Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa
Abstract
:1. Introduction
1.1. Overview of South African Economy
1.2. Objectives of the Study
2. Literature Review
2.1. Fiscal Decentralization and Environmental Quality Nexus
2.2. Green Technological Innovation (GI) and Environmental Quality Nexus
2.3. Trade Openness and Environmental Quality Nexus
2.4. Institutional Quality and Environmental Quality Nexus
2.5. Summarizing Literature Gaps
3. Theoretical Model and Empirical Methodology
3.1. Theoretical Model
3.2. Variables and Data Sources
3.3. Narayan and Popp’s Structural Break Unit Root Test
3.4. Cointegration Techniques
3.5. ARDL Bounds Testing Approach
3.6. Dynamic Autoregressive Distributed Lag Simulations
3.7. Frequency Domain Causality Test
3.8. Robustness Check
4. Empirical Results and Their Discussion
4.1. Summary Statistics
4.2. Order of Integration of the Respective Variables
4.3. Lag Length Selection Results
4.4. Cointegration Test Results
4.5. Diagnostic Statistics Tests
4.6. Dynamic ARDL Simulations Model Results
4.7. Robustness Check
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations and Potential Future Research Areas
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Direction of Causality | Long-Term | Medium-Term | Short-Term |
---|---|---|---|
ωi=0.05 | ωi=1.50 | ωi=2.50 | |
InGDP → InCO2 | <9.72> | <8.81> | <9.45> |
(0.00) *** | (0.00) *** | (0.03) ** | |
→ InCO2 | <4.53> | <6.31> | <6.01> |
(0.06) * | (0.02) ** | (0.02) ** | |
InFD → InCO2 | <9.76> | <8.06> | <7.35> |
(0.00) *** | (0.00) *** | (0.00) *** | |
InGI → InCO2 | <4.19> | <6.03> | <6.46> |
(0.07) * | (0.03) ** | (0.04) ** | |
InEC → InCO2 | <4.42> | <7.68> | <5.40> |
(0.07) * | (0.00) *** | (0.04) ** | |
InPOP → InCO2 | <5.10> | <6.25> | <7.31> |
(0.08) * | (0.02) ** | (0.00) *** | |
InINS → InCO2 | <5.16> | <7.05> | <7.46> |
(0.00) *** | (0.03) ** | (0.04) ** | |
InOPEN → InCO2 | <5.51> | <8.63> | <8.71> |
(0.03) ** | (0.00) *** | (0.00) *** |
Variables | |||
---|---|---|---|
InFD | −0.320 *** [0.073] | −0.371 *** [0.085] | −0.314 *** [0.031] |
InGDP | 0.228 *** [0.021] | 0.160 [0.517] | 0.136 *** [0.036] |
−0.502 ** | −0.540 ** | −0.517 *** | |
[0.058] | [0.043] | [0.072] | |
InOPEN | 0.153 ** | 0.107 *** | 0.140 |
[0.016] | [0.021] | [0.598] | |
InEC | 0.190 *** | 0.195 ** | 0.189 |
[0.072] | [0.048] | [0.495] | |
InGI | −0.205 * [0.164] | −0.259 ** [0.152] | −0.241 ** [0.160] |
InPOP | 0.791 *** [0.140] | 0.795 ** [0.016] | 0.694 [0.318] |
InINS | −0.162 *** [0.061] | −0.157 *** [0.068] | −0.165 *** [0.071] |
Constant | −0.281 ** [0.013] | −0.263 *** [0.048] | −0.201 ** [0.031] |
Estimations Using Composite Trade Intensity (CTI) as a Proxy of Trade Openness | |||
---|---|---|---|
(1) | (2) | (3) | |
Variables | Coefficient | St. Error | t-value |
Cons | −1.2162 | 1.1524 | −0.70 |
D94 | 0.0253 | 0.1703 | 0.51 |
InFD | −0.2102 *** | 0.1830 | −4.72 |
InFD | −0.2518 ** | 0.8313 | −2.51 |
In GDP | 0.1942 *** | 0.2010 | 3.72 |
InGDP | 0.3121 *** | 0.2151 | 2.74 |
−0.6181 ** | 0.8143 | −2.50 | |
−0.7036 | 0.1416 | −1.06 | |
InOPEN | 0.1225 *** | 0.0442 | 4.05 |
InOPEN | −0.2345 ** | 0.0529 | −2.74 |
InEC | 0.1957 *** | 0.2003 | 3.41 |
InEC | 0.4814 * | 0.1615 | 1.99 |
InPOP | 0.6171 | 0.0804 | 1.14 |
InPOP | 0.2421 ** | 0.2641 | 2.48 |
InGI | −0.4066 *** | 0.4117 | −3.01 |
InGI | −0.2210 | 0.0715 | −0.25 |
InINS | −0.3414 ** | 0.1542 | −2.52 |
InINS | −0.5935 | 0.2270 | −0.10 |
ECT(−1) | −0.8521 *** | 0.1364 | −3.14 |
R-squared | 0.898 | ||
Adj R-squared | 0.860 | ||
N | 59 | ||
P val of F-sta | 0.0000 *** | ||
Simulations | 1000 | ||
Root MSE | 0.081 |
References
- Udeagha, M.C.; Ngepah, N. Disaggregating the environmental effects of renewable and non-renewable energy consumption in South Africa: Fresh evidence from the novel dynamic ARDL simulations approach. Econ. Chang. Restruct. 2022, 55, 1767–1814. [Google Scholar] [CrossRef]
- Wei, Y.; He, W. Can anti-corruption improve the quality of environmental information disclosure? Environ. Sci. Pollut. Res. 2022, 29, 5345–5359. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Younas, M.Z.; Andlib, Z.; Ullah, S.; Sohail, S.; Hafeez, M. Examining the asymmetric effects of Pakistan’s fiscal decentralization on economic growth and environmental quality. Environ. Sci. Pollut. Res. 2021, 28, 5666–5681. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Song, L.; Adebayo, T.S.; Kirikkaleli, D.; Khan, S. Do fiscal decentralization and natural resources rent curb carbon emissions? Evidence from developed countries. Environ. Sci. Pollut. Res. 2021, 28, 49179–49190. [Google Scholar] [CrossRef]
