Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset Characteristics and Variables Selection
2.3. Data Preprocessing and Statistical Analysis
2.4. Interpolation Methods
- Inverse Distance Weighting (IDW), which works on the assumption that closer points are more similar to each other than those further away. This method uses the values surrounding some unmeasured point to predict, giving greater weight to the closer points [48].
- Four Radial Basis Functions: Completely Regularized Spline (CRS), Spline With Tension (SWT), Multiquadric (M-Q) and Inverse Multiquadric (IM-Q). These are exact interpolation techniques, i.e., the surface must pass through each of the measured values. Each function will give an interpolation surface with a different shape and different results [49].
- Local Polynomial Interpolation (LPI), which works by fitting many polynomials within the specified overlapping neighbourhoods as opposed to Global Polynomial Interpolation (GPI) [50].
- Ordinary Kriging (OK), which works on the assumption that a constant mean is unknown throughout the process [51].
- Simple Kriging (SK), which assumes stationarity from the beginning of a known mean. Hence, mathematically speaking, it is the simplest but least general method [52].
- Empirical Bayesian Kriging (EBK) tends to maximum likelihood estimation. This allows us to measure the evidence and the uncertainty of the emulator [49].
2.5. Assessment of the Interpolation Methods Reliability
3. Results
3.1. Descriptive Statistics
3.2. Optimal Interpolation Method by Soil Property
3.2.1. Particle Size Distribution
3.2.2. Selected Chemical and Sorption Complex Properties
3.2.3. Selected Elements Content
3.3. General Assessment of the Interpolation Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Igaz, D.; Šinka, K.; Varga, P.; Vrbičanová, G.; Aydın, E.; Tárník, A. The Evaluation of the Accuracy of Interpolation Methods in Crafting Maps of Physical and Hydro-Physical Soil Properties. Water 2021, 13, 212. [Google Scholar] [CrossRef]
- Li, J.; Wan, H.; Shang, S. Comparison of interpolation methods for mapping layered soil particle-size fractions and texture in an arid oasis. Catena 2020, 190, 104514. [Google Scholar] [CrossRef]
- Long, J.; Liu, Y.; Xing, S.; Zhang, L.; Qu, M.; Qiu, L.; Huang, Q.; Zhou, B.; Shen, J. Optimal interpolation methods for farmland soil organic matter in various landforms of a complex topography. Ecol. Indic. 2020, 110, 105926. [Google Scholar] [CrossRef]
- Xie, B.; Jia, X.; Qin, Z.; Zhao, C.; Shao, M. Comparison of interpolation methods for soil moisture prediction on China’s Loess Plateau. Vadose Zone J. 2020, 19, e20025. [Google Scholar] [CrossRef]
- Karwariya, S.; Dey, P.; Bhogal, N.S.; Kanga, S.; Singh, S.K. A Comparative Study of Interpolation Methods for Mapping Soil Properties: A Case Study of Eastern Part of Madhya Pradesh, India. In Recent Technologies for Disaster Management and Risk Reduction; Springer: Cham, Switzerland, 2021; pp. 431–449. [Google Scholar]
- Matcham, E.G.; Subburayalu, S.K.; Culman, S.W.; Lindsey, L.E. Implications of choosing different interpolation methods: A case study for soil test phosphorus. Crop Forage Turfgrass Manag. 2021, 7, e20126. [Google Scholar] [CrossRef]
- Durdevic, B.; Jug, I.; Jug, D.; Bogunovic, I.; Vukadinovic, V.; Stipesevic, B.; Brozovic, B. Spatial variability of soil organic matter content in Eastern Croatia assessed using different interpolation methods. Int. Agrophys. 2019, 33, 31–39. [Google Scholar] [CrossRef]
- Ghorbani, A.; Moghaddam, S.M.; Majd, K.H.; Dadgar, N. Spatial variation analysis of soil properties using spatial statistics: A case study in the region of Sabalan Mountain, Iran. J. Prot. Mt. Areas Res. Manag. 2018, 10, 70–80. [Google Scholar] [CrossRef]
- John, K.; Afu, S.; Isong, I.; Aki, E.; Kebonye, N.; Ayito, E.; Chapman, P.; Eyong, M.; Penížek, V. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. Int. J. Environ. Sci. Technol. 2021, 18, 3327–3342. [Google Scholar] [CrossRef]
- Abdulmanov, R.; Miftakhov, I.; Ishbulatov, M.; Galeev, E.; Shafeeva, E. Comparison of the effectiveness of GIS-based interpolation methods for estimating the spatial distribution of agrochemical soil properties. Environ. Technol. Innov. 2021, 24, 101970. [Google Scholar] [CrossRef]
- Shi, W.Z.; Tian, Y. A hybrid interpolation method for the refinement of a regular grid digital elevation model. Int. J. Geogr. Inf. Sci. 2006, 20, 53–67. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, Y.; Wang, X.; Liu, X.; Zhang, X.; Zhang, S. Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China. Catena 2019, 174, 59–72. [Google Scholar] [CrossRef]
- ZHU, Q.; Lin, H. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere 2010, 20, 594–606. [Google Scholar] [CrossRef]
