Morphological Assessment of River Stability: Review of the Most Influential Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inventory of Influential Parameters
2.1.1. Data Collection Method
2.1.2. Recorded Features
2.1.3. River Processes
2.2. The Analytical Hierarchy Process (AHP)
- The values (prioritize numbers as in Table 4) in each column of the pairwise comparison matrix were summed;
- Column total divided each element of the matrix. This operation will normalize all column values in the pairwise matrix;
- The elements in each row (previously converted into a decimal form) were then averaged to obtain a priority vector. The row average is the weightage of each component, which can then be translated into a ranking classification (the highest the weightage, the greater the rank).
3. Results
3.1. Weightage and Ranking at Criteria Level
3.2. Weightage and Ranking at Sub-Criteria Level
3.3. Consistency Checking
4. Discussion
5. Conclusions
- iv.
- Regarding data collection methods, lateral spatial scales are the most common place for researchers to look for data instead of horizontal spatial scales in the past;
- v.
- Field sampling dominates the information source compared to remote sensing, modeling, and rapid field assessment techniques;
- vi.
- The most sought-after parameters in the morphological assessment are channel features (cross-sectional features), followed by river bank sections (including their properties), large-scale features, and floodplain features;
- vii.
- The most influential parameters that control the river stability following the weightage and ranking are (1) channel form; (2) channel dimension; (3) substrate material; (4) channel pattern; (5) bank profile; (6) bank erosion/stability; (7) channel adjustment; (8) channel constriction; (9) artificial features and, (10) riparian zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thorne, C.; Allen, R.G.; Simon, A. Geomorphological River Channel Reconnaissance for River Analysis, Engineering and Management. Trans. Inst. Br. Geogr. 1996, 21, 469–483. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lee, J.H.W.; Melching, C.S. River Dynamics and Integrated River Management; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Rhoads, B.L. River Dynamics: Geomorphology to Support Management; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2015, 73, 2079–2100. [Google Scholar] [CrossRef]
- European Commission. Establishing a Framework for Community Action in the Field of Water Policy. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Brussels; Official Journal L 327, 22/12/2000; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Department of Irrigation and Drainage. Program Pembangunan Water Balance bagi Pengurusan Sumber Air Negara (Fasa 1); National Water Balance Management System (NAWABS) bagi Lembangan Sg. Muda: Jabatan Pengairan dan Saliran; Department of Irrigation and Drainage: Kuala Lumpur, Malaysia, 2019; Volume 1. [Google Scholar]
- Tavzes, B.; Urbanic, G. New indices for assessment of hydromorphological alteration of rivers and their evaluation with benthic invertebrate communities; Alpine case study. Rev. Hydrobiol. 2009, 2, 133–161. [Google Scholar]
- Harding, J.; Clapcott, J.; Quinn, J.; Hayes, J.; Joy, M.; Storey, R.; Boothroyd, I. Stream Habitat Assessment Protocols for Wadeable Rivers and Streams of New Zealand; School of Biological Sciences, University of Canterbury: Christchurch, New Zealand, 2009. [Google Scholar]
- Maine Department of Environmental Protection. A Citizen’s Guide to Basic Watershed, Habitat, and Geomorphology Surveys in Stream and River Watersheds; Maine Department of Environmental Protection: Augusta, ME, USA, 2009; Volume I. [Google Scholar]
- Natural Resources Conservation. Stream Visual Assessment Protocol Portland; United States Department of Agriculture: Washington, DC, USA, 2009; Version 2. [Google Scholar]
- Northern Ireland Environment Agency. River Hydromorphology Assessment Technique (RHAT); Northern Ireland Environment Agency: Lisburn, Northern Ireland, 2009. [Google Scholar]
- Andrew, J.B.; Scott, A.S.; Ronald, J.K.; Anthony, P.P.; John, D.S.; Michael, T.K.; Patrick, H.G. Maryland Biological Stream Survey’s Sentinel Site Network, A Multi-Purpose Monitoring Program. 2010. Available online: www.marylandwatermonitoring.org (accessed on 12 December 2020).