- Cheng, Y.; Awan, U.; Ahmad, S.; Tan, Z. How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth. Technol. Forecast. Soc. Chang. 2021, 162, 120398. [Google Scholar] [CrossRef]
- OECD. Patents in Environment-Related Technologies: Technology Indicators. OECD Environment Statistics. Database. 2021. Available online: https://www.oecd-ilibrary.org/environment/data/patents-in-environment-related-technologies/technology-indicators_e478bcd5-en (accessed on 19 June 2022).
- Abbas, H.S.M.; Xu, X.; Sun, C. Role of foreign direct investment interaction to energy consumption and institutional governance in sustainable GHG emission reduction. Environ. Sci. Pollut. Res. 2021, 28, 56808–56821. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. The asymmetric effect of trade openness on economic growth in South Africa: A nonlinear ARDL approach. Econ. Chang. Restruct. 2021, 54, 491–540. [Google Scholar] [CrossRef]
- Khan, M.K.; Muhammad, B. Impact of financial development and energy consumption on environmental degradation in 184 countries using a dynamic panel model. Environ. Sci. Pollut. Res. 2021, 28, 9542–9557. [Google Scholar] [CrossRef]
- Haldar, A.; Sethi, N. Effect of institutional quality and renewable energy consumption on CO2 emissions—An empirical investigation for developing countries. Environ. Sci. Pollut. Res. 2021, 28, 15485–15503. [Google Scholar] [CrossRef]
- Teng, J.-Z.; Khan, M.K.; Khan, M.I.; Chishti, M.Z.; Khan, M.O. Effect of foreign direct investment on CO2 emission with the role of globalization, institutional quality with pooled mean group panel ARDL. Environ. Sci. Pollut. Res. 2021, 28, 5271–5282. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. 2021. Available online: http://databank.worldbank.org/data/reports.aspx?source=World%20Development%20Indicators (accessed on 19 June 2022).
- Jordan, S.; Philips, A.Q. Cointegration testing and dynamic simulations of autoregressive distributed lag models. Stata J. 2018, 18, 902–923. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Oates, W.E. Fiscal Federalism; Harcourt, Brace and Jovanovich: New York, NY, USA, 1972. [Google Scholar]
- Jain, V.; Purnomo, E.P.; Islam, M.; Mughal, N.; Guerrero, J.W.G.; Ullah, S. Controlling environmental pollution: Dynamic role of fiscal decentralization in CO2 emission in Asian economies. Environ. Sci. Pollut. Res. 2021, 28, 65150–65159. [Google Scholar]
- Khan, Z.A.; Koondhar, M.A.; Khan, I.; Ali, U.; Tianjun, L. Dynamic linkage between industrialization, energy consumption, carbon emission, and agricultural products export of Pakistan: An ARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 43698–43710. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khan, Z.; Rahman, Z.U.; Khattak, S.I.; Khan, Z.U. Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective. Econ. Innovat. New Technol. 2021, 30, 89–109. [Google Scholar] [CrossRef]
- Ding, Q.; Khattak, S.I.; Ahmad, M. Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain. Prod. Consum. 2021, 27, 254–268. [Google Scholar] [CrossRef]
- Lingyan, M.; Zhao, Z.; Malik, H.A.; Razzaq, A.; An, H.; Hassan, M. Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries. Energy Environ. 2022, 33, 752–782. [Google Scholar] [CrossRef]
- Xin, D.; Ahmad, M.; Lei, H.; Khattak, S.I. Do innovation in environmental-related technologies asymmetrically affect carbon dioxide emissions in the United States? Technol. Soc. 2021, 67, 101761. [Google Scholar] [CrossRef]
- Razzaq, A.; Wang, Y.; Chupradit, S.; Suksatan, W.; Shahzad, F. Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework. Technol. Soc. 2021, 66, 101656. [Google Scholar] [CrossRef]
- Xiaosan, Z.; Qingquan, J.; Iqbal, K.S.; Manzoor, A.; Ur, R.Z. Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China. Energy Pol. 2021, 155, 112332. [Google Scholar] [CrossRef]
- Ali, S.; Dogan, E.; Chen, F.; Khan, Z. International trade and environmental performance in top ten-emitters countries: The role of eco-innovation and renewable energy consumption. Sustain. Dev. 2021, 29, 378–387. [Google Scholar] [CrossRef]
- Ji, X.; Umar, M.; Ali, S.; Ali, W.; Tang, K.; Khan, Z. Does fiscal decentralization and eco-innovation promote sustainable environment? A case study of selected fiscally decentralized countries. Sustain. Dev. 2021, 29, 79–88. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Peng, Y.L.; Ma, C.Q.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Pol. 2017, 100, 18–28. [Google Scholar] [CrossRef]
