Adoption of Agroforestry Practices in and around the Luki Biosphere Reserve in the Democratic Republic of the Congo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Presentation of the Theoretical Model for the Adoption of Agroforestry Practices
2.3.1. Choice and Justification of the Logit Model
2.3.2. Mathematical Formulation of the Logit Model
- π = p(yi) is the probability of an individual i adopting practice y, with p(yi) = 1 if the practice is adopted and p(yi) = 0 if it is not adopted;
- yi= the explained variable, the adoption of the practice;
- e = the base of the natural logarithm (ln);
- xi = explanatory variables, biophysical and socio-economic characteristics of the farmer;
- βi = coefficients or parameters of the explanatory variables, the signs of which allow the interpretation of the results;
- α = constant.
2.3.3. Definition of the Variables Included in the Empirical Model
2.3.4. Multicollinearity Test
2.3.5. Statistical Analysis of the Data
3. Results
3.1. Adoption of Agroforestry Practices
3.1.1. Proportion of Adopters and Non-Adopters
3.1.2. Factors Determining the Adoption of Agroforestry Practices
4. Discussion
4.1. Analysis of the Proportion of Adopters and Non-Adopters of Agroforestry
4.2. Analysis of Factors Determining the Adoption of Agroforestry Practices
4.2.1. Influence of Age
4.2.2. Influence of Marital Status
4.2.3. Influence of Education Level
4.2.4. Influence of Main Activity
4.2.5. Influence of Land Tenure
4.2.6. Influence of Local Association Membership
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration
References
- Atangana, A.; Khasa, D.; Chang, S.; Degrande, A. Tropical Agroforestry; Springer: Dordrecht, The Netherlands, 2014; 380p, ISBN 978-94-007-7723-1. [Google Scholar]
- Gordon, A.M.; Newman, S.M.; Coleman, B.R.W. Temperate Agroforestry Systems, 2nd ed.; Cabi: Oxfordshire, UK, 2018; 325p. [Google Scholar]
- Ramachandran Nair, P.K.R.; Kumar, B.M.; Vimala, D.; Nair, V.D. An Introduction to Agroforestry: Four Decades of Scientific Developments, 2nd ed.; Springer Nature: Berlin/Heidelberg, Germany, 2022; 634p. [Google Scholar]
- Coulibaly, J.Y.; Chiputwa, B.; Nakelse, T.; Kundhlande, G. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric. Syst. 2017, 155, 52–69. [Google Scholar] [CrossRef]
- Mkonda, M.Y.; He, X. The Potentials of Agroforestry Systems in East Africa: A Case of the Eastern Arc Mountains of Tanzania. Int. J. Plant Soil Sci. 2017, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Neupane, R.P.; Sharma, K.R.; Thapa, G.B. Adoption of agroforestry in the hills of Nepal: A logistic regression analysis. Agric. Syst. 2002, 72, 177–196. [Google Scholar] [CrossRef]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosys. Env. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Rogers, E.M.; Arvind Singhal, A.; Quinlan, M.A. Diffusion of innovations. In An Integrated Approach to Communication Theory and Research, 2nd ed.; Stacks, D.W., Salwon, M.B., Eds.; Routledge: Milton Park, UK, 2009; pp. 418–434. [Google Scholar]
- Lavigne-Delville, P.C.; Broutin, C.; Castellanet. Regards sur les enquêtes et diagnostics participatifs. La situation d’enquête comme interface. Coopérer Aujourd’hui 2004, 36, 1–59. [Google Scholar]
- Ngondjeb, Y.; Nje, P.; Havar, M. Déterminants de l’adoption des techniques de lutte contre l’érosion hydrique en zone cotonnière du Cameroun. Rev. Elev. Médecine Vétérinaire Pays Trop. 2011, 64, 9–19. [Google Scholar] [CrossRef]
- Side, C.S.; Havard, M. Développer durablement la mécanisation pour améliorer la productivité de l’agriculture familiale en Afrique subsaharienne. Int. J. Adv. Stud. Res. Africa. 2015, 6, 34–43. [Google Scholar]
