A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical and Chemical Characterization
2.3. Methodology for the Assessment of Hazardous Properties
2.3.1. Experimental Tests
3. Results and Discussion
3.1. Physical and Chemical Properties and Experimental Test Analysis
3.2. Evaluation of the Hazardous Properties and Classification of Incineration Bottom Ash
3.2.1. HP 1 “Explosive”, HP 2 “Oxidizing”, and HP 3 “Flammable”
3.2.2. HP 4 “Irritant: Skin Irritation and Eye Damage” and HP 8 “Corrosive”
3.2.3. HP 5 “Specific Target Organ Toxicity (STOT)/Aspiration Toxicity”
3.2.4. HP 6 “Acute Toxicity”
3.2.5. HP 7 “Carcinogenic”
3.2.6. HP 9 “Infectious”
3.2.7. HP 10 “Toxic for Reproduction”
3.2.8. HP 11 “Mutagenic”
3.2.9. HP 12 “Release of an Acute Toxic Gas”
3.2.10. HP 13 “Sensitizing”
3.2.11. HP 14 “Ecotoxic”
3.2.12. HP 15 “Waste Capable of Exhibiting a Hazardous Property Listed above Not Directly Displayed by the Original Waste”
3.2.13. Classification of Incineration Bottom Ash Samples
3.3. Prospects for Classification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat Generation of Waste by Waste Category, Hazardousness and NACE Rev. 2 Activity. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=env_wasgen (accessed on 1 May 2022).
- Hennebert, P. Hazard classification of waste: Review of available practical methods and tools. Detritus 2019, 7, 13–28. [Google Scholar] [CrossRef]
- Hennebert, P. Proposal of concentration limits for determining the hazard property HP 14 for waste using ecotoxicological tests. Waste Manag. 2018, 74, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Pandard, P.; Devillers, J.; Charissou, A.M.; Poulsen, V.; Jourdain, M.J.; Férard, J.F.; Grand, C.; Bispo, A. Selecting a battery of bioassays for ecotoxicological characterization of wastes. Sci. Total Environ. 2006, 363, 114–125. [Google Scholar] [CrossRef]
- BIO by Deloitte. Study to Assess the Impacts of Different Classification Approaches for Hazard Property “HP 14” on Selected Waste Streams—Final Report. Prepared for the European Commission (DG ENV), in Collaboration with INERIS. 2015. Available online: https://op.europa.eu/en/publication-detail/-/publication/389b10f0-98bf-11e5-983e-01aa75ed71a1 (accessed on 22 July 2022).
- Pandard, P.; Römbke, J. Proposal for a “Harmonized” strategy for the assessment of the HP 14 property. Integr. Environ. Assess. Manag. 2013, 9, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Wilke, B.M.; Riepert, F.; Koch, C.; Kühne, T. Ecotoxicological characterization of hazardous wastes. Ecotoxicol. Environ. Saf. 2008, 70, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Römbke, J.; Moser, T.; Moser, H. Ecotoxicological characterisation of 12 incineration ashes using 6 laboratory tests. Waste Manag. 2009, 29, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.C.C.; Figueiredo, C.F.; Alendouro, M.S.; Ferro, M.C.; Davim, E.J.R.; Fernandes, M.H.V. Characterization of MSWI bottom ashes towards utilization as glass raw material. Waste Manag. 2008, 28, 1119–1125. [Google Scholar] [CrossRef]
- Stiernström, S.; Wik, O.; Bendz, D. Evaluation of frameworks for ecotoxicological hazard classification of waste. Waste Manag. 2016, 58, 14–24. [Google Scholar] [CrossRef]
- CEWEP Confederation of European Waste-to-Energy Plants. Bottom Ash Factsheet. Available online: http://www.cewep.eu/2017/09/08/bottom-ash-factsheet/ (accessed on 11 March 2021).