- Li, W.; Xu, B.; Song, Q.; Liu, X.; Xu, J.; Brookes, P.C. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Sci. Total Environ. 2014, 472, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, C.; Li, W. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging. Appl. Geogr. 2013, 42, 73–85. [Google Scholar] [CrossRef]
- Peng, Y.; Xiong, X.; Adhikari, K.; Knadel, M.; Grunwald, S.; Greve, M.H. Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra. PLoS ONE 2015, 10, e0142295. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ma, F.; Li, J.; Gu, Q.; Yang, S.; Wu, D.; Feng, J.; Ding, J. Characterizing and modeling regional-scale variations in soil salinity in the arid oasis of Tarim Basin, China. Geoderma 2017, 305, 1–11. [Google Scholar] [CrossRef]
- Shahriari, M.; Delbari, M.; Afrasiab, P.; Pahlavan-Rad, M.R. Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: A case of southeastern Iran. Catena 2019, 182, 104149. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Wu, W.; Liu, H.-B. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought. Environ. Monit. Assess. 2017, 189, 525. [Google Scholar] [CrossRef] [PubMed]
- Mishra, U.; Lal, R.; Liu, D.; Van Meirvenne, M. Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [Google Scholar] [CrossRef]
- Yao, X.; Fu, B.; Lü, Y.; Sun, F.; Wang, S.; Liu, M. Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment. PLoS ONE 2013, 8, e54660. [Google Scholar] [CrossRef]
- Göl, C.; Bulut, S.; Bolat, F. Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. J. Afr. Earth Sci. 2017, 134, 85–91. [Google Scholar] [CrossRef]
- Hinge, G.; Surampalli, R.Y.; Goyal, M.K. Prediction of soil organic carbon stock using digital mapping approach in humid India. Environ. Earth Sci. 2018, 77, 172. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Pandey, P.C.; Petropoulos, G.P.; Kourgialas, N.N.; Pandey, V.; Singh, U. GIS and remote sensing aided information for soil moisture estimation: A comparative study of interpolation techniques. Resources 2019, 8, 70. [Google Scholar] [CrossRef]
- Denton, O.; Aduramigba-Modupe, V.; Ojo, A.; Adeoyolanu, O.; Are, K.; Adelana, A.; Oyedele, A.; Adetayo, A.; Oke, A. Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food Agric. 2017, 3, 1279366. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Deng, Y.; Liu, J.; Lai, Z. Spatial variability of soil organic carbon and total nitrogen in the hilly red soil region of Southern China. J. For. Res. 2020, 31, 2385–2394. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientists; Geoscience Australia: Canberra, Australia, 2008. [Google Scholar]
- Kuriakose, S.L.; Devkota, S.; Rossiter, D.; Jetten, V. Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena 2009, 79, 27–38. [Google Scholar] [CrossRef]
- Sahu, B.; Ghosh, A.K. Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Reg. 2021, 26, e00413. [Google Scholar] [CrossRef]
- Wollenhaupt, N.; Wolkowski, R.; Clayton, M. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J. Prod. Agric. 1994, 7, 441–448. [Google Scholar] [CrossRef]
- Gotway, C.A.; Ferguson, R.B.; Hergert, G.W.; Peterson, T.A. Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Sci. Soc. Am. J. 1996, 60, 1237–1247. [Google Scholar] [CrossRef]
- Robinson, T.; Metternicht, G. Comparing the performance of techniques to improve the quality of yield maps. Agric. Syst. 2005, 85, 19–41. [Google Scholar] [CrossRef]
- Zandi, S.; Ghobakhlou, A.; Sallis, P. Evaluation of spatial interpolation techniques for mapping soil pH. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 1153–1159. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 203. [Google Scholar]
- Hernando, V.; Jimeno, L.; Rodríguez, J.; González, R.; Guerra, A.; Monturiol, F.; Gallardo, J.; Labrandero, J.L.; García-Vaquero, J. Estudio de los suelos de la Tierra de Barros; Instituto Nacional de Edafología y Biología Vegetal: Madrid, Spain, 1980. [Google Scholar]
- International Soil Reference and Information Centre. SoilGrids. Available online: https://soilgrids.org/ (accessed on 25 May 2022).
- Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42; Version 4.0; USDA-NCRS: Lincoln, NE, USA, 2004; p. 1031. [Google Scholar]
- MAPA. Métodos Oficiales De Análisis: Suelos Y Aguas; Ministerio de Agricultura, Pesca y Alimentación, Dirección General de Politica Alimentaria: Madrid, Spain, 1982; p. 182. [Google Scholar]
- Dumas, J.B.A. Procédés de l’analyse organique. Ann. De Chim. Et De Phys. 1831, 247, 198–213. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Wastanabe, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 1954, 939, 1–19. [Google Scholar]
- USDA. Soil Quality Test Kit Guide; United States Department of Agriculture, Agricultural Research Service and Natural Resources Conservation Service-Soil Quality Institute. 1999. Available online: http://soils.usda.gov/sqi/assessment/files/test_kit_complete.pdf (accessed on 20 May 2022).
