Checkerboard Barriers Attenuate Soil Particle Loss and Promote Nutrient Contents of Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Study Area Field Investigation
2.3. Soil Sampling
2.4. Physical and Chemical Analysis
2.5. Data Analysis
2.6. Statistical Analysis
3. Results and Analysis
3.1. Composition and Distribution of Sand Dunes Particle Size
3.2. Soil Nutrients and Soil Quality Index Characteristics of Sand Dunes
3.2.1. Characteristics of Soil Nutrients
3.2.2. SQI Characteristics of Different Types of Dunes
3.3. Relationships between Soil Nutrients and Parameters
4. Discussion
4.1. Soil Particle Distribution of Dunes
4.2. Soil Nutrient Characteristics of Dunes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Soil Layer | Types | Position | Soil Particle Size Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Clay | Silt | Very Fine Sand | Fine Sand | Medium Sand | Coarse Sand | Very Coarse Sand | |||
0–2 cm | SL | Top | 0.65 ± 0.05 a | 3.98 ± 0.13 a | 3.39 ± 0.02 a | 49.71 ± 0.51 b | 37.77 ± 0.33 b | 2.79 ± 0.31 a | 1.70 ± 0.28 a |
Upper middle | 0.81 ± 0.06 a | 4.78 ± 0.11 a | 2.91 ± 0.04 b | 52.76 ± 0.59 b | 33.59 ± 0.39 a | 3.47 ± 0.16 a | 1.67 ± 0.24 ab | ||
Middle | 0.78 ± 0.05 a | 4.18 ± 0.10 b | 2.65 ± 0.07 b | 71.23 ± 1.56 a | 16.26 ± 0.31 c | 2.06 ± 0.77 a | 2.83 ± 1.03 a | ||
Lower middle | 0.74 ± 0.05 a | 3.48 ± 0.05 a | 2.20 ± 0.04 b | 56.86 ± 0.26 c | 31.52 ± 0.58 b | 1.74 ± 0.41 a | 1.45 ± 0.10 a | ||
Bottom | 0.91 ± 0.06 a | 5.69± 0.05 a | 3.49 ± 0.05 a | 49.25 ± 0.12 c | 33.30 ± 0.66 a | 4.96 ± 0.62 a | 2.40 ± 0.15 a | ||
HDPE | Top | 0.62 ± 0.01 a | 3.92 ± 0.01 a | 3.32 ± 0.11 a | 63.19 ± 0.33 a | 26.05 ± 0.54 c | 1.67 ± 0.14 b | 1.23 ± 0.27 ab | |
Upper middle | 0.71 ± 0.06 a | 3.75 ± 0.14 b | 4.09 ± 0.05 a | 69.31 ± 0.88 a | 16.98 ± 0.77 c | 2.32 ± 0.63 a | 2.83 ± 0.81 a | ||
Middle | 0.82 ± 0.08 a | 5.21 ± 0.35 a | 5.03 ± 0.21 b | 60.88 ± 2.55 b | 19.83 ± 0.92 b | 4.10 ± 1.81 a | 4.12 ± 2.45 a | ||
Lower middle | 0.80 ± 0.05 a | 3.25 ± 0.08 a | 4.72 ± 0.08 a | 72.37 ± 0.09 a | 16.88 ± 0.19 c | 0.92 ± 0.21 b | 1.06 ± 0.11 b | ||
Bottom | 0.64 ± 0.06 b | 2.34 ± 0.08 b | 3.22 ± 0.04 b | 70.69 ± 0.16 a | 21.29 ± 0.40 c | 0.80 ± 0.41 b | 1.01 ± 0.17 c | ||
CK | Top | 0.21 ± 0.02 b | 0.79 ± 0.01 b | 0.69 ± 0.03 b | 48.36 ± 0.20 c | 48.61 ± 0.33 a | 0.28 ± 0.09 c | 1.02 ± 0.02 b | |
Upper middle | 0.32 ± 0.02 b | 1.11 ± 0.01 c | 0.51 ± 0.01 c | 67.52 ± 0.24 c | 28.79 ± 0.16 b | 0.57 ± 0.16 a | 1.17 ± 0.12 b | ||
Middle | 0.30 ± 0.02 b | 2.01 ± 0.02 c | 2.64 ± 0.05 a | 48.10 ± 0.28 c | 44.93 ± 0.52 a | 0.59 ± 0.08 a | 1.40 ± 0.24 a | ||
Lower middle | 0.31 ± 0.01 b | 1.43 ± 0.01 b | 1.07 ± 0.03 c | 60.29 ± 0.15 b | 35.33 ± 0.22 a | 0.64 ± 0.15 b | 0.91 ± 0.12 b | ||
Bottom | 0.34 ± 0.01 c | 1.33 ± 0.02 c | 0.78 ± 0.04 c | 63.66 ± 0.41 b | 31.12 ± 0.53 b | 1.03 ± 0.05 b | 1.69 ± 0.20 b |