- Dou, X.; Ren, F.; Nguyen, M.Q.; Ahamed, A.; Yin, K.; Chan, W.P.; Chang, V.W.C. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev. 2017, 79, 24–38. [Google Scholar] [CrossRef]
- Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M.J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J.M.; Dahlbo, H.; et al. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag. 2020, 102, 868–883. [Google Scholar] [CrossRef]
- Maldonado-Alameda, A.; Giro-Paloma, J.; Svobodova-Sedlackova, A.; Formosa, J.; Chimenos, J.M. Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. J. Clean. Prod. 2020, 242, 118443. [Google Scholar] [CrossRef]
- Chimenos, J.M.; Fernández, A.I.; Nadal, R.; Espiell, F. Short-term natural weathering of MSWI bottom ash. J. Hazard. Mater. 2000, 79, 287–299. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Y.; He, D.; Yang, E.H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Chimenos, J.M.; Segarra, M.; Fernández, M.A.; Espiell, F. Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard. Mater. 1999, 64, 211–222. [Google Scholar] [CrossRef]
- Born, J.-P.; van Brecht, A. Recycling Potentials of MSWI Bottom Ash. Available online: https://www.cewep.eu/wp-content/uploads/2017/10/1318_avb_and_jp_born_2014_cewep_conference_bottom_ash_reuse.pdf (accessed on 27 January 2022).
- Lynn, C.J.; Ghataora, G.S.; Dhir Obe, R.K. Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. Int. J. Pavement Res. Technol. 2017, 10, 185–201. [Google Scholar] [CrossRef]
- Toraldo, E.; Saponaro, S. A road pavement full-scale test track containing stabilized bottom ashes. Environ. Technol. 2015, 36, 1114–1122. [Google Scholar] [CrossRef]
- Joseph, A.M.; Snellings, R.; van den Heede, P.; Matthys, S.; de Belie, N. The use of municipal solid waste incineration ash in various building materials: A Belgian point of view. Materials 2018, 11, 141. [Google Scholar] [CrossRef]
- Ginés, O.; Chimenos, J.M.; Vizcarro, A.; Formosa, J.; Rosell, J.R. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. J. Hazard. Mater. 2009, 169, 643–650. [Google Scholar] [CrossRef]
- Grosso, M.; Biganzoli, L.; RIgamonti, L. Italian experience and research on bottom ash recovery. In Proceedings of the “From Ashes to Metals”, CEWEP–EAA Seminar, Copenhagen, Denmark, 5–6 September 2011. [Google Scholar]
- Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resour. Conserv. Recycl. 2019, 140, 23–35. [Google Scholar] [CrossRef]
- Verbinnen, B.; Billen, P.; van Caneghem, J.; Vandecasteele, C. Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies. Waste Biomass Valorization 2017, 8, 1453–1466. [Google Scholar] [CrossRef]
- Andreola, F.; Barbieri, L.; Lancellotti, I.; Pozzi, P. Recycling industrial waste in brick manufacture. Part 1. Mater. Constr. 2005, 55, 5–16. [Google Scholar] [CrossRef]
- Andreola, F.; Barbieri, L.; Hreglich, S.; Lancellotti, I.; Morselli, L.; Passarini, F.; Vassura, I. Reuse of incinerator bottom and fly ashes to obtain glassy materials. J. Hazard. Mater. 2008, 153, 1270–1274. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Corradi, A.; Lancellotti, I.; Manfredini, T. Use of municipal incinerator bottom ash as sintering promoter in industrial ceramics. Waste Manag. 2002, 22, 859–863. [Google Scholar] [CrossRef]
- Monteiro, R.C.C.; Alendouro, S.J.G.; Figueiredo, F.M.L.; Ferro, M.C.; Fernandes, M.H.V. Development and properties of a glass made from MSWI bottom ash. J. Non. Cryst. Solids 2006, 352, 130–135. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review. Waste Manag. 2017, 68, 207–220. [Google Scholar] [CrossRef]
- Lam, C.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of incineration MSW ash: A review. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Lau, R. Conversion of municipal solid waste incineration bottom ash to sorbent material for pollutants removal from water. J. Taiwan Inst. Chem. Eng. 2016, 60, 275–286. [Google Scholar] [CrossRef]
- Shim, Y.; Kim, Y.; Kong, S.; Rhee, S.; Lee, W. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manag. 2003, 23, 851–857. [Google Scholar] [CrossRef]
- Vincevica-gaile, Z.; Teppand, T.; Kriipsalu, M.; Krievans, M.; Jani, Y.; Klavins, M.; Hendroko Setyobudi, R.; Grinfelde, I.; Rudovica, V.; Tamm, T.; et al. Towards Sustainable Soil Stabilization in Peatlands: Secondary Raw Materials as an Alternative. Sustainability 2021, 13, 6726. [Google Scholar] [CrossRef]
- Neuwahl, F.; Cusano, G.; Benavides, J.G.; Holbrook, S.; Serge, R. Best Available Techniques (BAT) Reference Document for Waste Incineration. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention); Science for Policy Report by the Joint Research Centre, European Commission: Luxembourg, 2019. [Google Scholar]
- Daphtoxkit FTM Crustacean Toxicity Screening Testfor Freshwater. Standard Operational Procedure. 1996. Available online: https://www.microbiotests.com/wp-content/uploads/2019/07/daphnia-toxicity-test_daphtoxkit-f_standard-operating-procedure.pdf (accessed on 8 June 2022).
