/resource/blob/804110/92263155cfba302adbbeda15254589aa/mL/0-wechselkursstatistik-data.pdf (accessed on 30 December 2021).
- Barrie, J.; Cruickshank, H.J. Shedding light on the last mile: A study on the diffusion of Pay as You Go Solar Home Systems in Central East Africa. Energy Policy 2017, 107, 425–436. [Google Scholar] [CrossRef] [Green Version]
- GIZ. Armutsorientierte und breitenwirksame Trinkwasser- und Sanitärversorgung. Positionspapier. 2017. Available online: https://www.giz.de/de/weltweit/89376.html (accessed on 30 December 2021).
Indicator | Spectrum | Impact |
---|---|---|
SOCIAL CONTEXT | Social status Time savings | Respect by neighbouring communities Stronger community cohesion More time for community activities |
HEALTH | Lower health risks due to diseases Lower health risks from assaults | Improved quality of life Increased life expectancy |
EDUCATION | Less school absences | More time for learning Better school graduation Less risk of poverty |
ECONOMY/INCOME | Less days of illness Less treatment costs | Increased labour productivity Increased wealth |
Microbial Aspect | Chemical Aspect | Radiological Aspect | Acceptability Aspect | |
---|---|---|---|---|
Detailed aspects | Bacteria | Elemental chemicals | Radioactive elements | Neutral taste |
Viruses | Chemical compounds | Neutral odour | ||
Helminths | Clear appearance | |||
Protozoa | ||||
Acceptance criteria | Undetectable 0 cells/mL | Limit values per mg/L | Range between 10–10,000 Bq/L | No foul or bitter taste and smell No dirty look |
Source | Common Unit in L | Price/L in TZS | Price/L in EUR 1 |
---|---|---|---|
Commercial tapping points | 20 | 5 | 0.00179 |
Neighbour’s tap (through public supplier) | 20 | 2.5 | 0.00089 |
Shops (bottled) | 1 | 1000 | 0.36 |
Item Description | Quantity | Unit Price in EUR |
---|---|---|
Submersible pump 1.1 kW | 1 | 221 |
Booster pump, pedrollo CPm 170 0.75 kW | 1 | 160 |
Pressure tank, pressure Switch, pressure gauge | 1 | 126 |
Sand filter CX 600 | 1 | 676 |
Water tank 5000 L | 1 | 800 |
Water tank 500 L | 1 | 100 |
UV purifier 25 W | 2 | 149 |
Filter bodies 10” | 4 | 13 |
Cartridge filter 10” | 3 | 7 |
Acid washed carbon | 1 | 16 |
Chemical tank 170 L with mixer | 1 | 854 |
Dosing pump | 1 | 416 |
Chlorine chemical 5 kg | 1 | 18 |
Hydra self-cleaning filter | 1 | 70 |
Reverse osmosis system 200 L | 1 | 3190 |
Plumbing materials | 1 | 1493 |
Electrical materials | 1 | 640 |
Installation labour charge | 1 | 1240 |
Transport charge | 1 | 249 |
Total | 23 | 10,640 |
Annual Costs | Price in EUR | |||||
---|---|---|---|---|---|---|
Maintenance and Operating | 1100 | |||||
General consumables | 200 | |||||
General maintenance | 200 | |||||
Spare parts | 400 | |||||
Salaries (repair) | 300 | |||||
Financing costs | 1970 | |||||
Year | Debt Level Start of Year | Annual Rate | Interest (16.68%) | Repayment | Debt Level End of Year | |
1 | 10,640.00 | 1969.47 | 1774.75 | 194.72 | 10,445.28 | |
2 | 10,445.28 | 1969.47 | 1742.27 | 227.20 | 1218.09 | |
3 | 10,218.09 | 1969.47 | 1704.38 | 265.09 | 9953.00 | |
4 | 9953.00 | 1969.47 | 1660.16 | 309.31 | 9643.69 | |
5 | 9643.69 | 1969.47 | 1608.57 | 360.90 | 9282.79 | |
6 | 9282.79 | 1969.47 | 1548.37 | 421.10 | 8861.69 | |
7 | 8861.69 | 1969.47 | 1478.13 | 491.34 | 8370.35 | |
8 | 8370.35 | 1969.47 | 1396.17 | 573.29 | 7797.05 | |
9 | 7797.05 | 1969.47 | 1300.55 | 668.92 | 7128.13 | |
10 | 7128.13 | 1969.47 | 1188.97 | 780.50 | 6347.64 | |
11 | 6347.64 | 1969.47 | 1058.79 | 910.68 | 5436.96 | |
12 | 5436.96 | 1969.47 | 906.88 | 1062.58 | 4374.37 | |
13 | 4374.37 | 1969.47 | 729.65 | 1239.82 | 3134.55 | |
14 | 3134.55 | 1969.47 | 522.84 | 1446.63 | 1687.92 | |
15 | 1687.92 | 1969.47 | 281.55 | 1687.92 | 0.00 | |
Total | 10,640.00 | 29,542.03 | 18,902.03 | 10,640.00 | 0.00 | |
Total | 3070 |
Assumptions Calculations | |
---|---|
#1 | Annual drinking water production: Annual production in m3: Daily production in m3 × 365 days = 30 m3 × 365 days = 10,950 m3 |
#2 | Current annual consumption: Annual consumption in m3: Daily consumption in m3 × 365 day = 12 m3 × 365 days = 4380 m3 |
#3 | Water price at its cost: Price per m3 in EUR: ≈ 0.70 EUR 1/m3 |
#4 | Annual revenue: (a) Cost price in EUR: Annual consumption in m3/year × price per m3 at cost = 4380 m3/year × 0.70 EUR/m3 = 3066 EUR/year (b) Market price at neighbourhood tapping points in EUR Annual output in m3/year × price per m3 at market price at neighbourhood tapping points = 4380 m3/year × 0.89 EUR/m3 = 3898 EUR/year (c) Market price commercial tapping points in EUR: Annual output in m3/year × price per m3 at market price at commercial tapping points = 4380 m3/year × 1.79 EUR/m3 = 7840 EUR/year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falk, J.; Globisch, B.; Angelmahr, M.; Schade, W.; Schenk-Mathes, H. Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development. Sustainability 2022, 14, 9458. https://doi.org/10.3390/su14159458
Falk J, Globisch B, Angelmahr M, Schade W, Schenk-Mathes H. Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development. Sustainability. 2022; 14(15):9458. https://doi.org/10.3390/su14159458
Chicago/Turabian StyleFalk, Joern, Björn Globisch, Martin Angelmahr, Wolfgang Schade, and Heike Schenk-Mathes. 2022. "Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development" Sustainability 14, no. 15: 9458. https://doi.org/10.3390/su14159458
APA StyleFalk, J., Globisch, B., Angelmahr, M., Schade, W., & Schenk-Mathes, H. (2022). Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development. Sustainability, 14(15), 9458. https://doi.org/10.3390/su14159458