- Wu, H.; Ding, S.; Pandey, S.; Tao, D. Assessing the impact of technology adoption on farmers’ well-being using propensity score matching analysis in rural China. Asian Econ. J. 2010, 24, 141–160. [Google Scholar] [CrossRef]
- Lukombo, L.J.C.; Mumba, D.A.; Mvunzi, N.J.; Bwamameyi, M.; Mudibu, W.K.J. Déterminants d’adoption et stratégies de promotion de l’agroforesterie en Afrique Centrale. Congo Sci. 2021, 9, 108–124. [Google Scholar]
- Röling, N. Pathways for impact: Scientists’ different perspectives on agricultural innovation. Int. J. Agric. Sustain. 2009, 7, 83–94. [Google Scholar] [CrossRef]
- Bonkena, B.P.; Miteu, K.A.R. Performances des « Fermes Modèles » du corridor de Monkoto dans la Province de la Tshuapa, République Démocratique du Congo. Eur. Sci. J. 2020, 16, 207–232. [Google Scholar]
- Mbumba, B.M.; Bitijula, M.M.; Minengu, J.D.D.; Khasa, P.D.; Mafuka, M.M. Opportunités et défis de l’agroforesterie dans et en périphérie de la Réserve de Biosphère de Luki au Kongo central en République Démocratique du Congo. RAFEA 2020, 3, 23–31. [Google Scholar]
- Tackin, T.K.T.; Biloso, M.A.; Mbumba, B.M.; Akalakou, M.C.; Luvunu, P.; Ikonso, M.A.; Mukanyimi, L.N. Analyse des systèmes agroforestiers présents à Menkao en périphérie de Kinshasa. RAFEA 2019, 3, 44–49. [Google Scholar]
- WWF. Projet d’Appui à la Production Agricole et à la Sécurité Alimentaire ″PAPASA″ en Périphérie de la Réserve de Biosphère de Luki dans les Districts de Boma et du Bas-Fleuve; WWF: Gland, Switzerland, 2012; 118p. [Google Scholar]
- Bhattacharya, S.; Nourtier, M.; Torres, D. Analyse SocioéConomique des Agents, Facteurs et Causes Sous-Jacentes à la déforestation. Projet Pilote REDD+ dans et Autour de la Réserve de Biosphère de Luki. Résumé Exécutif; Office National des Forêts International (ONFI): Nogent-sur-Marne Cedex, France, 2014; 12p. [Google Scholar]
- Nyange, N.M. Participation des Communautés Locales et Gestion Durable des Forêts: Cas de la Réserve de Biosphère de Luki en République Démocratique du Congo. PhD Thesis, Universités Laval et de Kinshasa, Quebec, QC, Canada, 2014; 185p. [Google Scholar]
- WWF. Projet REDD+ à Luki. Note Technique sur les Fermes Modèles; WWF: Gland, Switzerland, 2016; 7p. [Google Scholar]
- Bisiaux, F.; Peltier Muliele, J.C. Plantations industrielles et agroforesterie au service des populations des plateaux Batéké, Mampu, en RDC. Bois Trop. 2009, 301, 21–32. [Google Scholar] [CrossRef]
- Delaunoy, Y.; De Ridder, M.; Lejeune, G.; Balancier, B. Le Système Sylvo-Bananier dans le Mayumbe (RDC), Aperçu d’un Patrimoine Agroforestier, 50 Ans après sa Mise en Place; WWF et Musée Royal de l’Afrique Centrale: Gland, Switzerland, 2007; 47p. [Google Scholar]
- Nsenga, L. Etudes Socio-Économiques dans les Villages Riverains de la RBL. WWF: Gland, Switzerland, 2004; 52p. [Google Scholar]
- Dagnelie, P. Statistique Théorique et Appliquée: 2. Inférence Statistique à 1 et 2 Dimensions (Volume 2, Édition 2); Éditeur De Boeck Supérieur: Louvain-la-Neuve, Belgium, 2006; 736p. [Google Scholar]
- Adesina, A.A.; Mbila, D.; Nkamleu, G.B.; Endamana, D. Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of Southwest Cameroon. Agric. Ecosyst. Environ. 2000, 80, 255–265. [Google Scholar] [CrossRef]
- Nkamleu, G.B.; Coulibaly, O. Les déterminants du choix des méthodes de lutte contre les pestes dans les plantations de cacao et café du sud-Cameroun. Rev. Econ. Rural. 2000, 259, 75–85. [Google Scholar]
- Roussy, C.; Ridier, A.; Chaib, K. Adoption D’innovations par les Agriculteurs: Rôle des Perceptions et des Préférences. Working Paper SMART-LERECO No 15-03. 2015. Available online: https://www.sfer.asso.fr/source/jrss2014/jrss-2014-roussy.pdf (accessed on 4 July 2022).