- Bayuseno, A.P.; Schmahl, W.W. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 2010, 30, 1509–1520. [Google Scholar] [CrossRef]
- European Commission Technical Working Group on Waste Incineration. Integrated Pollution Prevention and Control Reference Document on the Best Available Techniques for Waste Incineration; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Jensen, P.A.; Dam-Johansen, K.; Frandsen, F.; Bøjer, M.; Kløft, H.; Nesterov, I.; Hyks, J.; Astrup, T.; Lundtorp, K.; Madsen, O.H. Improved Electrical Efficiency and Bottom Ash Quality on Waste Combustion Plants. 2010. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/5150732/Final+resume+report.pdf (accessed on 22 July 2022).
- Klymko, T.; Dijkstra, J.J.; van Zomeren, A. Guidance Document on Hazard Classification of MSWI Bottom Ash. ECN Report; ECN: Petten, The Netherlands, 2017. [Google Scholar]
- Astrup, T.; Muntoni, A.; Polettini, A.; Pomi, R.; van Gerven, T.; van Zomeren, A. Treatment and reuse of incineration bottom ash. In Environmental Materials and Waste: Resource Recovery and Pollution Prevention; Prasad, M.N.V., Shih, K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 607–645. ISBN 9780128039069. [Google Scholar]
- Bunge, R. Recovery of metals from waste incineration bottom ash. In Treatment and Utilisation of Waste Incineration Bottom Ash; Holm, O., Thome-Kozmiensky, E., Eds.; UMTEC: Neuruppin, Germany, 2015; pp. 63–143. [Google Scholar]
- Forteza, R.; Far, M.; Seguí, C.; Cerdá, V. Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manag. 2004, 24, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Blasenbauer, D.; Aschenbrenner, P.; Fellner, J. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Manag. 2019, 95, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Hyks, J.; Astrup, T.; Christensen, T.H. Leaching from MSWI bottom ash: Evaluation of non-equilibrium in column percolation experiments. Waste Manag. 2009, 29, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, D.; Molin, C.; Hupa, M. Thermal treatment of solid residues from WtE units: A review. Waste Manag. 2015, 37, 82–94. [Google Scholar] [CrossRef]
- Rambaldi, E.; Esposito, L.; Andreola, F.; Barbieri, L.; Lancellotti, I.; Vassura, I. The recycling of MSWI bottom ash in silicate based ceramic. Ceram. Int. 2010, 36, 2469–2476. [Google Scholar] [CrossRef]
- Tang, J.; Steenari, B.M. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Manag. 2016, 48, 315–322. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Li, A. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite. Waste Manag. 2015, 38, 185–193. [Google Scholar] [CrossRef]
- Chandler, A.J.; Eighmy, T.T.; Hartlén, J.; Hjelmar, O.; Kosson, D.S.; Sawell, S.E.; van der Sloot, H.A.; Vehlow, J. Municipal Solid Waste Incinerator Residues. The International Ash Working Group (IAWG); Studies in Environmental Science, 67; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 0444825630. [Google Scholar]
- Yin, K.; Chan, W.P.; Dou, X.; Ren, F.; Wei-Chung Chang, V. Cr, Cu, Hg and Ni release from incineration bottom ash during utilization in land reclamation—Based on lab-scale batch and column leaching experiments and a modeling study. Chemosphere 2018, 197, 741–748. [Google Scholar] [CrossRef]