- Walkley, A.; Black, L.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- ESRI. ArcGIS desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Statsoft. STATISTICA (Data Analysis Software System), Version 6; Statsoft: Tulsa, OK, USA, 2001. [Google Scholar]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; Esri Redlands: Redlands, CA, USA, 2001; Volume 380. [Google Scholar]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524. [Google Scholar]
- Hardyr, L. Multi-quadric Equations of Topography and Other Irregular Surface. J. Geophys. Res. 1971, 76, 1905–1915. [Google Scholar] [CrossRef]
- Schaum, A. Principles of local polynomial interpolation. In Proceedings of the 2008 37th IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15–17 October 2008; pp. 1–6. [Google Scholar]
- Wackernagel, H. Ordinary Kriging. In Multivariate Geostatistics; Springer: Cham, Switzerland, 2003; pp. 79–88. [Google Scholar]
- Olea, R.A. Geostatistics for Engineers and Earth Scientists. Technometrics 2000, 42, 444–445. [Google Scholar] [CrossRef]
- Njeban, H.S. Comparison and evaluation of GIS-based spatial interpolation methods for estimation groundwater level in AL-Salman District—Southwest Iraq. J. Geogr. Inf. Syst. 2018, 10, 362. [Google Scholar] [CrossRef]
- Varouchakis, Ε.; Hristopulos, D. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environ. Monit. Assess. 2013, 185, 1–19. [Google Scholar] [CrossRef]
- Khazaz, L.; Oulidi, H.J.; El Moutaki, S.; Ghafiri, A. Comparing and Evaluating Probabilistic and Deterministic Spatial Interpolation Methods for Groundwater Level of Haouz in Morocco. J. Geogr. Inf. Syst. 2015, 7, 631. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Tuffour, H.O.; Brevik, E.C.; Ertunç, G. Spatial variability of soil mineral fractions and bulk density in Northern Ireland: Assessing the influence of topography using different interpolation methods and fractal analysis. Catena 2021, 207, 105646. [Google Scholar] [CrossRef]
- Addis, H.K.; Klik, A.; Strohmeier, S. Performance of frequently used interpolation methods to predict spatial distribution of selected soil properties in an agricultural watershed in Ethiopia. Appl. Eng. Agric. 2016, 32, 617–626. [Google Scholar]
- Zhang, S.-W.; Shen, C.-Y.; Chen, X.-Y.; Ye, H.-C.; Huang, Y.-F.; Shuang, L. Spatial interpolation of soil texture using compositional kriging and regression kriging with consideration of the characteristics of compositional data and environment variables. J. Integr. Agric. 2013, 12, 1673–1683. [Google Scholar] [CrossRef]
- Gozdowski, D.; Stępień, M.; Samborski, S.; Dobers, E.; Szatyłowicz, J.; Chormański, J. Prediction accuracy of selected spatial interpolation methods for soil texture at farm field scale. J. Soil Sci. Plant Nutr. 2015, 15, 639–650. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Zebec, V.; Plaščak, I. Delineation of soil texture suitability zones for soybean cultivation: A case study in continental Croatia. Agronomy 2020, 10, 823. [Google Scholar] [CrossRef]
- Robinson, T.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.; Zakarya, Y.M.; Metwaly, M.M.; Koubouris, G. Deciphering soil spatial variability through geostatistics and interpolation techniques. Sustainability 2020, 13, 194. [Google Scholar] [CrossRef]