- Xia, T.; Zhu, W.; Xin, P.; Li, L. Assessment of urban stream morphology: An integrated index and modelling system. Environ. Monit. Assess. 2010, 167, 447–460. [Google Scholar] [CrossRef]
- Gonzalez del Tanago, M.; Garcia de Jalon, D. Riparian Quality Index (RQI): A methodology for characterizing and assessing the environmental conditions of riparian zones. Limnetica 2011, 30, 235–254. [Google Scholar] [CrossRef]
- Oregon Governor’s Watershed Enhancement Board Watershed Professionals Network. Oregon Watershed Assessment Manual: Governor’s Watershed Enhancement Board; OWEB: Salem, OR, USA, 1999. [Google Scholar]
- Winward, A.H. Monitoring the Vegetation Resources in Riparian Areas (RMRS-GTR-47). 2000. Available online: https://www.fs.usda.gov/treesearch/pubs/5452 (accessed on 12 December 2020).
- Ward, T.A.; Tate, K.W.; Atwill, E.R. Visual Assessment of Riparian Health. Retrieved from California. 2003. Available online: http://anrcatalog.ucdavis.edu/pdf/8089LR.pdf (accessed on 12 December 2020).
- Dixon, I.; Douglas, M.; Dowe, J.; Burrows, D.; Townsend, S. A Rapid Method for Assessing the Condition of Riparian Zones in the Wet/Dry Tropics of Northern Australia. In Proceedings of the 4th Australian Stream Management Conference, Launceston, TAS, Australia, 19–22 October 2004; pp. 173–178. [Google Scholar]
- Jansen, A.; Robertson, A.; Thompson, L.; Wilson, A.; Flanery, F. Rapid Appraisal of Riparian Condition Technical Guideline for the Southern Tablelands of New South Wales; Land & Water Australia: Canberra, Australia, 2007. [Google Scholar]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology 2013, 180–181, 96–108. [Google Scholar] [CrossRef]
- Healey, M.; Raine, A.; Parsons, L.; Cook, N. River Condition Index in New South Wales: Method Development and Application; NSW Office of Water: Sydney, Australia, 2012. [Google Scholar]
- Kleynhans, C.; Louw, M. Module A: EcoClassification and EcoStatus determination in river EcoClassification: Manual for EcoStatus Determination (Version 2); Department of Water Affairs and Forestry: Pretoria, South Africa, 2007. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 2003, 19, 101–121. [Google Scholar] [CrossRef]
- Kleynhans, C.; Louw, M.; Thirion, C.; Rossouw, N.; Rowntree, K. River Eco Classification: Manual for EcoStatus Determination (Version 1); Joint Water Research Commission and Department of Water Affairs and Forestry Report (WRC Report No. KV 168/05); Department of Water Affairs and Forestry: Pretoria, South Africa, 2005. [Google Scholar]
- Black, A.R.; Rowan, J.S.; Duck, R.W.; Bragg, O.M.; Clelland, B.E. DHRAM: A method for classifying river flow regime alterations for the EC Water Framework Directive. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 427–446. [Google Scholar] [CrossRef]
- Mathews, R.; Richter, B.D. Application of the Indicators of Hydrologic Alteration Software in Environmental Flow Setting1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1400–1413. [Google Scholar] [CrossRef]
- Shiau, J.T.; Wu, F.C. A Histogram Matching Approach for assessment of flow regime alteration: Application to environmental flow optimization. River Res. Appl. 2008, 24, 914–928. [Google Scholar] [CrossRef]
- Martínez Santa-María, C.; Anastasio Fernández Yuste, J.; Magdaleno Mas, F. IAHRIS 2.2 Indicators of Hydrologic Alteration in Rivers. User’s Manual; Ministry of the Environment, Polytechnic University of Madrid: Madrid, Spain, 2010. [Google Scholar]
- Pfankuch, D.J. Stream Reach Inventory and Channel Stability Evaluation; Region 1; US Department of Agriculture Forest Service: Missoula, MT, USA, 1975. [Google Scholar]