- Šyc, M.; Simon, F.G.; Hykš, J.; Braga, R.; Biganzoli, L.; Costa, G.; Funari, V.; Grosso, M. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J. Hazard. Mater. 2020, 393, 122433. [Google Scholar] [CrossRef]
- Wiles, C.C. Municipal solid waste combustion ash: State-of-the-knowledge. J. Hazard. Mater. 1996, 47, 325–344. [Google Scholar] [CrossRef]
- Bandarra, B.S.; Pereira, J.L.; Martins, R.C.; Maldonado-Alameda, A.; Chimenos, J.M.; Quina, M.J. Opportunities and barriers for valorizing waste incineration bottom ash: Iberian countries as a case study. Appl. Sci. 2021, 11, 9690. [Google Scholar] [CrossRef]
- Xuan, D.; Tang, P.; Poon, C.S. Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications—A review. Constr. Build. Mater. 2018, 190, 1091–1102. [Google Scholar] [CrossRef]
- Wahlström, M.; Laine-Ylijok, J.; Wik, O.; Oberender, A.; Hjelmar, O. Hazardous Waste Classification: Amendments to the European Waste Classification Regulation—What Do They Mean and What Are the Consequences? Report for the Nordic Council of Ministers: Copenhagen, Denmark, 2016. [Google Scholar]
- Hjelmar, O.; van der Sloot, H.A.; van Zomeren, A. Hazard property classification of high temperature waste materials. In Proceedings of the Sardinia 2013: Sardinia 2013–14th International Waste Management and Landfill Symposium, Cagliari, Italy, 30 September–4 October 2013. [Google Scholar]
- WRc. Assessment of Hazard Classification of UK IBA. Report for the January–June 2011 IBA Dataset. Report for Environmental Services Association. WRc Reference: UC8540.06. 2012. Available online: http://www.esauk.org/application/files/5915/3606/9320/Assessment_of_hazard_classification_of_IBA.pdf (accessed on 22 July 2022).
- Hennebert, P.; van der Sloot, H.A.; Rebischung, F.; Weltens, R.; Geerts, L.; Hjelmar, O. Hazard property classification of waste according to the recent propositions of the EC using different methods. Waste Manag. 2014, 34, 1739–1751. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Radetski, C.M.; Veber, A.M.; Ferard, J.F. Ecotoxicological assessment of solid wastes: A combined liquid- and solid-phase testing approach using a battery of bioassays and biomarkers. Environ. Toxicol. Chem. 1999, 18, 1195–1202. [Google Scholar] [CrossRef]
- Lapa, N.; Barbosa, R.; Morais, J.; Mendes, B.; Méhu, J.; Santos Oliveira, J.F. Ecotoxicological assessment of leachates from MSWI bottom ashes. Waste Manag. 2002, 22, 583–593. [Google Scholar] [CrossRef]
- Moser, H.; Römbke, J. Ecotoxicological Characterization of Waste—Results and Experiences of a European Ring Test; Springer Ltd.: New York, NY, USA, 2009; ISBN 9780387889580. [Google Scholar]
- Levenseat. Sustainable Aggregates First to Achieve End-Of-Waste Status in Scotland. Available online: https://levenseat.co.uk/sustainable-aggregates-first-to-achieve-end-of-waste-status-in-scotland/ (accessed on 20 May 2022).
- SEPA–Scottish Environment Protection Agency. Use of Incinerator Bottom Ash Aggregate. Available online: https://www.sepa.org.uk/media/461450/wst-ps-045-use-of-incinerator-bottom-ash-aggregate.pdf (accessed on 25 May 2022).