- Paz Ferreiro, J.; Pereira De Almeida, V.; Cristina Alves, M.; Aparecida De Abreu, C.; Vieira, S.R.; Vidal Vázquez, E. Spatial variability of soil organic matter and cation exchange capacity in an oxisol under different land uses. Commun. Soil Sci. Plant Anal. 2016, 47, 75–89. [Google Scholar] [CrossRef]
- Houlong, J.; Daibin, W.; Xu, C.; Shuduan, L.; Hongfeng, W.; Yang, C.; Najia, L.; Yiyin, C.; Geng, L. Comparison of kriging interpolation precision between grid sampling scheme and simple random sampling scheme for precision agriculture. Eurasian J. Soil Sci. 2016, 5, 62–73. [Google Scholar] [CrossRef]
- Huang, J.; Bishop, T.; Triantafilis, J. An error budget for digital soil mapping of cation exchange capacity using proximally sensed electromagnetic induction and remotely sensed γ-ray spectrometer data. Soil Use Manag. 2017, 33, 397–412. [Google Scholar] [CrossRef]
- Jung, W.; Kitchen, N.; Sudduth, K.; Anderson, S. Spatial characteristics of claypan soil properties in an agricultural field. Soil Sci. Soc. Am. J. 2006, 70, 1387–1397. [Google Scholar] [CrossRef]
- Bishop, T.; McBratney, A. A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma 2001, 103, 149–160. [Google Scholar] [CrossRef]
- López-Castañeda, A.; Zavala-Cruz, J.; Palma-López, D.J.; Rincón-Ramírez, J.A.; Bautista, F. Digital Mapping of Soil Profile Properties for Precision Agriculture in Developing Countries. Agronomy 2022, 12, 353. [Google Scholar] [CrossRef]
- Medina, H.; van Lier, Q.d.J.; García, J.; Ruiz, M.E. Regional-scale variability of soil properties in Western Cuba. Soil Tillage Res. 2017, 166, 84–99. [Google Scholar] [CrossRef]
- Cruz-Cárdenas, G.; López-Mata, L.; Ortiz-Solorio, C.A.; Villaseñor, J.L.; Ortiz, E.; Silva, J.T.; Estrada-Godoy, F. Interpolation of Mexican soil properties at a scale of 1: 1,000,000. Geoderma 2014, 213, 29–35. [Google Scholar] [CrossRef]
- Schloeder, C.; Zimmerman, N.; Jacobs, M. Comparison of methods for interpolating soil properties using limited data. Soil Sci. Soc. Am. J. 2001, 65, 470–479. [Google Scholar] [CrossRef]
- Fu, T.; Gao, H.; Liu, J. Comparison of Different Interpolation Methods for Prediction of Soil Salinity in Arid Irrigation Region in Northern China. Agronomy 2021, 11, 1535. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Sarmadian, F. Mapping of spatial distribution of soil salinity and alkalinity in a semi-arid region. Ann. Wars. Univ. Life Sci. SGGW. Land Reclam. 2012, 44, 3–14. [Google Scholar] [CrossRef]
- Bangroo, S.; Najar, G.; Achin, E.; Truong, P.N. Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas. Catena 2020, 193, 104632. [Google Scholar] [CrossRef]
- Gia Pham, T.; Kappas, M.; Van Huynh, C.; Hoang Khanh Nguyen, L. Application of ordinary kriging and regression kriging method for soil properties mapping in hilly region of Central Vietnam. ISPRS Int. J. Geo-Inf. 2019, 8, 147. [Google Scholar] [CrossRef]
- Duan, L.; Li, Z.; Xie, H.; Li, Z.; Zhang, L.; Zhou, Q. Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena 2020, 188, 104350. [Google Scholar] [CrossRef]
- Bogunovic, I.; Mesic, M.; Zgorelec, Z.; Jurisic, A.; Bilandzija, D. Spatial variation of soil nutrients on sandy-loam soil. Soil Tillage Res. 2014, 144, 174–183. [Google Scholar] [CrossRef]
- Lei, Z.; Yanbing, Q.; Qingrui, C.J.J.o.N.A. Comparison of spatial interpolation methods of available potassium in Hantai County. J. Northwest Agric. For. Univ. 2013, 40, 193–199. [Google Scholar]