- Simon, A.; Downs, P.W. An interdisciplinary approach to evaluation of potential instability in alluvial channels. Geomorphology 1995, 12, 215–232. [Google Scholar] [CrossRef]
- Rosgen, D. Warsss—Watershed Assessment of River Stability and Sediment Supply—An Overview. In Proceedings of the 2007 American Institute of Hydrology Annual Meeting and International Conference, Reno, Navada, 22–25 April 2007. [Google Scholar]
- Minnesota Pollution Control Agency (MPCA). Channel Condition and Stability Index (CCSI): Mpca Protocol for Assessing the Geomorphic Condition and Stability of Low-Gradient Alluvial Streams; Minnesota Pollution Control Agency: St. Paul, MN, USA, 2012. [Google Scholar]
- Heeren, D.M.; Mittelstet, A.R.; Fox, G.A.; Storm, D.E.; Al-Madhhachi, A.T. Using rapid geomorphic assessments to assess streambank stability in oklahoma ozark streams. Trans. ASABE 2012, 55, 957–968. [Google Scholar] [CrossRef]
- Wyżga, B.; Amirowicz, A.; Radecki-Pawlik, A.; Zawiejska, J. Hydromorphological conditions, potential fish habitats and the fish community in a mountain river subjected to variable human impacts, the Czarny Dunajec, Polish Carpathians. River Res. Appl. 2009, 25, 517–536. [Google Scholar] [CrossRef]
- Cluer, B.; Thorne, C.; Castro, J.; Pess, G.; Beechie, T.; Shea, C.; Skidmore, P. Tools and Science Base for Evaluating Stream Engineering, Management, and Restoration Proposals. In Federal Interagency Sediment Conference 2010; Cowx, I., Welcomme, R., Eds.; Fishing News Books: Oxford, UK, 2010. [Google Scholar]
- Skidmore, P.B.; Thorne, C.R.; Cluer, B.L.; Pess, G.R.; Castro, J.M.; Beechie, T.J.; Shea, C.C. Science Base and Tools for Evaluating Stream Engineering, Management, and Restoration Proposals, NOAA Technical Memorandum NMFS-NWFSC-112. 2011. Available online: http://www.restorationreview.com/downloads/Science_and_Tools_for_Stream_Projects_2011.pdf (accessed on 11 October 2020).
- Thorne, C.; Castro, J.; Cluer, B.; Skidmore, P.; Shea, C. Project Risk Screening Matrix for River Management and Restoration. River Res. Appl. 2015, 31, 611–626. [Google Scholar] [CrossRef]
- REFORM. Restoring Rivers for Effective Catchment Management. 2019. Available online: http://wiki.reformrivers.eu/index.php/European_methods_for_WFD (accessed on 11 October 2020).
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Sudduth, E. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Pedersen, M.; Baattrup-Pedersen, A. National Monitoring Programme 2003–2009. Assessment Methods Manual; National Environmental Research Institute of Denmark: Copenhagen, Denmark, 2003. [Google Scholar]
- Langhammer, J. Applicability of hydromorphological monitoring data to locate flood risk reduction measures: Blanice River basin, Czech Republic. Environ. Monit. Assess. 2007, 152, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Ilnicki, P.; Gołdyn, R.; Soszka, H.; Górecki, K.; Grzybowski, M.; Krzemińska, A.; Marcinkiewicz, M. Development of Methodologies for 528 Monitoring and Classification of Hydromorphological Quality Elements of River and Lake Water Bodies in Accordance with the 529 R equirements of the Water Framework Directive; Stage I–II. Tasks 1, 2 and 3; CPV: Warsaw, Poland, 2009; CPV code: 9071 1500–9. CPV nomenclature: 530 90711500–9. [Google Scholar]
- Mühlmann, H. Leitfaden zur Zustandserhebung in Fliessgewässern–Hydromorphologie; Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft: Wien, Austria, 2010. [Google Scholar]
- Mühlmann, H.; Mauthner-Weber, R. Leitfaden zur Hydromorphologischen Zustandserhebung von Fließgewässern; Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft: Wien, Austria, 2010. [Google Scholar]