Soil Layer | Types | Position | Soil Particle Size Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Clay | Silt | Very Fine Sand | Fine Sand | Medium Sand | Coarse Sand | Very Coarse Sand | |||
2–4 cm | SL | Top | 1.07 ± 0.07 a | 4.31 ± 0.04 a | 3.52 ± 0.07 b | 63.26 ± 0.69 a | 25.39 ± 0.19 b | 1.23 ± 0.09 b | 1.21 ± 0.37 a |
Upper middle | 0.78 ± 0.05 a | 1.61 ± 0.05 b | 2.16 ± 0.04 b | 63.98 ± 0.23 c | 27.28 ± 0.16 a | 2.76 ± 0.10 a | 1.44 ± 0.25 a | ||
Middle | 0.96 ± 0.04 a | 2.09 ± 0.06 b | 2.93 ± 0.02 b | 81.44 ± 0.25 a | 10.79 ± 0.16 c | 0.73 ± 0.10 b | 1.07 ± 0.24 b | ||
Lower middle | 0.94 ± 0.05 a | 2.16 ± 0.04 b | 2.33 ± 0.33 b | 73.71 ± 0.48 a | 19.12 ± 0.26 b | 0.86 ± 0.50 a | 0.88 ± 0.25 a | ||
Bottom | 0.85 ± 0.06 a | 2.75 ± 0.15 a | 2.66 ± 0.06 b | 56.89 ± 1.71 c | 30.10 ± 0.92 c | 4.42 ± 1.65 a | 2.32 ± 0.73 a | ||
HDPE | Top | 0.90 ± 0.07 b | 4.02 ± 0.09 b | 6.99 ± 0.10 a | 60.25 ± 0.43 b | 24.68 ± 0.69 b | 1.61 ± 0.14 a | 1.56 ± 0.48 a | |
Upper middle | 0.90 ± 0.06 a | 3.92 ± 0.10 a | 5.97 ± 0.09 a | 70.45 ± 0.39 a | 16.49 ± 0.38 b | 1.04 ± 0.13 b | 1.23 ± 0.19 ab | ||
Middle | 0.85 ± 0.05 a | 2.94 ± 0.06 a | 4.06 ± 0.12 a | 62.04 ± 0.46 b | 26.18 ± 0.82 b | 1.55 ± 0.29 a | 2.38 ± 0.30 a | ||
Lower middle | 1.11 ± 0.05 a | 5.83 ± 0.11 a | 9.13 ± 0.06 a | 74.23 ± 1.03 a | 8.61 ± 0.47 c | 0.24 ± 0.17 a | 0.84 ± 0.45 a | ||
Bottom | 0.74 ± 0.10 a | 2.37 ± 0.09 b | 5.14 ± 0.05 a | 71.90 ± 0.90 a | 16.87 ± 0.26 b | 1.21 ± 0.51 a | 1.75 ± 0.49 a | ||
CK | Top | 0.26 ± 0.01 c | 0.87 ± 0.01 c | 0.70 ± 0.02 c | 51.51 ± 0.23 c | 44.95 ± 0.22 a | 0.30 ± 0.15 c | 1.39 ± 0.20 a | |
Upper middle | 0.32 ± 0.02 b | 1.11 ± 0.01 c | 0.49 ± 0.01 c | 69.07 ± 0.71 b | 27.93 ± 0.76 a | 0.24 ± 0.06 c | 0.82 ± 0.30 b | ||
Middle | 0.29 ± 0.01 b | 1.24 ± 0.01 c | 0.76 ± 0.04 c | 55.51 ± 0.21 c | 40.39 ± 0.31 a | 0.51 ± 0.24 b | 1.29 ± 0.14 b | ||
Lower middle | 0.28 ± 0.01 b | 1.09 ± 0.02 c | 0.99 ± 0.03 c | 53.91 ± 0.11 b | 41.46 ± 0.27 a | 0.86 ± 0.30 a | 1.41 ± 0.10 a | ||
Bottom | 0.29 ± 0.01 b | 1.06 ± 0.01 c | 0.41 ± 0.01 c | 61.71 ± 0.16 b | 35.19 ± 0.40 a | 0.19 ± 0.10 a | 1.11 ± 0.18 a |
References
- Zhang, Z.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Am. Chem. Soc. 2008, 42, 1826–1831. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Shi, P.; Han, G.; Liu, L.; Guo, L.; Hu, X.; Zhang, G. Desertification Control Practices in China. Sustainability 2020, 12, 3258. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhu, Z.; Wu, W. Sandy desertification in the north of China. Sci. China Ser. D Earth Sci. 2002, 45, 23–34. [Google Scholar] [CrossRef]
- Wang, X.-P.; Li, X.-R.; Xiao, H.-L.; Pan, Y.-X. Evolutionary characteristics of the artificially revegetated shrub ecosystem in the Tengger Desert, northern China. Ecol. Res. 2005, 21, 415–424. [Google Scholar] [CrossRef]