- Sun, Y.; Li, M.; Zhang, M.; Khan, H.S.; Li, J.; Li, Z.; Sun, H.; Zhu, Y.; Anaba, O.A. A study on China’s economic growth, green energy technology, and carbon emissions based on the Kuznets curve (EKC). Environ. Sci. Pollut. Res. 2021, 28, 7200–7211. [Google Scholar] [CrossRef]
- Ibrahim, R.L.; Ajide, K.B. Disaggregated environmental impacts of non-renewable energy and trade openness in selected G-20 countries: The conditioning role of technological innovation. Environ. Sci. Pollut. Res. 2021, 28, 67496–67510. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.L.; Ajide, K.B. Trade facilitation and environmental quality: Empirical evidence from some selected African countries. Environ. Dev. Sustain. 2021, 24, 1282–1312. [Google Scholar] [CrossRef]
- Khan, A.; Muhammad, F.; Chenggang, Y.; Hussain, J.; Bano, S.; Khan, M.A. The impression of technological innovations and natural resources in energy-growth-environment nexus: A new look into BRICS economies. Sci. Total Environ. 2020, 727, 138265. [Google Scholar] [CrossRef]
- Ibrahim, R.L.; Ajide, K.B. Non-renewable and renewable energy consumption, trade openness, and environmental quality in G-7 countries: The conditional role of technological progress. Environ. Sci. Pollut. Res. 2021, 28, 45212–45229. [Google Scholar] [CrossRef]
- Van Tran, N. The environmental effects of trade openness in developing countries: Conflict or cooperation? Environ. Sci. Pollut. Res. 2020, 27, 19783–19797. [Google Scholar] [CrossRef]
- Khan, M.; Ozturk, I. Examining the direct and indirect effects of financial development on CO2 emissions for 88 developing countries. J. Environ. Manag. 2021, 293, 112812. [Google Scholar] [CrossRef]
- Ali, S.; Yusop, Z.; Kaliappan, S.R.; Chin, L. Dynamic common correlated effects of trade openness, FDI, and institutional performance on environmental quality: Evidence from OIC countries. Environ. Sci. Pollut. Res. 2020, 27, 11671–11682. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, M. The environmental–social interface of sustainable development: Capabilities, social capital, institutions. Ecol. Econ. 2004, 49, 199–214. [Google Scholar] [CrossRef]
- Christoforidis, T.; Katrakilidis, C. The dynamic role of institutional quality, renewable and non-renewable energy on the ecological footprint of OECD countries: Do institutions and renewables function as leverage points for environmental sustainability? Environ. Sci. Pollut. Res. 2021, 28, 53888–53907. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.A.; Canh, N.P.; Le, T.N.L. Environmental degradation & role of financialisation, economic development, industrialisation and trade liberalisation. J. Environ. Manag. 2021, 277, 111471. [Google Scholar]
- Pham, N.M.; Huynh, T.L.D.; Nasir, M.A. Environmental consequences of population, affluence and technological progress for European countries: A Malthusian view. J. Environ. Manag. 2020, 260, 110143. [Google Scholar] [CrossRef] [PubMed]
- York, R.; Rosa, E.A.; Dieta, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Wang, P.; Wu, W.; Zhu, B.; Wei, Y. Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Appl. Energy 2013, 106, 65–71. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y. Panel estimation for urbanization, energy consumption, and CO2 emissions: A regional analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Yeh, J.; Liao, C. Impact of population and economic growth on carbon emissions in Taiwan using an analytic tool STIRPAT. Sustain. Environ. Res. 2017, 27, 41–48. [Google Scholar]
- Destek, M.A.; Manga, M. Technological innovation, financialization, and ecological footprint: Evidence from BEM economies. Environ. Sci. Pollut. Res. 2021, 28, 21991–22001. [Google Scholar] [CrossRef]
- Squalli, J.; Wilson, K. A new measure of trade openness. World Econ. 2011, 34, 1745–1770. [Google Scholar] [CrossRef]
- Dauda, L.; Long, X.; Mensah, C.N.; Salman, M.; Boamah, K.B.; Ampon-Wireko, S.; Dogbe, C.S.K. Innovation, trade openness and CO2 emissions in selected countries in Africa. J. Clean. Prod. 2021, 281, 125143. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Breitenbach, M.C. Estimating the trade-environmental quality relationship in SADC with a dynamic heterogeneous panel model. Afr. Rev. Econ. Financ. 2021, 13, 113–165. [Google Scholar]