- Yabi, A.J.; Bachabi, X.F.; Labiyi, A.I.; Ode, A.C.; Ayena, L.R. Déterminants socioéconomiques de l’adoption des pratiques culturales de gestion de la fertilité des sols utilisées dans la commune d’Ouaké au Nord-Ouest du Bénin. Int. J. Biol. Chem. Sci. 2016, 10, 779. [Google Scholar] [CrossRef]
- Jara-Rojas, R.; Russy, S.; Roco, L.; Fleming-Muñoz, D.; Englera, A. Factors affecting the adoption of agroforestry practices: Insights from silvopastoral systems of Colombia. Forests 2020, 11, 648. [Google Scholar] [CrossRef]
- Rodríguez, G. Lecture Notes on Generalized Linear Models. 2007. Available online: https://data.princeton.edu/wws509/notes/ (accessed on 4 July 2022).
- Bakary, D.F. L’analyse Des Données pour la Planification du Développement Durable. Module 3: Les Tests D’hypothèses (Prendre des Décisions Grâce à la Statistique); Faculté des Sciences Économiques et de Gestion. Université Cheikh Anta Diop de Dakar: Dakar, Sénégal, 2019; 134p. [Google Scholar]
- Foucart, T. Colinéarité et régression linéaire. Mathématiques Sci. Hum. 2006, 173, 5–25. [Google Scholar] [CrossRef] [Green Version]
- IBM. Release 2020. IBM SPSS Statistics for Windows, Version 27.0; IBM: Armonk, NY, USA, 2020. [Google Scholar]
- Tokede, A.M.; Banjo, A.A.; Ahmad, A.O.; Fatoki, O.A.; Akanni, O.F. Farmers’ knowledge and attitude towards the adoption of agroforestry practices in Akinyele Local Government Area, Ibadan, Nigeria. J. Appl. Environ. Manag. 2021, 24, 1775–1780. [Google Scholar] [CrossRef]
- Oakhena, I.F.; Awe, F.; Adeteju, O.L.; Omolora, O.T.; Olubunmi, O.D. Assessing the impact of adoption of agroforestry technology on food production and poverty reduction among farming households in Oyo State, Nigeria. Acta Fytotechn. Zootechn. 2021, 24, 25–34. [Google Scholar]
- Mfitumukiza, D.; Barasa, B.; Ingrid, A. Determinants of the adoption of agroforestry as a means of adaptation to drought among smallholder farmers in Nakasongola district, central Uganda. Afr. J. Agric. Res. 2017, 12, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Kachaka, E.Y.; Munson, A.D.; Gélinas, N.; Khasa, D.P. Adoption of an improved fallow practice using Acacia auriculiformis on the Batéké Plateau in the Democratic Republic of the Congo. Agrofor. Syst. 2019, 94, 1047–1058. [Google Scholar] [CrossRef]
- Diaby, M.; Kone, Y.; Traoré, K.; Maïga, S.; Anewin, M.; Togo, A.M. Analyse des déterminants de l’adoption de la Régénération Naturelle Assistée (RNA) dans la zone soudano-sahélienne: Cas des cercles de Diéma et Kolokani au Mali. Int. J. Biol. Chem. Sci. 2020, 14, 473–485. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Franzel, S.; Kuntashula, E.; Kwesiga, F. Adoption of improved fallow soil fertility management practices in Zambia: Synthesis and emerging issues. Agrofor. Syst. 2003, 59, 317–326. [Google Scholar] [CrossRef]