- ONEMA. Référentiel National des Obstacles à l’Ecoulement: Une Cartographie Nationale des Obstacles sur les Cours d’eau. In Les Fiches de l’Onema; ONEMA: Vincennes, France, 2010; p. 2. [Google Scholar]
- Munné, A.; Solá, C.; Prat, N. QBR: Un Índice Rápido Para la Evaluación de la Calidad de los Ecosistemas de Ribera. Tecnol. Agua 1998, 175, 20–37. [Google Scholar]
- UK Technical Advisory Group on the WFD (UKTAG). UK Environmental Standards and Conditions (Phase 1)—Final; UKTAG: London, UK, 2008; Volume SR1-2006. [Google Scholar]
- Van Dam, O.; Osté, A.; De Groot, B.; Van Dorst, M. Handbook Hydromorphology: Monitoring and Distraction Hydromorphological Parameters Water Framework Directive Rijkswaterstaat; Under Section Water Quality: Brussels, Belgium, 2007. [Google Scholar]
- Länder Arbeitsgemeinschaft Wasser (LAWA). Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland—Verfahren für kleine und Mittelgroße Fließgewässer; Länder Arbeitsgemeinschaft Wasser: Schwerin, Germany, 2000. [Google Scholar]
- Länder Arbeitsgemeinschaft Wasser (LAWA). Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland—Übersichtsverfahren, Empfehlungen Oberirdische Gewässer; Länder Arbeitsgemeinschaft Wasser: Schwerin, Germany, 2002. [Google Scholar]
- ONEMA. Des étapes et des outils, Les Outils de Connaissance de l’hydromorphologie des Cours d’eau Français. In Restauration Physique des Cours d’eau—Connaissance; ONEMA: Vincennes, France, 2010. [Google Scholar]
- Murphy, M.; Toland, M. River Hydromorphology Assessment Technique (RHAT). Training Guide Version 2; Department of the Environment; Northern Ireland Environment Agency: Belfast, UK, 2012. [Google Scholar]
- Raven, P.; Fox, P.; Everard, M.; Holmes, N.; Dawson, F. River Habitat Survey: A New System for Classifying Rivers According to their Habitat Quality. In Freshwater Quality: Defining the Indefinable? Boon, P., Howell, D.L., Eds.; The Stationery Office: Edinburgh, UK, 1997; pp. 215–234. [Google Scholar]
- Buffagni, A.; Erba, S.; Ciampittiello, M. Il rilevamento idromorfologico e degli habitat fluviali nel contesto della Direttiva Europea sulle Acque (WFD): Principi e schede di applicazione del metodo CARAVAGGIO. IRSA-CNR Not. Metod. Anal. 2005, 2, 32–46. [Google Scholar]
- National Environmental Research Institute (NERI); Slovak Hydrometeorological Institute (SHMI). Establishment of the Protocol on Monitoring and Assessment of the Hydromorphological Elements (Slovakia)—Final Report; SHMI: Bratislava, Slovakia, 2004. [Google Scholar]
- Valette, L.; Chandesris, A.; Malavoi, J.; Suchon, Y.; Willet, B. Protocole AURAH-CE Audit Rapide de l’Hydromorphologie des Cours d’Eau. Méthode de Recueil D’informations Complémentaires à SYRAH-CE sur le Terrain. In Pôle Hydroécologie des Cours d’eau-Onema/Cemagref; ONEMA: Vincennes, France, 2010. [Google Scholar]
- Chandesris, A.; Mengin, N.; Malavoi, J.; Souchon, Y.; Pella, H.; Wasson, J. Système Relationnel d’Audit de l’Hydromorphologie des Cours d’Eau. In Principes et Methodes; Cemagref: Lyon, France, 2008; Volume 3, p. 81. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Sulaiman, M.S.; Goh, Q.Y.; Sang, Y.-F.; Sivakumar, B.; Ali, A.; Rasit, N.; Abood, M.M. Development of river morphologic stability index (RMSI) to assess mountain river systems. J. Hydrol. Reg. Stud. 2021, 7, 100918. [Google Scholar] [CrossRef]
Inventory | Criteria | Sub-Criteria | Frequency% |
---|---|---|---|
Data Collection Method | Source of information | Remote sensing | 73 |
Field survey | 91 | ||