- Khan, M.; Rana, A.T. Institutional quality and CO2 emission–output relations: The case of Asian countries. J. Environ. Manag. 2021, 279, 111569. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, Z.; Yang, X.; Hussain, N.; Sinha, A. Financial development and environmental degradation: Do human capital and institutional quality make a difference? Gondwana Res. 2021, 105, 299–310. [Google Scholar] [CrossRef]
- Azam, M.; Liu, L.; Ahmad, N. Impact of institutional quality on environment and energy consumption: Evidence from developing world. Environ. Develop. Sustain. 2021, 23, 1646–1667. [Google Scholar] [CrossRef]
- Hu, M.; Chen, S.; Wang, Y.; Xia, B.; Wang, S.; Huang, G. Identifying the key sectors for regional energy, water and carbon footprints from production-, consumption-and network-based perspectives. Sci. Total Environ. 2021, 764, 142821. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Le, H.P. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Does trade openness mitigate the environmental degradation in South Africa? Environ. Sci. Pollut. Res. 2022, 29, 19352–19377. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N.N. A step Towards Environmental Mitigation in South Africa: Does Trade Liberalisation Really Matter? Fresh Evidence From A Novel Dynamic ARDL Simulations Approach. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Weili, L.; Khan, H.; Han, L. The impact of information and communication technology, financial development, and energy consumption on carbon dioxide emission: Evidence from the Belt and Road countries. Environ. Sci. Pollut. Res. 2022, 29, 27703–27718. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Dolado, J.; Mestre, R. Error-correction mechanism tests for cointegration in a single-equation framework. J. Time Ser. Anal. 1998, 19, 267–283. [Google Scholar] [CrossRef]
- Boswijk, H.P. Testing for an unstable root in conditional and structural error correction models. J. Econom. 1994, 63, 37–60. [Google Scholar] [CrossRef]
- Johansen, S. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econom. J. Econom. Soc. 1991, 59, 1551–1580. [Google Scholar] [CrossRef]
- Maki, D. Tests for cointegration allowing for an unknown number of breaks. Econ. Model. 2012, 29, 2011–2015. [Google Scholar] [CrossRef]
- Murthy, V.N.; Ketenci, N. Is technology still a major driver of health expenditure in the United States? Evidence from cointegration analysis with multiple structural breaks. Int. J. Health Econ. Manag. 2017, 17, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Hatemi-J, A. Tests for cointegration with two unknown regime shifts with an application to financial market integration. Empir. Econ. 2008, 35, 497–505. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Breitung, J.; Candelon, B. Testing for short-and long-run causality: A frequency-domain approach. J. Econom. 2006, 132, 363–378. [Google Scholar] [CrossRef]
- Park, J.Y. Canonical cointegrating regressions. Econom. J. Econom. Soc. 1992, 60, 119–143. [Google Scholar] [CrossRef]
- Phillips, P.C.; Hansen, B.E. Statistical inference in instrumental variables regression with I (1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Saikkonen, P. Estimation and testing of cointegrated systems by an autoregressive approximation. Econom. Theory 1992, 8, 1–27. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. A simple estimator of cointegrating vectors in higher order integrated systems. Econom. J. Econom. Soc. 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Wu, J.; Bahmani-Oskooee, M.; Chang, T. Revisiting purchasing power parity in G6 countries: An application of smooth time-varying cointegration approach. Empirica 2018, 45, 187–196. [Google Scholar] [CrossRef]
- Yildirim, D.; Orman, E.E. The Feldstein–Horioka puzzle in the presence of structural breaks: Evidence from South Africa. J. Asia Pac. Econ. 2018, 23, 374–392. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Muchapondwa, E. Investigating the moderating role of economic policy uncertainty in environmental Kuznets curve for South Africa: Evidence from the novel dynamic ARDL simulations approach. Environ. Sci. Pollut. Res. 2022, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Kripfganz, S.; Schneider, D.C. ARDL: Estimating Autoregressive Distributed Lag and Equilibrium Correction Models. 2018. Available online: www.stata.com/meeting/uk18/slides/uk18_Kripfganz.pdf (accessed on 12 July 2019).