- Adedayo, A.G.; Oluronke, S. Farmer’s perception and adoption of agroforestry practices in Osun State, Nigeria. Forest Res. 2014, 3, 127–132. [Google Scholar]
- Sonia, R.; Bruck, O.-P.K. How health and market access associate with agroforestry adoption decisions: Evidence from Tabora, Tanzania. Agrofor. Syst. 2021, 95, 1073–1086. [Google Scholar]
- Makori, J.M.; Moronge, J. Some socio-economic drivers of agroforestry adoption in Temiyotta Location, Nakuru County, Kenya. J. Sustain. Environ. Peace 2019, 2, 9–14. [Google Scholar]
- Mercer, D.E. Adoption of agroforestry innovations in the tropics: A review. Agrofor. Syst. 2004, 61, 311–328. [Google Scholar]
- Jerneck, A.; Olsson, L. More than trees! Understanding the agroforestry adoption gap in subsistence agriculture: Insights from narrative walks in Kenya. J. Rural. Stud. 2013, 32, 114–125. [Google Scholar] [CrossRef]
- Mwase, W.; Sefasi, A.; Njoloma, J.; Nyoka, B.I.; Manduwa, D.; Nyaika, J. Factors Affecting Adoption of Agroforestry and Evergreen Agriculture in Southern Africa. Environ. Nat. Resour. Res. 2015, 5, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Balasha, M.; Kesonga, N. Déterminants d’adoption des techniques de production et protection intégrées pour un maraîchage durable à Lubumbashi, République démocratique du Congo. Cah. Agric. 2019, 29, 13. [Google Scholar] [CrossRef]
- Mwangi, M.; Kariuki, S. Factors determining adoption of new Agricultural technology by smallholder farmers in developing countries. J. Econ. Sustain. Dev. 2015, 6, 208–216. [Google Scholar]
- Pattanayak, S.K.; Mercer, D.E.; Sills, E.; Yang, J.C. Taking stock of agroforestry adoption studies. Agrofor. Syst. 2003, 57, 173–186. [Google Scholar] [CrossRef]
- Mbumba, B.M.; Bitijula, M.M.; Mafuka, M.-M.P.; Lele, N.B.; Khasa, D.P. Sustainability assessment of agroforestry farms in and around the Luki Biosphere Reserve in Central Kongo, Democratic Republic of Congo. In Proceedings of the 5th World Agroforestry Congress, Québec, QC, Canada, 17–20 July 2022. [Google Scholar]
- Jahan, H.; Rahman, W.; Islam, S.; Rezwan-Al-Ramim, A.; Mifta-Ul-Jannat Tuhin, E.H. Adoption of agroforestry practices in Bangladesh as a climate change mitigation option: Investment, drivers, and SWOT analysis perspectives. Environ. Chall. 2022, 7, 100509. [Google Scholar] [CrossRef]
Variables | Definition | Type of Measure | Expected Sign |
---|---|---|---|
Dependent | |||
ADOPAF | Adoption of agroforestry | 1 if yes; 0 if no | + or − |
Independent | |||
GENDER | Gender of surveyed farmer | 1 if male; 0 if female | + or − |
AGE | Age of surveyed farmer, in years | 1 if 18–30 years; 2 if 31–40 years; 3 if 41–50 years; 4 if 51–60 years; 5 if + 60 years | + or − |
EDLEV | Education level of surveyed farmer | 1 if can read and write; 0 if otherwise | + |