Rapid field assessment | 9 | ||
Modeling | 5 | ||
Type of Assessment | Inventorying | 50 | |
Assessment by index | 59 | ||
General Assessment | 50 | ||
Longitudinal Spatial Scale | Fixed Length | 9 | |
Length vs. width | 14 | ||
Variable-length | 64 | ||
Lateral Spatial Scale | Channel | 100 | |
Riparian Zone | 96 | ||
Floodplain | 86 | ||
Temporal Scale | Present (last year) | 100 | |
Recent (1–10 year) | 7 | ||
Historical (10–50 year) | 7 |
Inventory | Criteria | Sub-Criteria | Frequency% |
---|---|---|---|
Recorded Features | Channel features | Channel pattern | 82 |
Channel form | 86 | ||
Channel dimension | 73 | ||
Flow type | 27 | ||
Substrate | 82 | ||
Physical parameters | 32 | ||
In-channel vegetation | 27 | ||
Woody debris | 50 | ||
Artificial features and structures | 77 | ||
Banks/riparian zone features | Bank profile/shape | 82 | |
Bank material | 36 | ||
Riparian vegetation structure | 64 | ||
Riparian vegetation continuity | 32 | ||
Riparian vegetation width | 27 | ||
Species composition | 18 | ||
Artificial features and structures | 77 | ||
Land use | 46 | ||
Floodplain features | Fluvial forms | 46 | |
Floodplain dimensions | 41 | ||
Floodplain features | 32 | ||
Land use | 46 | ||
Large scale characteristics | Large scale pressure | 68 | |
Hydrological regime/discharge | 82 | ||
Valley form | 64 |
Inventory | Criteria | Sub-Criteria | Frequency% |
---|---|---|---|
River Processes | River Processes | Longitudinal continuity | 55 |
Lateral continuity | 68 | ||
Large-scale sediment connectivity | 36 | ||
Bank erosion/stability | 82 | ||
Channel adjustments | 82 | ||
Vertical connection (groundwater) | 16 |
Intensity of Importance | Definition | Explanation |
---|---|---|
1 | Equal Importance | Two activities contribute equally to the objective |
2 | Weak or slight | |
3 | Moderate importance | Experience and judgment slightly favor |
4 | Moderate plus | |
5 | Strong importance | Experience and judgment strongly favor |
6 | Strong plus | |
7 | Very strong or demonstrated importance | An activity is favored very strongly over another; its dominance demonstrated in practice |
8 | Very, very strong | |
9 | Extreme importance | The evidence favoring one activity over another is of the highest possible order of affirmation |
Data Collection Method | Recorded Features | River Process | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Criteria | Source of Information | Type of Method/ Assessment | Longitudinal Spatial Scale | Lateral Spatial Scale | Temporal Scale | Channel Features | Riparian Zone Features | Floodplain Features | Large Scale Characteristics | River Process | |
Sub | 1 | 73 | 50 | 9 | 100 | 100 | 82 | 82 | 46 | 68 | 55 |
2 | 91 | 59 | 14 | 96 | 36 | 86 | 36 | 41 | 82 | 68 | |
3 | 9 | 50 | 6 | 86 | 46 | 73 | 64 | 32 | 64 | 36 | |
4 | 5 | 4 | 27 | 32 | 46 | 82 | |||||
5 | 82 | 27 | 82 | ||||||||
6 | 32 | 18 | 18 | ||||||||
7 | 27 | 77 | |||||||||
8 | 50 | 46 | |||||||||
9 | 77 | ||||||||||
Total percentage | 178 | 159 | 33 | 282 | 182 | 536 | 382 | 165 | 214 | 341 | |
Normalization (%) | 33.20 | 29.66 | 11.94 | 52.61 | 33.95 | 100 | 71.26 | 30.78 | 39.92 | 63.62 | |
Eigenvalues (%) | 4.3 | 4.3 | 2.6 | 9.7 | 4.7 | 35.4 | 16.1 | 4.6 | 5.1 | 13.2 | |
Ranking for Main Criteria | 3 | 3 | 5 | 1 | 2 | 1 | 2 | 4 | 3 | 1 |
Inventory | Criteria | Sub-Criteria | GW% | Rank | LW% | Rank | Overall Ranking |
---|---|---|---|---|---|---|---|
Data Collection Method | Source of Information | Remote Sensing | 4.3 | 3 | 35.0 | 2 | 21 |
Field Survey | 53.0 | 1 | 17 | ||||
Rapid Field Assessment | 6.0 | 3 | 45 | ||||
Modeling | 6.0 | 3 | 45 | ||||