- Alharthi, M.; Dogan, E.; Taskin, D. Analysis of CO2 emissions and energy consumption by sources in MENA countries: Evidence from quantile regressions. Environ. Sci. Pollut. Res. 2021, 28, 38901–38908. [Google Scholar] [CrossRef]
- Bibi, F.; Jamil, M. Testing environment Kuznets curve (EKC) hypothesis in different regions. Environ. Sci. Pollut. Res. 2021, 28, 13581–13594. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Revisiting trade and environment nexus in South Africa: Fresh evidence from new measure. Environ. Sci. Pollut. Res. 2019, 26, 29283–29306. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Trade liberalization and the geography of industries in South Africa: Fresh evidence from a new measure. Int. J. Urban Sci. 2020, 24, 354–396. [Google Scholar] [CrossRef]
- Isik, C.; Ongan, S.; Ozdemir, D.; Ahmad, M.; Irfan, M.; Alvarado, R.; Ongan, A. The increases and decreases of the environment Kuznets curve (EKC) for 8 OECD countries. Environ. Sci. Pollut. Res. 2021, 28, 28535–28543. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, X.; Li, W. Agricultural chemicals and sustainable development: The agricultural environment Kuznets curve based on spatial panel model. Environ. Sci. Pollut. Res. 2021, 28, 51453–51470. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yesilada, F.; Andlib, Z.; Ajaz, T. The role of eco-innovation and globalization towards carbon neutrality in the USA. J. Environ. Manag. 2021, 299, 113568. [Google Scholar] [CrossRef]
- Naqvi, S.A.A.; Shah, S.A.R.; Anwar, S.; Raza, H. Renewable energy, economic development, and ecological footprint nexus: Fresh evidence of renewable energy environment Kuznets curve (RKC) from income groups. Environ. Sci. Pollut. Res. 2021, 28, 2031–2051. [Google Scholar] [CrossRef]
- Murshed, M.; Alam, R.; Ansarin, A. The environmental Kuznets curve hypothesis for Bangladesh: The importance of natural gas, liquefied petroleum gas, and hydropower consumption. Environ. Sci. Pollut. Res. 2021, 28, 17208–17227. [Google Scholar] [CrossRef] [PubMed]
- Minlah, M.K.; Zhang, X. Testing for the existence of the Environmental Kuznets Curve (EKC) for CO2 emissions in Ghana: Evidence from the bootstrap rolling window Granger causality test. Environ. Sci. Pollut. Res. 2021, 28, 2119–2131. [Google Scholar] [CrossRef]
- Mensah, C.N.; Long, X.; Boamah, K.B.; Bediako, I.A.; Dauda, L.; Salman, M. The effect of innovation on CO2 emissions of OCED countries from 1990 to 2014. Environ. Sci. Pollut. Res. 2018, 25, 29678–29698. [Google Scholar] [CrossRef]
- Ngepah, N.; Udeagha, M.C. African regional trade agreements and intra-African trade. J. Econ. Integr. 2018, 33, 1176–1199. [Google Scholar] [CrossRef]
- Sohag, K.; Al Mamun, M.; Uddin, G.S.; Ahmed, A.M. Sectoral output, energy use, and CO2 emission in middle-income countries. Environ. Sci. Pollut. Res. 2017, 24, 9754–9764. [Google Scholar] [CrossRef]
- Tedino, V. Environmental Impact of Economic Growth in BRICS. Undergraduate Honor’s Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2017. [Google Scholar]
- Xia, S.; You, D.; Tang, Z.; Yang, B. Analysis of the Spatial Effect of Fiscal Decentralization and Environmental Decentralization on Carbon Emissions under the Pressure of Officials’ Promotion. Energies 2021, 14, 1878. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does fiscal decentralization improve energy and environmental performance? New perspective on vertical fiscal imbalance. Appl. Energy 2021, 302, 117495. [Google Scholar] [CrossRef]
- Lopez, R. The environment as a factor of production: The effects of economic growth and trade liberalization. J. Environ. Econ. Manag. 1994, 27, 163–184. [Google Scholar] [CrossRef]
- Taylor, M. Unbundling the pollution haven hypothesis. Adv. Econ. Anal. Pol. 2004, 4, 8. [Google Scholar] [CrossRef]
- Aydin, M.; Turan, Y.E. The influence of financial openness, trade openness, and energy intensity on ecological footprint: Revisiting the environmental Kuznets curve hypothesis for BRICS countries. Environ. Sci. Pollut. Res. 2020, 27, 43233–43245. [Google Scholar] [CrossRef]
- Ngepah, N.; Udeagha, M.C. Supplementary trade benefits of multi-memberships in African regional trade agreements. J. Afr. Bus. 2019, 20, 505–524. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Kirikkaleli, D.; Akinsola, G.D.; Mwamba, M.N. Can CO2 emissions and energy consumption determine the economic performance of South Korea? A time series analysis. Environ. Sci. Pollut. Res. 2021, 28, 38969–38984. [Google Scholar] [CrossRef]
- Aslan, A.; Altinoz, B.; Özsolak, B. The nexus between economic growth, tourism development, energy consumption, and CO2 emissions in Mediterranean countries. Environ. Sci. Pollut. Res. 2021, 28, 3243–3252. [Google Scholar] [CrossRef] [PubMed]
- Doğanlar, M.; Mike, F.; Kızılkaya, O.; Karlılar, S. Testing the long-run effects of economic growth, financial development and energy consumption on CO2 emissions in Turkey: New evidence from RALS cointegration test. Environ. Sci. Pollut. Res. 2021, 28, 32554–32563. [Google Scholar] [CrossRef]
- Hongxing, Y.; Abban, O.J.; Boadi, A.D.; Ankomah-Asare, E.T. Exploring the relationship between economic growth, energy consumption, urbanization, trade, and CO2 emissions: A PMG-ARDL panel data analysis on regional classification along 81 BRI economies. Environ. Sci. Pollut. Res. 2021, 28, 66366–66388. [Google Scholar] [CrossRef]
- Hu, Z.; Tang, L. Exploring the Relationship between Urbanization and Residential CO2 Emissions in China: A PTR Approach. 2013. Available online: http://mpra.ub.uni-muenchen.de//55379/ (accessed on 2 April 2019).