MARSTAT | Marital status of surveyed farmer | 1 if married; 0 if otherwise | + or − |
HOUSEHO | Household size of surveyed farmer | 1 if < 3 persons; 2 if 3 to 5 persons; 3 if > 5 persons | + |
MAINACT | Main activity of surveyed farmer | 1 if other activities; 2 if agroforestry | + |
EXPAF | Number of years of experience in agroforestry of surveyed farmer | 1 if none; 2 if < 5 years; 3 if 5 to 10 years; 4 if > 10 years | + |
MOLATE | Mode of land tenure of surveyed farmer | 1 if owners; 2 if renters | + |
PEWOF | Number of persons working in the farm | 1 if 1 to 3 persons; 2 if 4 to 6 persons; 3 if > 6 persons | + |
HTFD | Home-to-farm distance of surveyed farmer | 1 if < 1 km; 2 if 1 to 3 km; 3 if > 3 km | - |
FLOCASS | Surveyed farmer’s membership in a local association | 1 if yes; 0 if no | + |
ACCREDI | Access to credit of surveyed farmer | 1 if yes; 0 if no | + |
Variables | Modalities or Categories | Adopters (n = 302) % | Non-Adopters (n = 88) % |
---|---|---|---|
Gender | Female | 9.6 | 26.1 |
Male | 90.4 | 73.9 | |
Age | 18–30 years | 3.0 | 5.7 |
31–40 years | 18.2 | 18.2 | |
41–50 years | 34.4 | 39.8 | |
51–60 years | 23.5 | 20.5 | |
60 + years | 20.9 | 15.9 | |
Education level | None | 11.9 | 53.4 |
Educated | 88.1 | 46.6 | |
Marital status | Not married | 21.5 | 43.2 |
Married | 78.5 | 56.8 | |
Household size | <3 persons | 21.5 | 15.9 |
3 to 5 persons | 68.9 | 71.6 | |
>5 persons | 9.6 | 12.5 | |
Main activity | Agroforestry | 93.0 | 84.1 |
Others | 7.0 | 15.9 | |
Experience in agroforestry | None | 5.0 | 58.0 |
<5 years | 3.3 | 12.5 | |
5 to10 years | 14.6 | 10.2 | |
>10 years | 77.1 | 19.3 | |
Mode of land tenure | Owners | 93.0 | 88.6 |
Renters | 7.0 | 11.4 | |
Number of persons working in the farm | 1 to 3 persons | 94.7 | 95.5 |
4 to 6 persons | 5.3 | 4.5 | |
Home-to-farm distance | <1 km | 2.3 | 3.4 |
1 to 3 km | 85.8 | 60.2 | |
>3 km | 11.9 | 36.4 | |
Membership of the farm in local association | Yes | 78.8 | 85.2 |
No | 21.2 | 14.8 | |
Access to credit or subsidies | Yes | 70.2 | 95.5 |
No | 29.8 | 4.5 |
Independent Variables | Β | SE | eβ (Odds-Ratio) | Signif. (p-Value) | Confidence Interval 95% for eβ | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Intercept | 0.553 | 1.588 | 0.728 | |||
GENDER | 0.166 | 0.776 | 1.181 | 0.830 | 0.258 | 5.402 |
AGE (category 1) | −0.767 | 1.932 | 0.465 | 0.692 | 0.011 | 20.505 |
AGE (category 2) | 0.094 | 1.040 | 1.099 | 0.928 | 0.143 | 8.437 |
AGE (category 3) | −0.788 | 0.764 | 0.455 | 0.302 | 0.102 | 2.032 |
AGE (category 4) | −1.872 | 0.845 | 0.154 | 0.027 * | 0.029 | 0.806 |
AGE (category 5) | 0 | - | - | - | - | - |
EDLEV | 1.316 | 0.604 | 3.728 | 0.029 * | 1.140 | 12.188 |
MARSTAT | 1.941 | 0.730 | 6.969 | 0.008 * | 1.667 | 29.129 |
HOUSEHO (category 1) | −0.963 | 1.344 | 0.382 | 0.474 | 0.382 | 0.027 |