A1–A3 | A4–A6 | |||
---|---|---|---|---|
Parameter | Standard | Method | Standard | Method |
pH | EPA 9045D | Electrometry | EPA 9045D | Electrometry |
Moisture | EN 14346:2007 | Gravimetry | EN 14346:2007 | Gravimetry |
TOC a | - | - | EN 15936:2012 (Method B) | - |
As, Be, Cd, Co, Cu, Cr, Mo, Ni, Pb, Sb, Se, Sn, Te, Tl, Zn | EN 13656, EPA 200.7 | ICP-OES | EN 13656, EPA 200.7 | ICP-OES |
Hg | EN ISO 17852 | Atomic fluorescence spectrometry | EN ISO 17852 | Atomic fluorescence spectrometry |
PAHs b | EN 15527:2008 | Gas chromatography | EN 15527:2008 | Gas chromatography |
Reactive cyanides | EPA SW-846 Chapter 7 | Colorimetry | EPA SW-846 Chapter 7 | Colorimetry |
Reactive sulfides | SM 4500-S2 D | Colorimetry | SM 4500-S2 D | Colorimetry |
Hazardous Property | Methodology | Hazard Statement Code/Hazard Class and Category Codes | Cut-Off Values | Calculation Methods and Concentration Limit |
---|---|---|---|---|
HP 1—Explosive | Expert judgment | H200, H201, H202, H203, H204, H240, H241 | - | - |
HP 2—Oxidizing | Expert judgment | H270, H271, H272 | - | - |
HP 3—Flammable | Expert judgment; Flammability potential test (samples A1–A3) | H220, H221, H222, H223, H224, H225 H226, H228, H242, H250, H251, H252, H260, H261 | - | - |
HP 4—Irritant: skin irritation and eye damage | Commission Regulation (EU) No 1357/2014; Annex I of CLP (irritating if pH ≤ 2 or pH ≥ 11.5); Dermal irritation/corrosion test with albino rabbits (samples A1–A3) | H314 Skin corr. 1A, H315 Skin irrit. 2, H318 Eye dam. 1, H319 Eye irrit. 2 | 1% | Σ H314 1A ≥ 1% or Σ H318 ≥ 10% or Σ H315 ≥20% or Σ H 319 ≥ 20% |
HP 5—Specific target organ toxicity (STOT)/aspiration toxicity | Commission Regulation (EU) No 1357/2014 | H370 STOT SE 1, H371 STOT SE 2, H335 STOT SE 3, H372 STOT RE 1, H373 STOT RE 2, H304 Asp. Tox. 1 | - | max(H370) ≥ 1% or max(H371) ≥ 10% or max(H335) ≥ 20% or max(H372) ≥ 1% or max(H373) ≥ 10% or max(H304) ≥ 10% or Σ H304 ≥ 10% and overall kinematic viscosity at 40 °C < 20.5 mm²/s |
HP 6—Acute toxicity | Dermal irritation/corrosion test (samples A1–A3); Acute oral toxicity test with albino rats (samples A1–A3); Commission Regulation (EU) No 1357/2014 (samples A4–A6) | H300 Acute Tox. 1 (Oral) H300 Ac. Tox. 2 (Oral) H301 Ac. Tox. 3 (Oral) H302 Ac. Tox. 4 (Oral) H310 Ac. Tox. 1 (Derm.) H310 Ac. Tox. 2 (Derm.) H311 Ac. Tox. 3 (Derm.) H312 Ac. Tox. 4 (Derm.) H330 Ac. Tox. 1 (Inhal.) H330 Ac. Tox. 2 (Inhal.) H331 Ac. Tox. 3 (Inhal.) H332 Ac. Tox. 4 (Inhal.) | Cat. 1, 2 or 3: 0.1% Cat. 4: 1% | Σ H300 1 ≥ 0.1% or Σ H300 2 ≥ 0.25% or Σ H301 ≥ 5% or Σ H302 ≥ 25% or Σ H310 1 ≥ 0.25% or Σ H310 2 ≥ 2.5% or Σ H311 ≥ 15% or Σ H312 ≥ 55% or Σ H330 1 ≥ 0.1% or Σ H330 2 ≥ 0.5% or Σ H331 ≥ 3.5% or Σ H332 ≥ 22.5% |
HP 7—Carcinogenic | Commission Regulation (EU) No 1357/2014 | H350 Carc. 1A and 1B H351 Carc. 2 | - | max (H350) ≥ 0.1% or max (H351) ≥ 1% |
HP 8—Corrosive | Commission Regulation (EU) No 1357/2014; Dermal irritation/corrosion test with albino rabbits (samples A1–A3) | H314 Skin Corr. 1A, 1B and 1C | 1% | Σ H314 ≥ 5% |