- Dai, Y.; Dong, Z.; Li, H.; He, Y.; Li, J.; Guo, J. Effects of checkerboard barriers on the distribution of aeolian sandy soil particles and soil organic carbon. Geomorphology 2019, 338, 79–87. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China′s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, T.; Shi, X.; Cao, S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod. 2018, 176, 1213–1222. [Google Scholar] [CrossRef]
- Luo, J.; Deng, D.; Zhang, L.; Zhu, X.; Chen, D.; Zhou, J. Soil and vegetation conditions changes following the different sand dune restoration measures on the Zoige Plateau. PLoS ONE 2019, 14, e0216975. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z. Geomorphology of Wind-Drift Sands and Their Controlled Engineering; Science Press: Beijing, China, 2003. [Google Scholar]
- Qu, J.; Zu, R.; Zhang, K.; Fang, H. Field observations on the protective effect of semi-buried checkerboard sand barriers. Geomorphology 2007, 88, 193–200. [Google Scholar] [CrossRef]
- Liu, L.; Bo, T. Effects of checkerboard sand barrier belt on sand transport and dune advance. Aeolian Res. 2020, 42, 100546. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z. Grain size characteristics in the Hexi Corridor Desert. Aeolian Res. 2015, 18, 55–67. [Google Scholar] [CrossRef]
- Montero, E. Rényi dimensions analysis of soil particle-size distributions. Ecol. Model. 2005, 182, 305–315. [Google Scholar] [CrossRef]
- Sun, C.; Liu, G.; Xue, S. Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil particle-size distribution and soil nutrients. Ecol. Res. 2016, 31, 891–902. [Google Scholar] [CrossRef]
- Zhong, S.; Han, Z.; Li, A.; Du, H. Research on the Application of Palm Mat Geotextiles for Sand Fixation in the Hobq Desert. Sustainability 2019, 11, 1751. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y. Salix Psammophila Sand Barrier; Science Press: Beijing, China, 2013. [Google Scholar]
- Xie, Y.; Dang, X.; Zhou, Y.; Hou, Z.; Li, X.; Jiang, H.; Zhou, D.; Wang, J.; Hai, C.; Zhou, R. Using sediment grain size characteristics to assess effectiveness of mechanical sand barriers in reducing erosion. Sci. Rep. 2020, 10, 14009. [Google Scholar] [CrossRef]
- Du, H.; Xue, X.; Wang, T. Estimation of saltation emission in the Kubuqi Desert, North China. Sci. Total Environ. 2014, 479, 77–92. [Google Scholar] [CrossRef]
- Du, H.; Dou, S.; Deng, X.; Xue, X.; Wang, T. Assessment of wind and water erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, China. Ecol. Indic. 2016, 67, 117–131. [Google Scholar] [CrossRef]
- Dong, X.; Chen, Z.; Wu, M.; Hu, C. Long time series of remote sensing to monitor the transformation research of Kubuqi Desert in China. Earth Sci. Inform. 2020, 13, 795–809. [Google Scholar] [CrossRef]
- Guo, C.; Han, Z.; Li, A. A typical model of ecological management and development and utilization of Hobq Desert. J. Northwest Norm. Univ. Nat. Sci. Ed. 2017, 53, 112–118. [Google Scholar] [CrossRef]
- Wind Direction and Wind Speed Information from 2000 to 2020 at Four Meteorological Stations around Hobq Desert. Available online: http://data.cma.cn (accessed on 10 May 2022).
