Exploring the Sustainability of China’s New Energy Vehicle Development: Fresh Evidence from Population Symbiosis
Abstract
:1. Introduction
2. Methodology and Data
2.1. Socio-Economic Ecosystem and Population Dynamics
- is the growth rate of stage T.
- is the population size of T period.
- is the largest population size.
- is the intrinsic growth rate.
- is growth retardation factor.
2.2. Evaluation of Enterprise Development Sustainability Based on Entropy Weight TOPSIS
2.3. Lotka–Volterra MCGP Model
2.4. Sample Selection
3. Empirical Analysis
3.1. Growth Analysis of Single Population Based on Logistic Model
3.2. Analysis of Market-Driven Mechanism Based on LV Model
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Li, C.; Shang, J.; Yang, C.; Zhang, B.; Ke, X. Strategic Choices of China’s New Energy Vehicle Industry: An Analysis Based on ANP and SWOT. Energies 2017, 10, 537. [Google Scholar] [CrossRef]
- Qiu, L.S.; Yang, D.X.; Hong, K.R.; Wu, W.P.; Zeng, W.K. The Prospect of China’s Renewable Automotive Industry upon Shrinking Subsidies. Front. Energy Res. 2021, 9, 661585. [Google Scholar] [CrossRef]
- Ren, J. New energy vehicle in China for sustainable development: Analysis of success factors and strategic implications. Transp. Res. Part D Transp. Environ. 2018, 59, 268–288. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, T.; Zhang, W.; Hao, Y.; Huang, J.; Lin, Y. Comprehensive policy evaluation of NEV development in China, Japan, the United States, and Germany based on the AHP-EW model. J. Clean. Prod. 2019, 214, 389–402. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, K.H.; Jia, S.W.; Zhang, D.Y. Analysis of Policy Effects on New-energy Vehicles. J. Grey Syst. 2021, 33, 128–149. [Google Scholar]
- Chen, S.; Feng, Y.; Lin, C.; Liao, Z.; Mei, X. Research on the Technology Innovation Efficiency of China’s Listed New Energy Vehicle Enterprises. Math. Probl. Eng. 2021, 2021, 6613602. [Google Scholar] [CrossRef]
- Curtis, F. Peak globalization: Climate change, oil depletion and global trade. Ecol. Econ. 2009, 69, 427–434. [Google Scholar] [CrossRef]
- Delucchi, M.A.; Yang, C.; Burke, A.F.; Ogden, J.M.; Kurani, K.; Kessler, J.; Sperling, D. An assessment of electric vehicles: Technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives. Philos. Trans. 2014, 372, 20120325. [Google Scholar] [CrossRef]
- Kendall, M. Fuel cell development for New Energy Vehicles (NEVs) and clean air in China. Prog. Nat. Sci. Mater. Int. 2018, 28, 113–120. [Google Scholar] [CrossRef]
- Tan, R.P.; Lin, B.Q. Are people willing to support the construction of charging facilities in China? Energy Policy 2020, 143, 111604. [Google Scholar] [CrossRef]
- Jahangir, H.; Gougheri, S.S.; Vatandoust, B.; Golkar, M.A.; Golkar, M.A.; Ahmadian, A.; Hajizadeh, A. A Novel Cross-Case Electric Vehicle Demand Modeling Based on 3D Convolutional Generative Adversarial Networks. IEEE Trans. Power Syst. 2022, 37, 1173–1183. [Google Scholar] [CrossRef]
- Jahangir, H.; Gougheri, S.S.; Vatandoust, B.; Golkar, M.A.; Ahmadian, A.; Hajizadeh, A. Plug-in Electric Vehicle Behavior Modeling in Energy Market: A Novel Deep Learning-Based Approach with Clustering Technique. IEEE Trans. Smart Grid 2020, 11, 4738–4748. [Google Scholar] [CrossRef]
- Jahangir, H.; Tayarani, H.; Ahmadian, A.; Golkar, M.A.; Miret, J.; Tayarani, M.; Gao, H.O. Charging demand of Plug-in Electric Vehicles: Forecasting travel behavior based on a novel Rough Artificial Neural Network approach. J. Clean. Prod. 2019, 229, 1029–1044. [Google Scholar] [CrossRef]
- He, L.-Y.; Pei, L.-L.; Yang, Y.-H. An optimised grey buffer operator for forecasting the production and sales of new energy vehicles in China. Sci. Total Environ. 2020, 704, 135321. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, M.; Li, W.; Qin, G. Risk Assessment of New Energy Vehicle Supply Chain Based on Variable Weight Theory and Cloud Model: A Case Study in China. Sustainability 2020, 12, 3150. [Google Scholar] [CrossRef]
- Tang, B.; Tang, J.; Liu, Y.; Zeng, F. Comprehensive Evaluation and Application of GIS Insulation Condition Part 1: Selection and Optimization of Insulation Condition Comprehensive Evaluation Index Based on Multi-Source Information Fusion. IEEE Access 2019, 7, 88254–88263. [Google Scholar] [CrossRef]
- Egbue, O.; Long, S. Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy Policy 2012, 48, 717–729. [Google Scholar] [CrossRef]
- Fang, S.; Xue, X.; Yin, G.; Fang, H.; Li, J.; Zhang, Y. Evaluation and Improvement of Technological Innovation Efficiency of New Energy Vehicle Enterprises in China Based on DEA-Tobit Model. Sustainability 2020, 12, 7509. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, W.; Wang, K.C. A comprehensive system for AASHTO PP67-10 based asphalt surfaced pavement cracking evaluation. Can. J. Civ. Eng. 2016, 43, 260–269. [Google Scholar] [CrossRef]