HP 9—Infectious | Expert judgment | - | - | - |
HP 10—Toxic for reproduction | Commission Regulation (EU) No 1357/2014 | H360 Repr. 1A and 1B H361 Repr. 2 | - | max (H360) ≥ 0.3% or max (H361) ≥ 3% |
HP 11—Mutagenic | Commission Regulation (EU) No 1357/2014 | H340 Muta. 1A and 1B H341 Muta. 2 | - | max (H340) ≥ 0.1% or max (H341) ≥ 1% |
HP 12—Release of an acute toxic gas | Reactivity in contact with water test; Regulation (EC) No 1272/2008 | EUH029, EUH031, EUH032 | - | - |
HP 13—Sensitizing | Commission Regulation (EU) No 1357/2014 | H317 Skin Sens. 1, H334 Resp. Sens. 1 | - | max (H317) ≥ 10% or max (H334) ≥ 10% |
HP 14—Ecotoxic | Acute toxicity test with Daphnia magna; Council Regulation (EU) 2017/997 (samples A4–A6) | H400 Aquatic Acute 1 H410 Aq. Chronic 1 H411 Aq. Chronic 2 H412 Aq. Chronic 3 H413 Aq. Chronic 4 H420 Ozone | H400, H410: 0.1% H411, H412, H413: 1% | Σ H400 ≥ 25% or Σ [(100 × H410) + (10 × H411) + (H412)] ≥ 25% or Σ (H410 + H411 + H412 + H413) ≥ 25% or max (H420) ≥ 0.1% |
HP 15—Waste capable of exhibiting a hazardous property listed above not directly displayed by the original waste | Commission Regulation (EU) No 1357/2014 | H205, EUH001, EUH019, EUH044 (may explode if heated, dried, or confined) | - | Presence of substances with H205, EUH001, EUH019, or EUH044 |
Test | Guideline | HP | Samples |
---|---|---|---|
Physical chemical tests | |||
Flammability potential | Regulation No 440/2008 method A. 10 | HP 3 | A1–A3 |
Reactivity in contact with water | Regulation No 440/2008 method A. 12 | HP 12 | A1–A6 |
Biotests | |||
Dermal irritation/corrosion with albino rabbit | OECD 404 | HP 4 and HP 8 | A1–A3 |
Acute oral toxicity with albino rat | OECD 423 | HP 6 | A1–A3 |
Acute (eco)toxicity with Daphnia magna | OECD 202 | HP 14 | A1–A6 |
Parameters | A1 a | A2 b | A3 c | A4 d | A5 e | A6 f | Literature g |
---|---|---|---|---|---|---|---|
pH | 9.7 | 9.2 | 9.0 | 9.8 | 11.6 | 10.4 | Fresh: 10–13 h; Weathered: 8–10 i |
Moisture (%) | 14.2 | 16.5 | 15.8 | 24.4 | 27.4 | 14.0 | 7–30% j |
As (%) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.0012–0.019 |
Be (%) | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | 0.00008–0.0006 |
Cd (%) | <0.0002 | 0.0003 | 0.00036 | 0.00042 | 0.0115 | 0.0003 | 0.00003–0.0146 |
Co (%) | <0.0004 | 0.0017 | 0.0008 | 0.0013 | 0.002 | 0.0008 | 0.0006–0.035 |
Cr (%) | 0.0047 | 0.0049 | 0.004 | 0.0029 | 0.0027 | 0.0021 | 0.002–0.34 |
Cu (%) | 0.2151 | 0.3267 | 0.0525 | 0.1289 | 0.0688 | 0.0019 | 0.019–2.5 |
Hg (%) | <0.00002 | <0.00002 | <0.00002 | <0.00002 | <0.00002 | <0.00002 | 0.00002–0.000775 |
Mo (%) | <0.00004 | <0.00004 | <0.00004 | 0.0002 | <0.0001 | <0.0001 | 0.00025–0.028 |
Ni (%) | 0.0034 | 0.0023 | 0.0028 | 0.0019 | 0.0018 | 0.004 | 0.0007–0.43 |
Pb (%) | 0.0894 | 0.0433 | 0.0313 | 0.0334 | 0.059 | 0.3569 | 0.0075–1.4 |
Sb (%) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.0038 | 0.00076–0.0432 |
Se (%) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.000005–0.0010 |