- Ponce, P.; Khan, S.A.R. A causal link between renewable energy, energy efficiency, property rights, and CO2 emissions in developed countries: A road map for environmental sustainability. Environ. Sci. Pollut. Res. 2021, 28, 37804–37817. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S.; Dhakal, S. Impact of urbanization on national residential energy use and CO2 emissions: Evidence from low-, middle-, & high-income countries. IDEC DP2 Ser. 2012, 2, 1–35. [Google Scholar]
- Shi, A. Population Growth and Global CO2 Emission. In Proceeding of the IUSSP Conference; 2001. Available online: http://www.iussp.org/Brazil2001/s00/S09_04_Shi.pdf (accessed on 15 May 2016).
- Sohag, K.; Begum, R.A.; Abdullah, S.M.S.; Jaafar, M. Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia. Energy 2015, 90, 1497–1507. [Google Scholar] [CrossRef]
- Ibrahim, M.; Vo, X.V. Exploring the relationships among innovation, financial sector development and environmental pollution in selected industrialized countries. J. Environ. Manag. 2021, 284, 112057. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Hammar, N. Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: Fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environ. Sci. Pollut. Res. 2021, 28, 15519–15536. [Google Scholar] [CrossRef]
- Ahmad, M.; Khattak, S.I.; Khan, A.; Rahman, Z.U. Innovation, foreign direct investment (FDI), and the energy–pollution–growth nexus in OECD region: A simultaneous equation modeling approach. Environ. Ecol. Stat. 2020, 27, 203–232. [Google Scholar] [CrossRef]
- Al Mamun, M.; Sohag, K.; Mia, M.A.H.; Uddin, G.S.; Ozturk, I. Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth. Renew. Sustain. Energy Rev. 2014, 38, 1–11. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Pesaran, B. Working with Microfit 4.0; Camfit Data Ltd.: Cambridge, UK, 1997. [Google Scholar]
Variable | Description | Units | Sources |
---|---|---|---|
CO2 | Carbon emissions | Metric tons | WDI |
FD | Fiscal decentralization as measured by the subnational expenditure as ratio of total federal expenditure | Percentage | IMF |
GDP | Gross domestic product | Constant USD, 2015, | WDI |
GI | Green technological innovation | % of all environment-related technologies. | OECD |
POP | Population size as measured by the number of individuals per square kilometer of the land area. | (million) | WDI |
INS | Institutional quality as measured by the Principal Component Analysis (PCA) of six indictors, namely governmental integrity, regularity quality, law enforcement effectiveness, government efforts, anti-corruption efforts, democracy, and good governance. | PCA index | World Worldwide Governance Indicators |
EC | Energy consumption, million tons of oil equivalent. | Metric tons | BP Statistical Review of World Energy |
OPEN | Trade openness computed as composite trade share, introduced by Squalli and Wilson (2011), capturing trade effect. | % of GDP | WDI |
Variables | Mean | Median | Maximum | Minimum | Std. Dev | Skewness | Kurtosis | J–B Stat | Probability |
---|---|---|---|---|---|---|---|---|---|
CO2 | 0.264 | 0.238 | 0.477 | 0.084 | 0.120 | 0.217 | 1.652 | 4.682 | 0.196 |
GDP | 7.706 | 7.959 | 8.984 | 6.073 | 0.843 | −0.511 | 2.156 | 4.102 | 0.129 |
60.316 | 63.754 | 80.717 | 36.880 | 12.663 | −0.387 | 2.082 | 3.422 | 0.181 | |