- Liu, L.; Jin, Y.; Wang, J.; Hong, Q.; Pan, Z.; Zhao, J. Comparation of Spatial Interpolation Methods on Slowly Available Potassium in Soils. IOP Conf. Ser. Earth Environ. Sci. 2019, 234, 012018. [Google Scholar] [CrossRef]
- Bouasria, A.; Ibno Namr, K.; Rahimi, A.; Ettachfini, E.M. Geospatial Assessment of Soil Organic Matter Variability at Sidi Bennour District in Doukkala Plain in Morocco. J. Ecol. Eng. 2021, 22, 120–130. [Google Scholar] [CrossRef]
- Pulido Fernández, M. Indicadores de Calidad del Suelo en Áreas de Pastoreo. Ph.D. Thesis, Universidad de Extremadura, Cáceres, Spain, 2014; p. 284. [Google Scholar]
- Llorente, M.; Moreno, G. Factors determining distribution and temporal changes in soil carbon in Iberian Dehesa. In Proceedings of the Geophysical Research Abstracts, Vienna, Austria, 7–12 April 2019. [Google Scholar]
Soil Property | Depth (cm) | n * | Unit | Method |
---|---|---|---|---|
0–5 | 495 | % | Soil Survey Laboratory Methods Manual [38] | |
Clay | 5–10 | 393 | ||
>10 | 326 | |||
0–5 | 424 | |||
Silt | 5–10 | 392 | ||
>10 | 328 | |||
0–5 | 333 | |||
Sand | 5–10 | 294 | ||
>10 | 239 | |||
0–5 | 509 | 1:2.5 soil/water | ||
pH | 5–10 | 449 | ||
>10 | 349 | |||
0–5 | 445 | Cmol kg−1 | MAPA [39] | |
CEC | 5–10 | 402 | ||
>10 | 306 | |||
0–5 | 314 | |||
Calcium | 5–10 | 262 | ||
>10 | 171 | |||
0–5 | 319 | |||
Magnesium | 5–10 | 226 | ||
>10 | 178 | |||
0–5 | 284 | |||
Sodium | 5–10 | 262 | ||
>10 | 185 | |||
0–5 | 265 | % | Dumas [40] | |
Available N | 5–10 | 254 | ||
>10 | 205 | |||
0–5 | 176 | ppm | Olsen et al. [41] | |
Available P | 5–10 | 155 | ||
>10 | 94 | |||
0–5 | 296 | Cmol kg−1 | Ammonium acetate at pH 7 (USDA) [42] | |
Potassium | 5–10 | 243 | ||
>10 | 190 | |||
0–5 | 420 | % | Walkley and Black wet combustion [43] | |
SOM | 5–10 | 419 | ||
>10 | 303 |
Variable | Depth | N | Mean | Min. | Max. | CV (%) |
---|---|---|---|---|---|---|
Clay (%) | 0–5 cm | 495 | 15 | 1 | 50 | 55 |
5–10 cm | 393 | 19 | 2. | 81 | 65 | |
>10 cm | 326 | 22.811 | 3 | 77 | 59. | |
Silt (%) | 0–5 cm | 424 | 33 | 1 | 70 | 46 |
5–10 cm | 392 | 33 | 1 | 71 | 49 | |
>10 cm | 328 | 31 | 3 | 74 | 54 | |
Sand (%) | 0–5 cm | 333 | 47 | 6 | 91 | 27 |
5–10 cm | 294 | 43 | 4 | 89 | 32 | |
>10 cm | 239 | 41 | 2 | 85 | 38 | |
pH (1:2.5) | 0–5 cm | 509 | 5.93 | 4.00 | 8.20 | 14 |
5–10 cm | 449 | 6.01 | 3.70 | 9.1 | 15 | |
>10 cm | 349 | 6.14 | 4.20 | 9.30 | 16 | |
CEC (Cmol kg−1) | 0–5 cm | 445 | 15.52 | 0.81 | 80.46 | 67 |
5–10 cm | 402 | 15.57 | 2.00 | 69.66 | 76 | |
>10 cm | 306 | 16.34 | 2.00 | 61.60 | 70 | |
Ca (Cmol kg−1) | 0–5 cm | 314 | 6.78 | 0.41 | 61.87 | 116 |
5–10 cm | 262 | 6.90 | 0.17 | 62.00 | 142 | |
>10 cm | 171 | 8.85 | 0.18 | 55.59 | 137 | |
Mg (Cmol kg−1) | 0–5 cm | 319 | 1.80 | 0.07 | 12.30 | 87 |
5–10 cm | 226 | 1.77 | 0.05 | 25.00 | 93 | |
>10 cm | 178 | 2.29 | 0.03 | 16.62 | 104 | |
Na (Cmol kg−1) | 0–5 cm | 284 | 0.65 | 0.07 | 2.92 | 100 |
5–10 cm | 262 | 0.40 | 0.04 | 2.13 | 144 | |
>10 cm | 185 | 0.43 | 0.02 | 2.54 | 129 | |
N (%) | 0–5 cm | 265 | 0.23 | 0.02 | 0.95 | 87 |
5–10 cm | 254 | 0.13 | 0.01 | 0.38 | 85 | |
>10 cm | 205 | 0.09 | 0.00 | 0.26 | 97 | |
P (ppm) | 0–5 cm | 176 | 22.10 | 0.40 | 69.00 | 53 |
5–10 cm | 155 | 15.12 | 0.40 | 67.00 | 44 | |
>10 cm | 94 | 11.84 | 0.40 | 48.30 | 51. | |
K (Cmol kg−1) | 0–5 cm | 296 | 0.57 | 0.03 | 3.40 | 77. |
5–10 cm | 243 | 0.42 | 0.02 | 2.12 | 87 | |
>10 cm | 190 | 0.42 | 0.02 | 2.91 | 95 | |
SOM (%) | 0–5 cm | 420 | 3.62 | 0.10 | 20.80 | 76 |
