A Critical Review of the Definition and Estimation of Carbon Efficiency
Abstract
:1. Introduction
2. Definitions of Carbon Efficiency
2.1. Single-Factor Indicators
2.2. Total-Factor Indicators
2.3. Extended Concept of Carbon Efficiency
3. Methodologies to Measure Carbon Efficiency
3.1. Calculation with Given Data
3.2. Data Envelopment Analysis
3.3. Stochastic Frontier Analysis
3.4. The Input–Output Method
4. Discussion
4.1. Various Definitions of Carbon Efficiency
4.2. Research Directions for a Future Carbon Efficiency Study
4.3. Difference between Energy Efficiency and Carbon Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; p. 2. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018; Volume 1. [Google Scholar]
- Bouckaert, S.; Pales, A.F.; McGlade, C.; Remme, U.; Wanner, B.; Varro, L.; D’Ambrosio, D.; Spencer, T. Net Zero by 2050: A Roadmap for the Global Energy Sector; IEA: Paris, France, 2021. [Google Scholar]
- Dong, F.; Zhu, J.; Li, Y.; Chen, Y.; Gao, Y.; Hu, M.; Qin, C.; Sun, J. How green technology innovation affects carbon emission efficiency: Evidence from developed countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. Int. 2022, 29, 35780–35799. [Google Scholar] [CrossRef]
- Pu, Z.; Liu, J.; Yang, M. Could Green Technology Innovation Help Economy Achieve Carbon Neutrality Development–Evidence from Chinese Cities. Front. Environ. Sci. 2022, 10, 468. [Google Scholar] [CrossRef]
- Li, S.; Diao, H.; Wang, L.; Li, L. A complete total-factor CO2 emissions efficiency measure and “2030• 60 CO2 emissions targets” for Shandong Province, China. J. Clean. Prod. 2022, 360, 132230. [Google Scholar] [CrossRef]
- Jin, T.; Kim, J. A comparative study of energy and carbon efficiency for emerging countries using panel stochastic frontier analysis. Sci. Rep. 2019, 9, 6647. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R. A multi-factor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions. Technol. Forecast. Soc. Chang. 2006, 73, 483–494. [Google Scholar] [CrossRef]
- Shobande, O.; Asongu, S. The rise and fall of the energy-carbon Kuznets curve: Evidence from Africa. Manag. Environ. Qual. Int. J. 2021, 33, 390–405. [Google Scholar] [CrossRef]
- Feng, R.; Shen, C.; Huang, L.; Tang, X. Does trade in services improve carbon efficiency?—Analysis based on international panel data. Technol. Forecast. Soc. Chang. 2022, 174, 121298. [Google Scholar] [CrossRef]
- Zhong, J. Biased Technical Change, Factor Substitution, and Carbon Emissions Efficiency in China. Sustainability 2019, 11, 955. [Google Scholar] [CrossRef]
- Shobande, O.A. Decomposing the persistent and transitory effect of information and communication technology on environmental impacts assessment in Africa: Evidence from Mundlak Specification. Sustainability 2021, 13, 4683. [Google Scholar] [CrossRef]
- Tan, X.; Choi, Y.; Wang, B.; Huang, X. Does China’s carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis. Technol. Forecast. Soc. Chang. 2020, 160, 120222. [Google Scholar] [CrossRef]
- Li, S.; Wang, W.; Diao, H.; Wang, L. Measuring the Efficiency of Energy and Carbon Emissions: A Review of Definitions, Models, and Input-Output Variables. Energies 2022, 15, 962. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhang, Q. Does carbon efficiency improve financial performance? Evidence from Chinese firms. Energy Econ. 2021, 104, 105658. [Google Scholar] [CrossRef]
- He, W.; Zhang, B.; Ding, T. Sources of provincial carbon intensity reduction potential in China: A non-parametric fractional programming approach. Sci. Total Environ. 2020, 730, 139037. [Google Scholar] [CrossRef] [PubMed]
- Greening, L.A.; Ting, M.; Davis, W.B. Decomposition of aggregate carbon intensity for freight: Trends from 10 OECD countries for the period 1971–1993. Energy Econ. 1999, 21, 331–361. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.C.; Wu, G.; Tsai, H.T.; Wei, Y.M. Changes in carbon intensity in China: Empirical findings from 1980–2003. Ecol. Econ. 2007, 62, 683–691. [Google Scholar] [CrossRef]
- Zhu, Z.S.; Liao, H.; Cao, H.S.; Wang, L.; Wei, Y.M.; Yan, J. The differences of carbon intensity reduction rate across 89 countries in recent three decades. Appl. Energy 2014, 113, 808–815. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Carbon productivity: A case study in the Australian construction industry. J. Clean. Prod. 2016, 112, 2354–2362. [Google Scholar] [CrossRef]
- Greene, D.L.; Fan, Y.-H. Transportation Energy Intensity Trends: 1972–1992; Transportation Research Record; National Academies of Sciences, Engineering and Medicine: Washington, DC, USA, 1995; Volume 1475. [Google Scholar]
- Schipper, L.; Scholl, L.; Price, L. Energy use and carbon emissions from freight in 10 industrialized countries: An analysis of trends from 1973 to 1992. Transp. Res. Part D Transp. Environ. 1997, 2, 57–76. [Google Scholar] [CrossRef]