FD | 5.716 | 5.014 | 10.625 | 2.814 | 0.150 | 0.714 | 2.615 | 3.014 | 0.148 |
OPEN | 6.060 | 6.512 | 7.665 | 2.745 | 1.329 | 0.636 | 2.077 | 5.757 | 0.156 |
EC | 4.220 | 4.422 | 4.840 | 3.177 | 0.527 | −0.558 | 1.921 | 5.621 | 0.160 |
POP | 10.105 | 13.286 | 14.659 | 11.913 | 0.738 | 0.056 | 2.463 | 0.702 | 0.704 |
INS | 3.513 | 3.580 | 3.813 | 3.258 | 0.161 | −0.215 | 1.697 | 4.474 | 0.107 |
GI | 9.360 | 9.255 | 10.545 | 8.210 | 0.766 | 0.082 | 1.634 | 4.499 | 0.105 |
Variable | Dickey–Fuller GLS | Phillips–Perron | Augmented Dickey–Fuller | Kwiatkowski–Phillips–Schmidt–Shin | Narayan and Popp’s (2010) Unit Root Test | |||
---|---|---|---|---|---|---|---|---|
(DF-GLS) | (PP) | (ADF) | (KPSS) | Model 1 | Model 2 | |||
Level | Test-Statistics value | Break-Year | ADF-stat | Break-Year | ADF-stat | |||
InCO2 | −0.570 | −0.464 | −1.152 | 0.966 | 1982:1985 | −3.132 | 1987:1994 | −8.160 *** |
InFD | −0.166 | −0.242 | −1.136 | 0.331 *** | 1985:2007 | −1.504 | 2007:2013 | −7.204 *** |
InGDP | −0.116 ** | −0.079 | −1.308 | 0.833 *** | 1979:1988 | −2.914 | 1982:1990 | −7.601 *** |
−0.112 * | −0.076 | −1.268 | 0.848 *** | 1979:1990 | −1.939 | 1982:1994 | −6.791 *** | |
InOPEN | −0.072 | −0.082 | −1.335 | 1.080 * | 1996:2001 | −3.053 | 2003:2009 | −7.318 *** |
InEC | −0.011 | −0.014 | −0.366 | 1.300 *** | 1982:1989 | −4.372 ** | 1985:1991 | −8.521 *** |
InPOP | −0.032 * | −0.001 | −0.012 | 0.640 | 2001:2006 | −2.021 | 2004:2010 | −8.362 *** |
InGI | −0.254 *** | −0.284 *** | −2.999 | 0.255 *** | 1995:2000 | −4.318 | 2008:2011 | −7.821 *** |
InINS | −0.046 | −0.071 * | −1.718 | 1.060 ** | 1972:1985 | −3.815 | 1982:1991 | −7.521 *** |
First difference | Critical value (1%, 5%, and 10%) | |||||||
InCO2 | −0.995 *** | −0.996 *** | −7.176 *** | 0.705 *** | 1999:2005 | −4.801 ** | 1980:1991 | −5.832 *** |
InFD | −0.731 *** | −0.514 *** | −5.841 *** | 0.504 *** | 1974:2003 | −5.815 ** | 2001:2008 | −8.605 *** |
InGDP | −0.695 *** | −0.707 *** | −5.319 *** | 0.585 *** | 1983:1997 | −5.831 *** | 1985:1995 | −6.831 *** |
−0.694 *** | −0.707 *** | −5.316 *** | 0.589 *** | 1991:2000 | −8.531 *** | 1987:1996 | −5.893 *** | |
InOPEN | −0.935 *** | −0.938 *** | −6.699 *** | 0.626 *** | 1996:2004 | −6.842 ** | 2001:2007 | −8.942 *** |
InEC | −1.105 *** | −1.121 *** | −8.142 *** | 0.586 *** | 1985:1993 | −5.921 *** | 1989:1997 | −7.942 *** |
InPOP | −0.207 ** | −0.209 ** | −6.443*** | 0.609 *** | 2005:2008 | −6.831 *** | 2001:2008 | −6.973 *** |
InGI | −1.023 *** | −1.034 *** | −7.473 *** | 0.424 *** | 1999:2003 | −4.841 ** | 2006:2010 | −5.983 *** |
InINS | −0.799 *** | −0.801 *** | −5.878 *** | 0.431 *** | 1975:1990 | −7.742 *** | 1988:1992 | −7.892 *** |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | 152.453 | NA | 3.2 × 10−12 | −6.594 | −6.331 | −6.493 |
1 | 517.095 | 857.28 | 1.5 × 10−18 | −21.195 | −19.094 * | −20.390 * |
2 | 531.093 | 108 | 1.4 × 10−18 | −21.388 | −17.448 | −19.877 |
3 | 699.755 | 117.32 | 1.2 × 10−18 * | −21.759 | −15.981 | −19.544 |
4 | 694.113 | 128.72 * | 1.3 × 10−18 | −22.350 * | −14.733 | −19.430 |
Test Statistics | Value | K | ||||
---|---|---|---|---|---|---|
F-statistics | 15.052 | 8 | No level relationship | Relationship exists | ||
t-statistics | −8.752 | |||||
Kripfganz and Schneider (2018) critical values and approximate p-values | ||||||
Significance | F-statistics | t-statistics | p-value F | |||