- Wu, C.; Deng, L.; Huang, C.; Chen, Y.; Peng, C. Effects of vegetation restoration on soil nutrients, plant diversity, and its spatiotemporal heterogeneity in a desert–oasis ecotone. Land Degrad. Dev. 2020, 32, 670–683. [Google Scholar] [CrossRef]
- Ren, C.; Kang, D.; Wu, J.; Zhao, F.; Yang, G.; Han, X.; Feng, Y.; Ren, G. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma 2016, 282, 103–111. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal Scaling of Soil Particle Size Distributions Analysis and Limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Yang, X.; Shao, M.; Li, T.; Zhang, Q.; Gan, M.; Chen, M.; Bai, X. Distribution of soil nutrients under typical artificial vegetation in the desert–loess transition zone. Catena 2021, 200, 105165. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Song, Z. Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma 2011, 161, 115–125. [Google Scholar] [CrossRef]
- Sinha, S.; Masto, R.E.; Ram, L.C.; Selvi, V.A.; Srivastava, N.K.; Tripathi, R.C.; George, J. Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biol. Biochem. 2009, 41, 1824–1832. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Li, X.; Zhou, R.; Jiang, H.; Zhou, D.; Zhang, X.; Xie, Y.; Gao, W.; Shi, J.; Wang, Y.; Wang, J.; et al. Quantitative analysis of how different checkerboard sand barrier materials influence soil properties: A study from the eastern edge of the Tengger Desert, China. Environ. Earth Sci. 2018, 77, 481. [Google Scholar] [CrossRef]
- Gill, R.A.; Jackson, R.B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Howard, P.J.A.; Howard, D.M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fertil. Soils 1990, 9, 306–310. [Google Scholar] [CrossRef]
- Smith, A.B.; Jackson, D.W.T.; Cooper, J.A.G. Three-dimensional airflow and sediment transport patterns over barchan dunes. Geomorphology 2017, 278, 28–42. [Google Scholar] [CrossRef]
- Baddock, M.C.; Wiggs, G.F.S.; Livingstone, I. A field study of mean and turbulent flow characteristics upwind, over and downwind of barchan dunes. Earth Surf. Processes Landf. 2011, 36, 1435–1448. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Weaver, C.M. Turbulent flow structures and aeolian sediment transport over a barchan sand dune. Geophys. Res. Lett. 2012, 39, L05404. [Google Scholar] [CrossRef]
- Lancaster, N.; Nickling, W.G.; Neuman, C.K.M.; Wyatt, V.E. Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology 1996, 17, 55–62. [Google Scholar] [CrossRef]
- Dong, Z.; Lv, P.; Zhang, Z.; Lu, J. Aeolian transport over a developing transverse dune. J. Arid Land 2013, 6, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Faria, R.; Ferreira, A.D.; Sismeiro, J.L.; Mendes, J.C.F.; Sousa, A.C.M. Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes. Aeolian Res. 2011, 3, 303–314. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z.; Li, J. Grain-size characteristics of dune networks in china′s tengger desert. Geogr. Ann. Ser. A Phys. Geogr. 2016, 97, 681–693. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, G.D.; Yu, M.H.; Gao, G.L.; Zhao, Y.Y.; Wang, L.; Wang, Y.Z. Application of Boundary Layer Displacement Thickness in Wind Erosion Protection Evaluation: Case Study of a Salix psammophila Sand Barrier. Int. J. Environ. Res. Public Health 2019, 16, 592. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, C.; Zhou, N.; Ma, X. Spatial pattern of grain-size distribution in surface sediments as a result of variations in the aeolian environment in China′s Shapotou railway protective system. Aeolian Res. 2011, 3, 295–302. [Google Scholar] [CrossRef]
- Qi, S.; Wang, J.; Dang, X. Particle size characteristics of surface sediments in three types of low vertical sand barriers. Arid Zone Res. 2021, 38, 7. [Google Scholar] [CrossRef]
- Wu, Z. The Sand and the Geomorphology; Science Press: Beijing, China, 1987. [Google Scholar]
- Corre, M.D.; Schnabel, R.R.; Shaffer, J.A. Evaluation of soil organic carbon under forests cool season and warm season grasses in the northeastern US. Soil Biol. Biochem. 1999, 31, 1531–1539. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, K.; Qu, J. Effects of sand barriers on vegetation and soil nutrients in a drifting sand field. J. Desert Res. 2019, 39, 56. [Google Scholar] [CrossRef]
- Zhang, W. Study on the Vegetation and Soil Restoration Effects of Living Sand Barriers in the Horqin Sands; Inner Mongolia People′s Press: Hohhot, China, 2013. [Google Scholar]
- Li, X.R.; Xiao, H.L.; He, M.Z.; Zhang, J.G. Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions. Ecol. Eng. 2006, 28, 149–157. [Google Scholar] [CrossRef]
- Yang, X.; Liang, Y.; Gao, Y.; Wang, R. Decay Process Characteristics and Fungal Community Composition of Salix psammophila Sand Barriers in an Arid Area, Northern China. Sustainability 2021, 13, 7590. [Google Scholar] [CrossRef]
- Wang, R.; Gao, Y.; Dang, X.; Yang, X.; Liang, Y.; Zhao, C. Microstructure and biodegradation of long-established Salix psammophila sand barriers on sand dunes. Environ. Technol. Innov. 2021, 21, 101366. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, Y.; Wang, R.; Yang, X. Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert. PLoS ONE 2021, 16, e0258159. [Google Scholar] [CrossRef]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, S.; Liu, G.-B.; Song, Z.-L. A comparison of soil qualities of different revegetation types in the Loess Plateau, China. Plant Soil 2011, 347, 163–178. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Ball, B.C.; Daniell, T.J.; Hallett, P.D.; Neilson, R.; Wheatley, R.E.; Osler, G.; Bohanec, M. Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Appl. Soil Ecol. 2010, 46, 43–53. [Google Scholar] [CrossRef]
- Guo, S.; Han, X.; Li, H.; Wang, T.; Tong, X.; Ren, G.; Feng, Y.; Yang, G. Evaluation of soil quality along two revegetation chronosequences on the Loess Hilly Region of China. Sci. Total Environ. 2018, 633, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liu, Z.; Liu, M.; Qin, X.; Xin, Z.; Lv, Y.; Li, X.; Wang, Z.; Su, Z.; Zhou, Q. How do diaspore traits, wind speed and sand surface configuration interact to determine seed burial during wind dispersal? Plant Soil 2019, 440, 357–368. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Z.; Zeng, D.; Liu, B. Aerial seed bank in Artemisia species: How it responds to sand mobility. Trees 2010, 24, 435–441. [Google Scholar] [CrossRef]