HOUSEHO (category 2) | −0.109 | 1.150 | 0.897 | 0.925 | 0.897 | 0.094 |
HOUSEHO category 3) | 0 | - | - | - | - | - |
MAINACT | 2.216 | 0.901 | 9.173 | 0.014 * | 1.568 | 53.668 |
EXPAF (category 1) | −0.560 | 1.156 | 0.571 | 0.628 | 0.059 | 5.506 |
EXPAF (category 2) | −1.459 | 2.138 | 0.232 | 0.495 | 0.004 | 15.333 |
EXPAF (category 3) | −1.316 | 1.353 | 0.268 | 0.331 | 0.019 | 3.803 |
EXPAF (category 4) | 0 | - | 0 | - | - | - |
MOLATE | −4.096 | 1.066 | 0.017 | 0.000 * | 0.002 | 0.135 |
PEWOF (category 1) | −1.515 | 1.372 | 0.220 | 0.270 | 0.015 | 3.239 |
PEWOF (categories 2 and 3) | 0 | - | - | - | - | - |
HTFD (category 1) | 1.034 | 1.513 | 2.812 | 0.494 | 0.145 | 54.553 |
HTFD (category 2) | −1.062 | 0.671 | 0.346 | 0.114 | 0.093 | 1.289 |
HTFD (category 3) | 0 | - | - | - | - | - |
FLOCASS | 2.984 | 0.661 | 19.772 | 0.000 * | 5.409 | 72.266 |
ACCREDI | 0.146 | 0.987 | 1.157 | 0.883 | 0.167 | 8.002 |
χ2 = 311.552, total degrees-of-freedom (df) = 19; Cox & Snell R2 = 0.550; Nagelkerke R2 = 0.838 |
Independent Variables | β | SE | eβ | p = eβ/(1 + eβ) | Confidence Interval at 95% for eβ | |||
---|---|---|---|---|---|---|---|---|
Lower Bound(LB) | 1 – LB | Upper Bound(UB) | 1 – UB | |||||
AGE (category 4) | −1.872 | 0.845 | 0.154 | 0.133 | 0.029 | −0.71 | 0.806 | −0.194 |
EDLEV | 1.316 | 0.604 | 3.728 | 0.788 | 1.140 | 0.14 | 12.188 | 11.188 |
MARSTAT | 1.941 | 0.730 | 6.969 | 0.875 | 1.667 | 0.667 | 29.129 | 28.129 |
MAINACT | 2.216 | 0.901 | 9.173 | 0.902 | 1.568 | 0.568 | 53.668 | 52.668 |
MOLATE | −4.096 | 1.066 | 0.017 | 0.017 | 0.002 | −0.998 | 0.135 | −0.865 |
FLOCASS | 2.984 | 0.661 | 19.772 | 0.952 | 5.409 | 4.409 | 72.266 | 71.266 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandi, M.M.; Mahimba, M.B.; Mbe Mpie, P.M.; M’vubu, A.R.N.; Khasa, D.P. Adoption of Agroforestry Practices in and around the Luki Biosphere Reserve in the Democratic Republic of the Congo. Sustainability 2022, 14, 9841. https://doi.org/10.3390/su14169841
Bandi MM, Mahimba MB, Mbe Mpie PM, M’vubu ARN, Khasa DP. Adoption of Agroforestry Practices in and around the Luki Biosphere Reserve in the Democratic Republic of the Congo. Sustainability. 2022; 14(16):9841. https://doi.org/10.3390/su14169841
Chicago/Turabian StyleBandi, Michel Mbumba, Martin Bitijula Mahimba, Paul Mafuka Mbe Mpie, Alphonse Roger Ntoto M’vubu, and Damase P. Khasa. 2022. "Adoption of Agroforestry Practices in and around the Luki Biosphere Reserve in the Democratic Republic of the Congo" Sustainability 14, no. 16: 9841. https://doi.org/10.3390/su14169841
APA StyleBandi, M. M., Mahimba, M. B., Mbe Mpie, P. M., M’vubu, A. R. N., & Khasa, D. P. (2022). Adoption of Agroforestry Practices in and around the Luki Biosphere Reserve in the Democratic Republic of the Congo. Sustainability, 14(16), 9841. https://doi.org/10.3390/su14169841