- Sun, J.W. The decrease of CO2 emission intensity is decarbonization at national and global levels. Energy Policy 2005, 33, 975–978. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, T. Empirical analysis on the factors influencing national and regional carbon intensity in China. Renew. Sustain. Energy Rev. 2016, 55, 34–42. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Demand contributors and driving factors of Singapore’s aggregate carbon intensities. Energy Policy 2020, 146, 111817. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Li, Y.; Pinnuck, M.; Richardson, G.D. The Valuation Relevance of Greenhouse Gas. Emissions under the European Union Carbon Emissions Trading Scheme. Eur. Account. Rev. 2014, 24, 551–580. [Google Scholar] [CrossRef]
- Busch, T.; Lewandowski, S. Corporate Carbon and Financial Performance: A Meta-analysis. J. Ind. Ecol. 2018, 22, 745–759. [Google Scholar] [CrossRef]
- Stretesky, P.B.; Lynch, M.J. A cross-national study of the association between per capita carbon dioxide emissions and exports to the United States. Soc. Sci. Res. 2009, 38, 239–250. [Google Scholar] [CrossRef]
- Jobert, T.; Karanfil, F.; Tykhonenko, A. Convergence of per capita carbon dioxide emissions in the EU: Legend or reality? Energy Econ. 2010, 32, 1364–1373. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, W. How do CO2 emissions and efficiencies vary in Chinese cities? Spatial variation and driving factors in 2007. Sci. Total Environ. 2019, 675, 439–452. [Google Scholar] [CrossRef]
- Huo, T.; Tang, M.; Cai, W.; Ren, H.; Liu, B.; Hu, X. Provincial total-factor energy efficiency considering floor space under construction: An. empirical analysis of China’s construction industry. J. Clean. Prod. 2020, 244, 118749. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, J.; Li, L.; Gu, X. Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces. Energy Econ. 2020, 86, 104702. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Zhang, T.; Wang, L. Revisiting China’s provincial energy efficiency and its influencing factors. Energy 2020, 208, 118361. [Google Scholar] [CrossRef]
- Yang, H. Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People’s Republic of China: A Total Factor Production Model; Asian Development Bank: Mandaluyong, Philippines, 2010. [Google Scholar]
- Samuelson, P.A.; Nordhaus, W.D.; Chaudhuri, S. Macroeconomics; Tata McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Jaraite, J.; Di Maria, C. Efficiency, productivity and environmental policy: A case study of power generation in the EU. Energy Econ. 2012, 34, 1557–1568. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Ramanathan, R. Combining indicators of energy consumption and CO2 emissions: A cross-country comparison. Int. J. Glob. Energy Issues 2002, 17, 214–227. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J.; Zhang, H. Total-factor carbon emission efficiency of China’s provincial industrial sector and its dynamic evolution. Renew. Sustain. Energy Rev. 2018, 94, 330–339. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Herrala, R.; Goel, R.K. Global CO2 efficiency: Country-wise estimates using a stochastic cost frontier. Energy Policy 2012, 45, 762–770. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Lv, X.; Chen, X.; Shen, M. Investigating interior driving factors and cross-industrial linkages of carbon emission efficiency in China’s construction industry: Based on Super-SBM DEA and GVAR model. J. Clean. Prod. 2019, 241, 118322. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, G.; Li, J.; Wang, C.; Xu, N. Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban. Agglomerations. Sustainability 2020, 12, 2675. [Google Scholar] [CrossRef]
- Trinks, A.; Mulder, M.; Scholtens, B. An efficiency perspective on carbon emissions and financial performance. Ecol. Econ. 2020, 175, 106632. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C. How does urbanization affect carbon emission efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- Tyteca, D. Linear programming models for the measurement of environmental performance of firms—Concepts and empirical results. J. Product. Anal. 1997, 8, 183–197. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. Multilateral comparisons of output, input, and productivity using superlative index numbers. Econ. J. 1982, 92, 73–86. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Xu, M.; Tan, R. How to reduce CO2 emissions in pharmaceutical industry of China: Evidence from total-factor carbon emissions performance. J. Clean. Prod. 2022, 337, 130505. [Google Scholar] [CrossRef]
- Fan, M.; Shao, S.; Yang, L. Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China). Energy Policy 2015, 79, 189–201. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Z. Study on total-factor carbon emission efficiency of China’s manufacturing industry when considering technology heterogeneity. J. Clean. Prod. 2020, 260, 121021. [Google Scholar] [CrossRef]
- Gao, P.; Yue, S.; Chen, H. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.; Shan, Y.; Guan, D.; Wang, S. The slowdown in China’s carbon emissions growth in the new phase of economic development. One Earth 2019, 1, 240–253. [Google Scholar] [CrossRef]