5–10 cm | 419 | 1.86 | 0.10 | 14.50 | 98 | |
>10 cm | 303 | 1.21 | 0.10 | 6.00 | 82 |
0–5 cm | 5–10 cm | >10 cm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Method | ME | R2 | RMSE | ME | R2 | RMSE | ME | R2 | RMSE |
Clay (%) | IDW | −0.249 | 0.723 | 3.554 | 0.265 | 0.689 | 5.131 | 1.393 | 0.648 | 5.205 |
CRS | 0.239 | 0.725 | 3.505 | 1.119 | 0.663 | 5.313 | 1.870 | 0.639 | 5.800 | |
SWT | 0.223 | 0.731 | 3.456 | 1.123 | 0.638 | 5.321 | 1.822 | 0.642 | 5.771 | |
M-Q | 0.200 | 0.721 | 4.002 | 0.147 | 0.575 | 6.357 | 0.740 | 0.580 | 6.503 | |
IM-Q | 3.964 | 0.650 | 3.964 | 0.690 | 0.641 | 5.569 | 2.524 | 0.562 | 6.590 | |
LPI | 0.223 | 0.663 | 4.046 | 0.970 | 0.584 | 5.799 | 2.077 | 0.607 | 6.153 | |
OK | 0.220 | 0.728 | 3.523 | 0.570 | 0.625 | 5.480 | 1.946 | 0.578 | 6.376 | |
SK | 0.390 | 0.674 | 4.157 | 0.388 | 0.603 | 5.865 | 2.367 | 0.591 | 6.101 | |
EBK | 0.198 | 0.767 | 3.318 | 0.238 | 0.639 | 5.525 | 1.807 | 0.613 | 5.972 | |
Silt (%) | IDW | 0.267 | 0.831 | 6.222 | −0.486 | 0.897 | 5.103 | 1.168 | 0.905 | 6.595 |
CRS | −0.163 | 0.823 | 6.363 | −1.365 | 0.895 | 5.287 | −0.564 | 0.923 | 6.438 | |
SWT | −0.110 | 0.825 | 6.331 | −1.357 | 0.895 | 5.280 | −0.418 | 0.919 | 6.344 | |
M-Q | 0.489 | 0.807 | 6.775 | −0.627 | 0.889 | 5.494 | 0.239 | 0.908 | 5.804 | |
IM-Q | −0.416 | 0.734 | 7.835 | −1.629 | 0.847 | 6.375 | −2.209 | 0.761 | 10.051 | |
LPI | −0.423 | 0.793 | 7.234 | −1.415 | 0.856 | 6.158 | −1.823 | 0.862 | 8.939 | |
OK | −0.264 | 0.820 | 6.458 | −1.420 | 0.882 | 5.626 | −0.609 | 0.921 | 5.605 | |
SK | −0.094 | 0.815 | 6.563 | −1.537 | 0.884 | 5.582 | 0.244 | 0.923 | 6.020 | |
EBK | −0.329 | 0.820 | 6.488 | −1.040 | 0.892 | 5.383 | −0.444 | 0.929 | 5.725 | |
Sand (%) | IDW | 0.847 | 0.657 | 5.290 | 0.200 | 0.816 | 5.217 | −1.818 | 0.750 | 7.039 |
CRS | 0.290 | 0.739 | 4.627 | 0.730 | 0.804 | 5.459 | −1.703 | 0.748 | 7.072 | |
SWT | 0.204 | 0.723 | 4.727 | 0.832 | 0.810 | 9.637 | −1.706 | 0.748 | 7.069 | |
M-Q | 0.884 | 0.608 | 6.406 | 0.280 | 0.826 | 5.729 | −1.392 | 0.732 | 7.544 | |
IM-Q | −0.740 | 0.535 | 6.233 | 0.664 | 0.700 | 6.680 | −2.077 | 0.514 | 9.782 | |
LPI | 1.065 | 0.602 | 6.279 | 1.164 | 0.738 | 6.881 | −0.247 | 0.615 | 8.851 | |
OK | 0.471 | 0.680 | 5.094 | 1.460 | 0.720 | 6.790 | −1.505 | 0.780 | 6.586 | |
SK | 0.719 | 0.677 | 5.133 | 0.740 | 0.693 | 6.878 | −1.437 | 0.799 | 6.354 | |
EBK | 1.083 | 0.637 | 5.602 | 0.759 | 0.816 | 5.258 | −1.794 | 0.764 | 6.906 |
0–5 cm | 5–10 cm | >10 cm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Method | ME | R2 | RMSE | ME | R2 | RMSE | ME | R2 | RMSE |
pH (1:2.5) | IDW | −0.030 | 0.809 | 0.350 | 0.071 | 0.808 | 0.349 | 0.015 | 0.803 | 0.413 |
CRS | −0.031 | 0.834 | 0.333 | 0.069 | 0.826 | 0.331 | 0.034 | 0.803 | 0.412 | |
SWT | −0.006 | 0.794 | 0.364 | 0.068 | 0.827 | 0.330 | 0.033 | 0.804 | 0.411 | |
M-Q | −0.033 | 0.726 | 0.413 | 0.030 | 0.803 | 0.356 | 0.007 | 0.796 | 0.443 | |
IM-Q | 0.013 | 0.720 | 0.424 | 0.070 | 0.767 | 0.381 | 0.061 | 0.730 | 0.487 | |
LPI | −0.064 | 0.772 | 0.399 | 0.028 | 0.744 | 0.837 | −0.014 | 0.761 | 0.455 | |
OK | −0.029 | 0.806 | 0.352 | 0.041 | 0.823 | 0.328 | 0.021 | 0.782 | 0.441 | |
SK | −0.043 | 0.813 | 0.362 | 0.054 | 0.804 | 0.348 | 0.030 | 0.757 | 0.465 | |
EBK | −0.018 | 0.823 | 0.335 | 0.064 | 0.816 | 0.342 | 0.024 | 0.825 | 0.399 | |
CEC (Cmol kg−1) | IDW | 1.396 | 0.854 | 3.778 | 1.741 | 0.683 | 4.676 | 0.706 | 0.690 | 4.470 |