- Török, P.; Kelemen, A.; Valkó, O.; Miglécz, T.; Tóth, K.; Tóth, E.; Sonkoly, J.; Kiss, R.; Csecserits, A.; Rédei, T.; et al. Succession in soil seed banks and its implications for restoration of calcareous sand grasslands. Restor. Ecol. 2018, 26, S134–S140. [Google Scholar] [CrossRef]
- McQuilkin, W.E. The Natural Establishment of Pine in Abandoned Fields in the Piedmont Plateau Region. Ecology 1940, 21, 135–147. [Google Scholar] [CrossRef]
- Feng, X.; Qu, J.; Tan, L.; Fan, Q.; Niu, Q. Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the eastern Qinghai-Tibet Plateau. J. Soils Sediments 2019, 20, 472–485. [Google Scholar] [CrossRef]
- Xia, D.; Deng, Y.; Wang, S.; Ding, S.; Cai, C. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Nat. Hazards 2015, 79, 455–478. [Google Scholar] [CrossRef]
- Deng, J.; Li, J.; Deng, G.; Zhu, H.; Zhang, R. Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China. Sci. Rep. 2017, 7, 6742. [Google Scholar] [CrossRef] [Green Version]
Type | Herbaceous Species | Coverage |
---|---|---|
SL barrier dunes | Artemisia desertorum; Agriophyllum squarrosum; Psammochloa villosa | 20–45% |
HDPE barrier dunes | Agriophyllum squarrosum; Corispermum patelliforme; Psammochloa villosa; Bassia dasyphylla | 20–35% |
No-barrier dunes | Agriophyllum squarrosum | <3% |
Soil Layer | Types | Soil Particle Size Content (%) | Mz | Sd | Sk | Kg | D value | Determination Coefficient (R2) | ||
---|---|---|---|---|---|---|---|---|---|---|
Clay | Silt | Sand | ||||||||
0–2 | SL | 0.75 ± 0.11 a | 4.42 ± 0.77 a | 94.80 ± 0.86 a | 2.22 ± 0.10 b | 0.88 ± 0.15 a | 0.15 ± 0.08 a | 1.60 ± 0.31 a | 2.25 ± 0.02 a | 0.92 |
HDPE | 0.67 ± 0.08 a | 3.75 ± 0.96 a | 95.35 ± 1.48 a | 2.39 ± 0.06 a | 0.77 ± 0.17 a | 0.13 ± 0.10 a | 1.46 ± 0.35 a | 2.22 ± 0.02 b | 0.91 | |
CK | 0.29 ± 0.05 b | 1.34 ± 0.40 b | 98.34 ± 0.43 a | 2.11 ± 0.09 c | 0.51 ± 0.05 b | 0.11 ± 0.05 a | 1.06 ± 0.09 b | 2.06 ± 0.03 c | 0.87 | |
2–4 | SL | 0.93 ± 0.12 a | 2.60 ± 0.94 b | 96.50 ± 1.02 a | 2.34 ± 0.12 b | 0.66 ± 0.12 a | 0.09 ± 0.09 b | 1.19 ± 0.18 a | 2.26 ± 0.03 a | 0.87 |
HDPE | 0.83 ± 0.12 a | 3.89 ± 1.20 a | 95.27 ± 1.32 a | 2.47 ± 0.13 a | 0.74 ± 0.07 a | 0.21 ± 0.07 a | 1.31 ± 0.11 a | 2.25 ± 0.03 a | 0.92 | |
CK | 0.28 ± 0.02 b | 1.08 ± 0.12 c | 98.62 ± 0.14 a | 2.09 ± 0.07 c | 0.48 ± 0.03 b | 0.08 ± 0.01 b | 1.01 ± 0.02 b | 2.05 ± 0.01 b | 0.85 |
Soil Nutrients | Types | Mean | Cv | ||
---|---|---|---|---|---|
SL | HDPE | CK | |||
SOC (g∙kg−1) | 3.06 ± 1.41 a | 2.40 ± 0.60 a | 0.65 ± 0.08 b | 2.04 ± 1.35 | 66.27 |
AP (mg∙kg−1) | 1.24 ± 0.22 a | 1.18 ± 0.31 a | 0.80 ± 0.13 b | 1.07 ± 0.30 | 27.93 |
AK (mg∙kg−1) | 82.67 ± 9.12 a | 71.73 ± 15.42 b | 56.03 ± 2.71 c | 70.14 ± 15.13 | 21.57 |