- Steinberger, J.K.; Roberts, J.T.; Peters, G.P.; Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Chang. 2012, 2, 81–85. [Google Scholar] [CrossRef]
- Isard, W.; Bassett, K.; Choguill, C.; Furtado, J.; Izumita, R.; Kissin, J.; Romanoff, E.; Seyfarth, R.; Tatlock, R. On the Likage of Socio-Economic and Ecologic Systems. In Papers of the Regional Science Association; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Leonteif, W. Environmental repercussions and the economic structure: An input-output approach. Rev. Econ. Stat. 1970, 52, 262–271, reprinted in Input-Output Economics; Chapter 11; Leonteif, W., Ed.; Oxford University Press: Oxford, UK, 1986. [Google Scholar] [CrossRef]
- Hoekstra, R. A complete database of peer-reviewed articles on environmentally extended input-output analysis. In Proceedings of the 18th International Input-Output Conference of the International Input-Output Association (IIOA), Sydney, Australia, 20–25 June 2010. [Google Scholar]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Hawkins, J.; Ma, C.; Schilizzi, S.; Zhang, F. Promises and pitfalls in environmentally extended input–output analysis for China: A survey of the literature. Energy Econ. 2015, 48, 81–88. [Google Scholar] [CrossRef]
- Su, B.; Ang, B. Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Econ. 2017, 65, 137–147. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, D. Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution. Sustainability 2021, 13, 13221. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Jiang, T.; Nie, J. Analysis on carbon emissions efficiency differences and optimization evolution of China’s industrial system: An. input-output analysis. PLoS ONE 2022, 17, e0258147. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Bai, X. Differences of Carbon Emission Efficiency in the Belt and Road Initiative Countries. Energies 2022, 15, 1576. [Google Scholar] [CrossRef]
- Coelli, T. A Guide to DEAP Version 2.1: A Data Envelopment Analysis Programme; Department of Econometrics, University of New England: Biddeford, ME, USA, 1996. [Google Scholar]
- Zhou, P.; Poh, K.L.; Ang, B.W. A non-radial DEA approach to measuring environmental performance. Eur. J. Oper. Res. 2007, 178, 1–9. [Google Scholar] [CrossRef]
- Banker, R.D. An introduction to data envelopment analysis with some of its models and their uses. Res. Gov. Nonprofit Account. 1989, 5, 125–163. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.; Poh, K. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Tone, K. Dealing with undesirable outputs in DEA: A slacks-based measure (SBM) approach. In Proceedings of the North American Productivity Workshop, Toronto, ON, Canada, 23–25 June 2004; pp. 44–45. [Google Scholar]
- Li, W.; Wang, W.; Wang, Y.; Ali, M. Historical growth in total factor carbon productivity of the Chinese industry–a comprehensive analysis. J. Clean. Prod. 2018, 170, 471–485. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, F.; Ma, X.; He, L. Carbon emissions efficiency in China: Key facts from regional and industrial sector. J. Clean. Prod. 2019, 206, 850–869. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Färe, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Lin, R.; Chen, Z. A directional distance based super-efficiency DEA model handling negative data. J. Oper. Res. Soc. 2017, 68, 1312–1322. [Google Scholar] [CrossRef]
- Greene, W. Fixed and random effects in stochastic frontier models. J. Product. Anal. 2005, 23, 7–32. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, P.; Shen, N.; Wang, S. Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach. Renew. Sustain. Energy Rev. 2013, 21, 324–330. [Google Scholar] [CrossRef]
- Lin, B.; Du, K. Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach. Energy Econ. 2015, 49, 550–557. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Pan, X.; Pan, X.; Li, C.; Song, J.; Zhang, J. Effects of China’s environmental policy on carbon emission efficiency. Int. J. Clim. Chang. Strateg. Manag. 2018, 11, 326–340. [Google Scholar] [CrossRef]
- Guo, X.; Wang, X.; Wu, X.; Chen, X.; Li, Y. Carbon Emission Efficiency and Low-Carbon Optimization in Shanxi Province under “Dual Carbon” Background. Energies 2022, 15, 2369. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Kim, J. A Critical Review of the Definition and Estimation of Carbon Efficiency. Sustainability 2022, 14, 10123. https://doi.org/10.3390/su141610123
Yang M, Kim J. A Critical Review of the Definition and Estimation of Carbon Efficiency. Sustainability. 2022; 14(16):10123. https://doi.org/10.3390/su141610123
Chicago/Turabian StyleYang, Minyoung, and Jinsoo Kim. 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency" Sustainability 14, no. 16: 10123. https://doi.org/10.3390/su141610123
APA StyleYang, M., & Kim, J. (2022). A Critical Review of the Definition and Estimation of Carbon Efficiency. Sustainability, 14(16), 10123. https://doi.org/10.3390/su141610123