Sn (%) | <0.0004 | <0.0004 | <0.0004 | 0.0054 | 0.0039 | <0.0004 | 0.00002–0.096 |
Te (%) | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | 0.0000208 |
Tl (%) | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | 0.00000077–0.000023 |
Zn (%) | 0.2454 | 0.2501 | 0.2213 | 0.2279 | 0.2932 | 0.141 | 0.0010–2.0000 |
PAHs (µg/kg) | <160 | <160 | <160 | 426 | 237 | <160 | 0.0013–0.219 |
TOC (%) | - | - | - | 2.40 | 0.22 | 0.26 | <0.0001–0.0004 |
Parameter | Uncertainty | A1 a | A2 b | A3 c | A4 d | A5 e | A6 f |
---|---|---|---|---|---|---|---|
Acenaphthene (µg/kg) | ±35 | <10 | <10 | <10 | 10 | 10 | <10 |
Acenaphthylene (µg/kg) | ±35 | <10 | 10 | 28 | 37 | 51 | <10 |
Anthracene (µg/kg) | ±35 | <10 | <10 | <10 | 11 | 23 | <10 |
Benzo-(g,h,i)-perylene (µg/kg) | ±35 | <10 | <10 | <10 | <10 | <10 | <10 |
Benzo-a-anthracene (µg/kg) | ±35 | <10 | <10 | 18 | 12 | 10 | 9 |
Benzo-a-pyrene (µg/kg) | ±35 | <10 | <10 | <10 | <10 | <10 | <10 |
Benzo-b-fluoranthene (µg/kg) | ±35 | <10 | <10 | <10 | 10 | 21 | <10 |
Benzo-k-fluoranthene (µg/kg) | ±35 | <10 | <10 | <10 | <10 | <10 | <10 |
Chrysene (µg/kg) | ±35 | <10 | <10 | <10 | 8 | <10 | <10 |
Dibenzo-(a,h)-anthracene (µg/kg) | ±35 | <10 | <10 | <10 | <10 | <10 | <10 |
Phenanthrene (µg/kg) | ±35 | 15 | 18 | 35 | 47 | 80 | 10 |
Fluoranthene (µg/kg) | ±35 | <10 | <10 | 13 | 21 | 44 | <10 |
Fluorene (µg/kg) | ±35 | <10 | <10 | <10 | 12 | 31 | <10 |
Indene-(1,2,3-c,d)-pyrene (µg/kg) | ±35 | <10 | <10 | <10 | <10 | <10 | <10 |
Naphthalene (µg/kg) | ±35 | <10 | <10 | 14 | 46 | 60 | <10 |
Pyrene (µg/kg) | ±35 | <10 | <10 | 14 | 25 | 84 | 11 |
Chemicals | A1 (%) | A2 (%) | A3 (%) | A4 (%) | A5 (%) | A6 (%) | HP | Hazard Class and Category Code(s) | Hazard Statement Code(s) | Cut-Off Limits |
---|---|---|---|---|---|---|---|---|---|---|
Zn (dust) | 0.25 | 0.25 | 0.22 | 0.23 | 0.29 | 0.14 | HP 3 | Water-react. 1 | H260 | - |
HP 3 | Pyr. Sol. 1 | H250 | - | |||||||
HP 14 | Aquatic Acute 1 | H400 | 0.1% | |||||||
HP 14 | Aquatic Chronic 1 | H410 | 0.1% | |||||||
Zinc oxide (ZnO) | 0.31 | 0.31 | 0.28 | 0.28 | 0.37 | 0.18 | HP 14 | Aquatic Acute 1 | H400 | 0.1% |
HP 14 | Aquatic Chronic 1 | H410 | 0.1% | |||||||
Zinc sulfate (ZnSO4) | 0.61 | 0.62 | 0.55 | 0.56 | 0.72 | 0.35 | HP 6 | Acute Tox. 4 | H302 | 1% |
HP 4 | Eye Dam. 1 | H318 | 1% | |||||||
HP 14 | Aquatic Acute 1 | H400 | 0.1% | |||||||
HP 14 | Aquatic Chronic 1 | H410 | 0.1% | |||||||
Zinc chloride (ZnCl2) | 0.51 | 0.52 | 0.46 | 0.48 | 0.61 | 0.29 | HP 6 | Acute Tox. 4 | H302 | 1% |
HP 8 | Skin Corr. 1B | H314 | 1% | |||||||
HP 14 | Aquatic Acute 1 | H400 | 0.1% | |||||||
HP 14 | Aquatic Chronic 1 | H410 | 0.1% | |||||||
Cu | 0.22 | 0.33 | 0.05 | 0.13 | 0.07 | 0.002 | - | - | - | - |
Copper(II) oxide (CuO) | 0.27 | 0.41 | 0.07 | 0.16 | 0.09 | 0.002 | HP 14 | Aquatic Acute 1 | H400 | 0.1% |
HP 14 | Aquatic Chronic 1 | H410 | 0.1% | |||||||
Copper(I) oxide (Cu2O) | 0.48 | 0.74 | 0.12 | 0.29 | 0.16 | 0.004 | HP 6 | Acute Tox. 4 | H332 | 1% |
HP 6 | Acute Tox. 4 | H302 | 1% | |||||||