AN (mg∙kg−1) | 11.90 ± 4.56 b | 19.14 ± 6.71 a | 6.66 ± 2.41 c | 12.56 ± 7.08 | 56.31 |
TP (g∙kg−1) | 0.40 ± 0.04 a | 0.33 ± 0.08 b | 0.32 ± 0.04 b | 0.35 ± 0.07 | 19.59 |
TK (g∙kg−1) | 24.14 ± 2.28 a | 20.37 ± 2.55 b | 20.05 ± 1.89 b | 21.52 ± 2.92 | 13.57 |
TN (g∙kg−1) | 0.20 ± 0.08 a | 0.21 ± 0.05 a | 0.04 ± 0.002 b | 0.15 ± 0.10 | 64.15 |
C/N | 14.79 ± 2.01 b | 11.25 ± 1.63 c | 16.81 ± 2.13 a | 14.28 ± 3.00 | 21.05 |
C/P | 7.52 ± 3.12 a | 8.52 ± 5.84 a | 2.05 ± 0.26 b | 6.03 ± 4.77 | 79.04 |
N/P | 0.50 ± 0.18 b | 0.75 ± 0.47 a | 0.12 ± 0.01 c | 0.46 ± 0.39 | 84.97 |
SOC | AN | AP | AK | TN | TP | TK | C/N | C/P | N/P | |
---|---|---|---|---|---|---|---|---|---|---|
F | ||||||||||
T | 103.76 | 61.03 | 36.91 | 95.49 | 98.12 | 38.05 | 144.22 | 135.10 | 113.74 | 120.50 |
D | 1.12 | 2.15 | 2.83 | 8.07 | 1.98 | 6.13 | 38.22 | 5.30 | 2.00 | 2.33 |
T × D | 2.37 | 1.98 | 2.45 | 4.59 | 1.51 | 5.52 | 24.53 | 9.35 | 3.83 | 2.54 |
P | ||||||||||
T | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
D | 0.352 | 0.083 | 0.030 | <0.001 | 0.107 | <0.001 | <0.001 | 0.001 | 0.103 | 0.064 |
T × D | 0.025 | 0.060 | 0.021 | <0.001 | 0.169 | <0.001 | <0.001 | <0.001 | 0.001 | 0.017 |
Silt | Clay | Sand | Mz | Sd | Sk | Kg | D | |
---|---|---|---|---|---|---|---|---|
SOC | 0.692 ** | 0.694 ** | −0.700 ** | 0.324 ** | 0.817 ** | 0.364 ** | 0.749 ** | 0.725 ** |
AN | 0.478 ** | 0.376 ** | −0.391 ** | 0.537 ** | 0.521 ** | 0.206 | 0.527 ** | 0.476 ** |
AP | 0.601 ** | 0.437 ** | −0.462 ** | 0.526 ** | 0.290 ** | 0.138 | 0.164 | 0.611 ** |
AK | 0.711 ** | 0.627 ** | −0.644 ** | 0.406 ** | 0.404 ** | −0.136 | 0.351 ** | 0.617 ** |
TN | 0.319 ** | 0.414 ** | −0.406 ** | −0.085 | 0.340 ** | 0.217 * | 0.234 * | 0.329 ** |
TP | 0.453 ** | 0.407 ** | −0.418 ** | 0.142 | 0.202 | −0.111 | 0.050 | 0.414 ** |
TK | 0.772 ** | 0.751 ** | −0.760 ** | 0.483 ** | 0.866 ** | 0.372 ** | 0.785 ** | 0.789 ** |
C/N | −0.550 ** | −0.437 ** | 0.454 ** | −0.641 ** | −0.366 ** | −0.073 | −0.255 * | −0.512 ** |
C/P | 0.538 ** | 0.491 ** | −0.501 ** | 0.419 ** | 0.653 ** | 0.176 | 0.682 ** | 0.571 ** |
N/P | 0.548 ** | 0.487 ** | −0.498 ** | 0.504 ** | 0.638 ** | 0.153 | 0.665 ** | 0.569 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Meng, Z.; Dang, X.; Yang, P. Checkerboard Barriers Attenuate Soil Particle Loss and Promote Nutrient Contents of Soil. Sustainability 2022, 14, 10492. https://doi.org/10.3390/su141710492
Li H, Meng Z, Dang X, Yang P. Checkerboard Barriers Attenuate Soil Particle Loss and Promote Nutrient Contents of Soil. Sustainability. 2022; 14(17):10492. https://doi.org/10.3390/su141710492
Chicago/Turabian StyleLi, Haonian, Zhongju Meng, Xiaohong Dang, and Puchang Yang. 2022. "Checkerboard Barriers Attenuate Soil Particle Loss and Promote Nutrient Contents of Soil" Sustainability 14, no. 17: 10492. https://doi.org/10.3390/su141710492
APA StyleLi, H., Meng, Z., Dang, X., & Yang, P. (2022). Checkerboard Barriers Attenuate Soil Particle Loss and Promote Nutrient Contents of Soil. Sustainability, 14(17), 10492. https://doi.org/10.3390/su141710492