1 (0) | 1 (1) | 1 (0) | 1 (1) | 1 (0) | 1 (1) | |
10% | 2.94 | 3.04 | −2.57 | −4.04 | 0.000 *** | 0.000 *** |
5% | 2.37 | 3.43 | −2.86 | −4.38 | p-value t | |
1% | 3.04 | 4.02 | −3.43 | −4.99 | 0.000 *** | 0.002 ** |
Bayer–Hanck Cointegration (Without Structural Breaks) | ||
---|---|---|
Test | Statistic | Critical value at 5% |
Engle–Granger–Johansen (EG–J) | 51.216 *** | 11.810 |
Engle–Granger–Banerjee–Boswijk (EG–J–Ba–Bo) | 55.159 *** | 20.814 |
Maki Cointegration (With Structural Breaks) | ||
Model | Test Statistics | Structural Breaks |
Level Shifts with Trend | −7.153 * | 1981–1994–2008 |
Regime Shifts | −12.501 *** | 1980–1994–2008 |
Regime Shifts and Trend | −10.160 *** | 1984–1993–2009 |
Diagnostic Statistics Tests | Results | |
---|---|---|
Breusch–Godfrey LM test | 0.3812 | No problem of serial correlations |
Breusch–Pagan–Godfrey test | 0.2610 | No problem of heteroscedasticity |
ARCH test | 0.6837 | No problem of heteroscedasticity |
Ramsey RESET test | 0.5183 | Model is specified correctly |
Jarque–Bera Test | 0.2715 | Estimated residuals are normal |
Estimations Using Composite Trade Share (CTS) as a Proxy of Trade Openness | Estimations Using Traditional Trade Share (TS) as a Proxy of Trade Openness | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Variables | Coefficient | St. Error | t-Value | Coefficient | St. Error | t-Value |
Cons | −1.216 | 1.152 | −0.70 | −1.203 | 1.170 | −0.51 |
InFD | −0.215 *** | 0.163 | −5.70 | −0.705 ** | 0.173 | −2.45 |
InFD | −0.301 ** | 0.804 | −2.46 | −0.583 *** | 0.480 | −4.74 |
InGDP | 0.204 *** | 0.171 | 4.72 | 0.173 ** | 0.160 | 2.40 |
InGDP | 0.304 *** | 0.208 | 2.83 | 0.410 ** | 0.130 | 2.20 |
−0.617 ** | 0.817 | −2.41 | −0.604 *** | 0.507 | −3.50 | |
−0.705 | 0.143 | −1.63 | −0.510 | 0.131 | −1.01 | |
InOPEN | 0.171 *** | 0.041 | 5.01 | 0.981 ** | 0.610 | 2.51 |
InOPEN | −0.141 ** | 0.051 | −2.64 | −0.403 * | 0.130 | −1.99 |
InEC | 0.195 *** | 0.160 | 3.13 | 0.240 ** | 0.126 | 2.49 |
InEC | 0.511 * | 0.161 | 1.99 | 0.363 ** | 0.102 | 2.48 |
InPOP | 1.617 *** | 0.020 | 3.14 | 1.910 | 0.071 | 1.05 |
InPOP | 1.242 * | 0.264 | 1.99 | 1.170 *** | 0.504 | 3.81 |
InGI | −0.406 *** | 0.411 | −3.01 | 0.801 | 0.133 | 1.40 |
InGI | −0.221 | 0.071 | −0.25 | 0.301 | 0.052 | 0.59 |
InINS | −0.341 ** | 0.154 | −2.52 | −0.440 * | 0.140 | −1.98 |
InINS | −0.593 | 0.227 | −0.10 | −0.410 | 0.211 | −0.25 |
ECT(−1) | −0.852 *** | 0.136 | −3.14 | −0.714 ** | 0.148 | −2.55 |
R-squared | 0.898 | 0.510 | ||||
Adj R-squared | 0.860 | 0.490 | ||||
N | 59 | 59 | ||||
P val of F-sta | 0.0000 *** | 0.0000 *** | ||||
Simulations | 1000 | |||||
Root MSE | 0.081 | 0.271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udeagha, M.C.; Ngepah, N. Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa. Sustainability 2022, 14, 10268. https://doi.org/10.3390/su141610268
Udeagha MC, Ngepah N. Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa. Sustainability. 2022; 14(16):10268. https://doi.org/10.3390/su141610268
Chicago/Turabian StyleUdeagha, Maxwell Chukwudi, and Nicholas Ngepah. 2022. "Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa" Sustainability 14, no. 16: 10268. https://doi.org/10.3390/su141610268
APA StyleUdeagha, M. C., & Ngepah, N. (2022). Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa. Sustainability, 14(16), 10268. https://doi.org/10.3390/su141610268