Type of Assessment | Inventorying | 4.3 | 3 | 33.33 | 1 | 23 | |
Assessment by Index | 33.33 | 1 | 23 | ||||
General Assessment | 33.33 | 1 | 23 | ||||
Longitudinal Spatial Scale | Fixed Length | 2.6 | 5 | 14.3 | 2 | 43 | |
Length vs. Width | 14.3 | 2 | 43 | ||||
Variable Length | 71.4 | 1 | 19 | ||||
Lateral Spatial Scale | Channel Constriction | 9.7 | 1 | 41 | 1 | 8 | |
Riparian Zone | 33 | 2 | 10 | ||||
Floodplain | 26 | 3 | 15 | ||||
Temporal Scale | Present (last year) | 4.7 | 2 | 65 | 1 | 11 | |
Recent (1–10 year) | 14.5 | 3 | 40 | ||||
Historical (10–50 year) | 15 | 2 | 39 | ||||
Monthly | 4.7 | 4 | 47 | ||||
Recorded Features | Channel Feature | Channel Pattern | 35.4 | 1 | 16.9 | 4 | 4 |
Channel Form | 22.6 | 1 | 1 | ||||
Channel Dimension | 19.3 | 2 | 2 | ||||
Flow Type | 3.8 | 7 | 27 | ||||
Substrate | 17.2 | 3 | 3 | ||||
Physical Parameter | 4.5 | 6 | 20 | ||||
In Channel Vegetation | 3.8 | 7 | 27 | ||||
Woody Debris | 8.1 | 5 | 12 | ||||
Artificial Features | 3.8 | 7 | 27 | ||||
Vegetation Regeneration | Bank Profile | 16.1 | 2 | 28.5 | 1 | 5 | |
Bank Material | 6.4 | 5 | 34 | ||||
Riparian Vegetation Structure | 13.6 | 4 | 18 | ||||
Riparian Vegetation Continuity | 5.3 | 6 | 36 | ||||
Riparian Vegetation Width | 4.8 | 7 | 38 | ||||
Species Composition | 3.5 | 8 | 41 | ||||
Artificial Feature and Structure | 20.6 | 2 | 9 | ||||
Land Use | 17.2 | 3 | 13 | ||||
Floodplain Feature | Fluvial Form | 4.6 | 4 | 30 | 1 | 26 | |
Floodplain Dimension | 25 | 2 | 32 | ||||
Floodplain Features | 21 | 4 | 35 | ||||
Land Use | 25 | 2 | 32 | ||||
Large Scale | Large Scale Pressure | 5.1 | 3 | 25 | 2 | 30 | |
Hydrological Regime | 50 | 1 | 14 | ||||
Valley Form | 25 | 2 | 30 | ||||
River Process | River Process | Longitudinal Continuity | 3.2 | 1 | 11.3 | 4 | 22 |
Lateral Continuity | 17.9 | 3 | 16 | ||||
Large Scale Sediment Connectivity | 6.2 | 5 | 37 | ||||
Bank Erosion/Stability | 30.4 | 1 | 6 | ||||
Channel Adjustment | 30.4 | 2 | 6 | ||||
Vertical Connection | 3.9 | 6 | 42 |
Sub-Criteria | Number of Sub-Criteria | Lambda | Consistency Ratio |
---|---|---|---|
Source of Information | 4 | 4.037 | 1.40 × 10−2 |
Type of assessment | 3 | 3.000 | 0.00 |
Longitudinal Spatial Scale | 3 | 3.000 | 0.00 |
Lateral Spatial Scale | 3 | 3.054 | 6.00 × 10−2 |
Temporal Scale | 4 | 4.104 | 3.80 × 10−2 |
Channel Feature | 9 | 9.715 | 6.18 × 10−2 |
Vegetation Regeneration | 8 | 8.738 | 7.53 × 10−2 |
Floodplain Feature | 4 | 4.060 | 2.22 × 10−2 |
Large Scale Characteristics | 3 | 3.000 | 0.00 |
River Process | 6 | 6.074 | 1.18 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haron, N.A.; Yusuf, B.; Sulaiman, M.S.; Razak, M.S.A.; Nurhidayu, S. Morphological Assessment of River Stability: Review of the Most Influential Parameters. Sustainability 2022, 14, 10025. https://doi.org/10.3390/su141610025
Haron NA, Yusuf B, Sulaiman MS, Razak MSA, Nurhidayu S. Morphological Assessment of River Stability: Review of the Most Influential Parameters. Sustainability. 2022; 14(16):10025. https://doi.org/10.3390/su141610025
Chicago/Turabian StyleHaron, Nor Azidawati, Badronnisa Yusuf, Mohd Sofiyan Sulaiman, Mohd Shahrizal Ab Razak, and Siti Nurhidayu. 2022. "Morphological Assessment of River Stability: Review of the Most Influential Parameters" Sustainability 14, no. 16: 10025. https://doi.org/10.3390/su141610025
APA StyleHaron, N. A., Yusuf, B., Sulaiman, M. S., Razak, M. S. A., & Nurhidayu, S. (2022). Morphological Assessment of River Stability: Review of the Most Influential Parameters. Sustainability, 14(16), 10025. https://doi.org/10.3390/su141610025