CRS | 1.444 | 0.823 | 3.990 | 2.019 | 0.713 | 4.555 | 1.025 | 0.671 | 4.625 | |
SWT | 1.438 | 0.825 | 3.976 | 2.018 | 0.713 | 4.553 | 1.021 | 0.671 | 4.620 | |
M-Q | 1.402 | 0.744 | 5.706 | 1.893 | 0.665 | 5.188 | 0.418 | 0.641 | 4.763 | |
IM-Q | 1.508 | 0.760 | 4.436 | 1.720 | 0.704 | 4.538 | 1.405 | 0.601 | 5.239 | |
LPI | 1.158 | 0.670 | 5.015 | 1.819 | 0.700 | 4.560 | 0.575 | 0.646 | 4.901 | |
OK | 1.296 | 0.821 | 4.108 | 1.690 | 0.702 | 4.533 | 0.804 | 0.679 | 4.583 | |
SK | 1.866 | 0.770 | 4.486 | 1.649 | 0.703 | 4.576 | 1.120 | 0.704 | 4.637 | |
EBK | 1.441 | 0.819 | 4.199 | 1.833 | 0.728 | 4.567 | 0.864 | 0.697 | 4.415 | |
Ca (Cmol kg−1) | IDW | 0.006 | 0.833 | 2.263 | 0.639 | 0.973 | 1.879 | −0.521 | 0.959 | 2.326 |
CRS | 0.254 | 0.960 | 1.153 | 0.451 | 0.952 | 2.280 | 0.040 | 0.905 | 2.610 | |
SWT | 0.178 | 0.964 | 1.078 | 0.469 | 0.956 | 2.137 | 0.056 | 0.904 | 2.621 | |
M-Q | 0.105 | 0.963 | 1.078 | 0.368 | 0.897 | 3.305 | −0.812 | 0.968 | 2.254 | |
IM-Q | 0.235 | 0.964 | 1.093 | 0.369 | 0.911 | 3.208 | 0.232 | 0.830 | 3.664 | |
LPI | −0.079 | 0.819 | 2.509 | 0.169 | 0.912 | 3.217 | −0.665 | 0.961 | 2.473 | |
OK | 0.053 | 0.967 | 1.055 | 0.325 | 0.917 | 2.744 | −0.272 | 0.959 | 2.241 | |
SK | 0.298 | 0.970 | 1.010 | 0.332 | 0.901 | 3.614 | 0.075 | 0.905 | 2.727 | |
EBK | 0.084 | 0.977 | 0.864 | 0.676 | 0.947 | 2.233 | −0.400 | 0.964 | 1.955 | |
Mg (Cmol kg−1) | IDW | 0.112 | 0.439 | 0.907 | 0.147 | 0.605 | 0.539 | 0.347 | 0.708 | 0.781 |
CRS | 0.268 | 0.448 | 0.814 | 0.246 | 0.554 | 0.613 | 0.417 | 0.688 | 0.822 | |
SWT | 0.265 | 0.422 | 0.872 | 0.251 | 0.551 | 0.618 | 0.417 | 0.694 | 0.816 | |
M-Q | 0.224 | 0.291 | 1.183 | −0.052 | 0.432 | 0.577 | 0.370 | 0.365 | 1.186 | |
IM-Q | 0.294 | 0.360 | 0.995 | 0.222 | 0.551 | 0.661 | 0.429 | 0.754 | 0.782 | |
LPI | 0.303 | 0.413 | 0.827 | 0.229 | 0.485 | 0.650 | 0.362 | 0.659 | 0.833 | |
OK | 0.135 | 0.504 | 0.789 | 0.102 | 0.770 | 0.534 | 0.553 | 0.605 | 0.988 | |
SK | 0.301 | 0.569 | 0.741 | 0.274 | 0.333 | 0.724 | 0.370 | 0.535 | 0.939 | |
EBK | 0.158 | 0.395 | 0.955 | 0.027 | 0.534 | 0.561 | 0.398 | 0.449 | 1.105 | |
Na (Cmol kg−1) | IDW | 0.069 | 0.828 | 0.210 | 0.074 | 0.505 | 0.142 | 0.105 | 0.044 | 0.196 |
CRS | 0.030 | 0.888 | 0.167 | 0.064 | 0.511 | 0.138 | 0.110 | 0.104 | 0.198 | |
SWT | 0.040 | 0.891 | 0.169 | 0.067 | 0.503 | 0.138 | 0.116 | 0.089 | 0.201 | |
M-Q | 0.008 | 0.801 | 0.227 | 0.040 | 0.400 | 0.174 | 0.085 | 0.077 | 0.239 | |
IM-Q | 0.087 | 0.904 | 0.202 | 0.055 | 0.369 | 0.175 | 0.134 | 0.039 | 0.227 | |
LPI | 0.048 | 0.755 | 0.248 | 0.102 | 0.107 | 0.203 | 0.139 | 0.011 | 0.226 | |
OK | 0.016 | 0.865 | 0.178 | 0.050 | 0.369 | 0.137 | 0.130 | 0.004 | 0.234 | |
SK | 0.048 | 0.855 | 0.190 | 0.111 | 0.303 | 0.174 | 0.130 | 0.103 | 0.201 | |
EBK | 0.036 | 0.820 | 0.213 | 0.096 | 0.071 | 0.200 | 0.120 | 0.011 | 0.218 |
0–5 cm | 5–10 cm | >10 cm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Method | ME | R2 | RMSE | ME | R2 | RMSE | ME | R2 | RMSE |
N (%) | IDW | 0.010 | 0.577 | 0.058 | −0.003 | 0.128 | 0.039 | 0.002 | 0.685 | 0.024 |
CRS | 0.006 | 0.590 | 0.056 | −0.001 | 0.119 | 0.039 | 0.005 | 0.645 | 0.026 | |
SWT | 0.006 | 0.597 | 0.056 | −0.001 | 0.116 | 0.039 | 0.005 | 0.649 | 0.026 | |
M-Q | 0.006 | 0.362 | 0.076 | −0.009 | 0.064 | 0.051 | 0.002 | 0.541 | 0.031 | |
IM-Q | 0.010 | 0.598 | 0.060 | −0.009 | 0.064 | 0.051 | 0.002 | 0.545 | 0.029 | |