HP 4 | Eye Dam. 1 | H318 | 1% | |||||||
HP 14 | Aquatic Acute 1 | H400 | 0.1% | |||||||
HP 14 | Aquatic Chronic 1 | H410 | 0.1% | |||||||
Pb | 0.09 | 0.04 | 0.03 | 0.03 | 0.06 | 0.36 | - | - | - | |
Lead compounds with the exception of those specified elsewhere in Annex VI of CLP | >0.09 | >0.04 | >0.03 | >0.03 | >0.06 | >0.36 | HP 10 | Repr. 1A | H360 | - |
HP 6 | Acute Tox. 4 | H332 | 1% | |||||||
HP 6 | Acute Tox. 4 | H302 | 1% | |||||||
HP 5 | STOT RE 2 | H373 | - | |||||||
HP 14 | Aquatic Acute 1 | H400 | 0.1% | |||||||
HP 14 | Aquatic Chronic 1 | H410 | 0.1% |
Tests | Samples | Results | Conclusion |
---|---|---|---|
Physical chemical tests | |||
Flammability potential | A1–A3 | No ignition | Negative |
Reactivity in contact with water | A1–A6 | Release of cyanides: <50 mg/kg Release of sulfides: <100 mg/kg | Negative |
Biotests | |||
Dermal irritation/corrosion | A1–A3 | Score = 0 (no erythema, no eschar, and no oedema) | Negative |
Acute oral toxicity | A1–A3 | LD50 > 2000 mg/kg (No mortality) | Negative |
Acute (eco)toxicity | A1–A6 | EC50 > 160,000 mg/L | Negative |
Hazardous Property | A1 | A2 | A3 | A4 | A5 | A6 |
---|---|---|---|---|---|---|
HP 1—Explosive | No | No | No | No | No | No |
HP 2—Oxidizing | No | No | No | No | No | No |
HP 3—Flammable | No | No | No | No | No | No |
HP 4—Irritant: skin irritation and eye damage | No | No | No | No | No | No |
HP 5—Specific target organ toxicity (STOT)/ aspiration toxicity | No | No | No | No | No | No |
HP 6—Acute toxicity | No | No | No | No | No | No |
HP 7—Carcinogenic | No | No | No | No | No | No |
HP 8—Corrosive | No | No | No | No | No | No |
HP 9—Infectious | No | No | No | No | No | No |
HP 10—Toxic for reproduction | No | No | No | No | No | Yes |
HP 11—Mutagenic | No | No | No | No | No | No |
HP 12—Release of an acute toxic gas | No | No | No | No | No | No |
HP 13—Sensitizing | No | No | No | No | No | No |
HP 14—Ecotoxic | No | No | No | No | No | No |
HP 15—Waste capable of exhibiting a hazardous property listed above not directly displayed by the original waste | No | No | No | No | No | No |
Classification | NH a | NH | NH | NH | NH | H b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandarra, B.S.; Silva, S.; Pereira, J.L.; Martins, R.C.; Quina, M.J. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. Sustainability 2022, 14, 10352. https://doi.org/10.3390/su141610352
Bandarra BS, Silva S, Pereira JL, Martins RC, Quina MJ. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. Sustainability. 2022; 14(16):10352. https://doi.org/10.3390/su141610352
Chicago/Turabian StyleBandarra, Beatriz S., Sónia Silva, Joana L. Pereira, Rui C. Martins, and Margarida J. Quina. 2022. "A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste" Sustainability 14, no. 16: 10352. https://doi.org/10.3390/su141610352
APA StyleBandarra, B. S., Silva, S., Pereira, J. L., Martins, R. C., & Quina, M. J. (2022). A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. Sustainability, 14(16), 10352. https://doi.org/10.3390/su141610352