LPI | 0.010 | 0.463 | 0.067 | 0.003 | 0.039 | 0.045 | 0.009 | 0.587 | 0.032 | |
OK | 0.004 | 0.603 | 0.056 | 0.000 | 0.142 | 0.038 | 0.005 | 0.595 | 0.028 | |
SK | 0.006 | 0.634 | 0.053 | 0.004 | 0.161 | 0.033 | 0.008 | 0.442 | 0.034 | |
EBK | 0.005 | 0.584 | 0.060 | −0.003 | 0.038 | 0.040 | 0.004 | 0.495 | 0.032 | |
P (ppm) | IDW | −1.741 | 0.836 | 6.917 | −0.780 | 0.739 | 5.508 | 5.518 | 0.319 | 14.143 |
CRS | 0.840 | 0.840 | 6.726 | 1.557 | 0.519 | 6.911 | 7.561 | 0.590 | 14.615 | |
SWT | 0.705 | 0.838 | 6.710 | 1.727 | 0.582 | 7.024 | 7.433 | 0.587 | 14.374 | |
M-Q | 1.131 | 0.841 | 10.297 | −0.630 | 0.673 | 8.475 | 12.242 | 0.584 | 27.097 | |
IM-Q | 2.255 | 0.523 | 10.859 | 2.975 | 0.278 | 9.382 | 6.655 | 0.625 | 8.811 | |
LPI | −0.731 | 0.780 | 7.672 | 3.034 | 0.411 | 8.716 | 4.663 | 0.243 | 12.556 | |
OK | −0.006 | 0.811 | 7.378 | 0.616 | 0.745 | 5.366 | 7.387 | 0.151 | 17.555 | |
SK | −0.355 | 0.850 | 7.336 | 0.929 | 0.685 | 6.385 | 7.141 | 0.420 | 17.683 | |
EBK | 1.145 | 0.831 | 8.679 | 0.929 | 0.685 | 6.385 | 8.544 | 0.579 | 16.123 | |
K(Cmol kg−1) | IDW | −0.015 | 0.729 | 0.170 | 0.041 | 0.547 | 0.147 | 0.001 | 0.617 | 0.146 |
CRS | 0.000 | 0.723 | 0.173 | 0.040 | 0.582 | 0.133 | 0.032 | 0.571 | 0.158 | |
SWT | 0.013 | 0.686 | 0.185 | 0.050 | 0.522 | 0.150 | 0.033 | 0.575 | 0.158 | |
M-Q | −0.032 | 0.657 | 0.192 | 0.002 | 0.444 | 0.158 | 0.004 | 0.637 | 0.143 | |
IM-Q | 0.023 | 0.642 | 0.203 | 0.052 | 0.366 | 0.194 | 0.046 | 0.552 | 0.185 | |
LPI | −0.005 | 0.666 | 0.188 | 0.042 | 0.529 | 0.159 | 0.032 | 0.584 | 0.140 | |
OK | −0.020 | 0.716 | 0.174 | 0.027 | 0.512 | 0.154 | 0.021 | 0.557 | 0.146 | |
SK | 0.052 | 0.690 | 0.187 | 0.049 | 0.578 | 0.141 | 0.038 | 0.586 | 0.145 | |
EBK | −0.012 | 0.719 | 0.172 | 0.020 | 0.524 | 0.139 | 0.017 | 0.579 | 0.140 | |
SOM (%) | IDW | 0.105 | 0.754 | 0.957 | 0.31 | 0.704 | 0.754 | 0.109 | 0.662 | 0.548 |
CRS | −0.041 | 0.67 | 1.033 | 0.268 | 0.631 | 0.784 | 0.083 | 0.577 | 0.557 | |
SWT | −0.078 | 0.673 | 1.043 | 0.267 | 0.627 | 0.776 | 0.084 | 0.578 | 0.555 | |
M-Q | −0.07 | 0.683 | 1.072 | 0.175 | 0.441 | 0.881 | 0.043 | 0.506 | 0.630 | |
IM-Q | −0.052 | 0.46 | 1.287 | 0.264 | 0.449 | 0.888 | 0.022 | 0.267 | 0.667 | |
LPI | 0 | 0.454 | 1.343 | 0.318 | 0.435 | 0.945 | 0.131 | 0.402 | 0.628 | |
OK | 0.001 | 0.707 | 0.97 | 0.175 | 0.624 | 0.79 | 0.082 | 0.588 | 0.531 | |
SK | −0.07 | 0.680 | 1.006 | 0.199 | 0.474 | 0.852 | 0.091 | 0.598 | 0.548 | |
EBK | −0.008 | 0.684 | 1.001 | 0.221 | 0.657 | 0.715 | 0.046 | 0.492 | 0.565 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrena-González, J.; Lavado Contador, J.F.; Pulido Fernández, M. Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths. Sustainability 2022, 14, 10049. https://doi.org/10.3390/su141610049
Barrena-González J, Lavado Contador JF, Pulido Fernández M. Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths. Sustainability. 2022; 14(16):10049. https://doi.org/10.3390/su141610049
Chicago/Turabian StyleBarrena-González, Jesús, Joaquín Francisco Lavado Contador, and Manuel Pulido Fernández. 2022. "Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths" Sustainability 14, no. 16: 10049. https://doi.org/10.3390/su141610049
APA StyleBarrena-González, J., Lavado Contador, J. F., & Pulido Fernández, M. (2022). Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths. Sustainability, 14(16), 10049. https://doi.org/10.3390/su141610049