- Trencher, G.; Edianto, A. Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany. Energies 2021, 14, 833. [Google Scholar] [CrossRef]
- Lashari, Z.; Ko, J.; Jang, J. Consumers’ Intention to Purchase Electric Vehicles: Influences of User Attitude and Perception. Sustainability 2021, 13, 6778. [Google Scholar] [CrossRef]
- Xu, L.; Su, J. From government to market and from producer to consumer: Transition of policy mix towards clean mobility in China. Energy Policy 2016, 96, 328–340. [Google Scholar] [CrossRef]
- Huang, P.; Li, P. Politics of urban energy transitions: New energy vehicle (NEV) development in Shenzhen, China. Environ. Politics 2020, 29, 524–545. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Avrin, A.-P.; Wang, X. Is China’s industrial policy effective? An empirical study of the new energy vehicles industry. Technol. Soc. 2020, 63, 101356. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y. Measuring the Policy Effectiveness of China’s New-Energy Vehicle Industry and Its Differential Impact on Supply and Demand Markets. Sustainability 2022, 14, 8215. [Google Scholar] [CrossRef]
- Dillman, K.J.; Árnadóttir, Á.; Heinonen, J.; Czepkiewicz, M.; Davíðsdóttir, B. Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven. Sustainability 2020, 12, 9390. [Google Scholar] [CrossRef]
- Onat, N.C.; Aboushaqrah, N.N.; Kucukvar, M.; Tarlochan, F.; Hamouda, A.M. From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Convers. Manag. 2020, 216, 112937. [Google Scholar] [CrossRef]
- Ahmadi, P. Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles. J. Clean. Prod. 2019, 225, 1209–1219. [Google Scholar] [CrossRef]
- Dranka, G.G.; Ferreira, P. Electric Vehicles and Biofuels Synergies in the Brazilian Energy System. Energies 2020, 13, 4423. [Google Scholar] [CrossRef]
- Gan, Y.; Lu, Z.; He, X.; Hao, C.; Wang, Y.; Cai, H.; Wang, M.; Elgowainy, A.; Przesmitzki, S.; Bouchard, J. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Environ. Sci. Technol. 2021, 55, 6944–6956. [Google Scholar] [CrossRef]
- Hou, F.; Chen, X.; Chen, X.; Yang, F.; Ma, Z.; Zhang, S.; Liu, C.; Zhao, Y.; Guo, F. Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. J. Clean. Prod. 2020, 289, 125137. [Google Scholar] [CrossRef]
- Petrovic, D.T.; Pesic, D.R.; Petrovic, M.M.; Mijailovic, R.M. Electric Cars Are They Solution to Reduce CO2 Emission? Therm. Sci. 2020, 24, 2879–2889. [Google Scholar] [CrossRef]
- Kim, S.; Pelton, R.E.O.; Smith, T.M.; Lee, J.; Jeon, J.; Suh, K. Environmental Implications of the National Power Roadmap with Policy Directives for Battery Electric Vehicles (BEVs). Sustainability 2019, 11, 6657. [Google Scholar] [CrossRef]
- Zheng, Y.; He, X.; Wang, H.; Wang, M.; Zhang, S.; Ma, D.; Wang, B.; Wu, Y. Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China. Mitig. Adapt. Strat. Glob. Chang. 2019, 25, 355–370. [Google Scholar] [CrossRef]
- Moore, J.F. Business Ecosystems and the View from the Firm. Antitrust Bull. 2006, 51, 31–75. [Google Scholar] [CrossRef]
- Jacobides, M.G.; Cennamo, C.; Gawer, A. Towards a theory of ecosystems. Strat. Manag. J. 2018, 39, 2255–2276. [Google Scholar] [CrossRef]
- Ritala, P.; Almpanopoulou, A. Defense of ‘eco’ in Innovation Ecosystem. Technovation 2017, 60, 39–42. [Google Scholar] [CrossRef]
- Teece, D.J. Next generation competition: New concepts for understanding how innovation shapes competition and policy in the digital economy. J. Law Econ. Policy 2012, 9, 97–118. [Google Scholar]
- Thomas, L.D.W.; Autio, E. Innovation ecosystems in management: An organizing typology. In Oxford Research Encyclopedia of Business and Management; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Chandler, J.D.; Lusch, R.F. Service systems: A broadened framework and research agenda on value propositions, engagement, and service experience. J. Serv. Res. 2015, 18, 6–22. [Google Scholar] [CrossRef]
- Chandler, J.D.; Vargo, S.L. Contextualization and value-in-context: How context frames exchange. Mark. Theory 2011, 11, 35–49. [Google Scholar] [CrossRef]
- Gawer, A.; Cusumano, M.A. Industry Platforms and Ecosystem Innovation. J. Prod. Innov. Manag. 2014, 31, 417–433. [Google Scholar] [CrossRef]
- Rong, K.; Hu, G.; Lin, Y.; Shi, Y.; Guo, L. Understanding business ecosystem using a 6C framework in Internet-of-Things-based sectors. Int. J. Prod. Econ. 2015, 159, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Lewin, A.Y.; Volberda, H.W. Prolegomena on Coevolution: A Framework for Research on Strategy and New Organizational Forms. Organ. Sci. 1999, 10, 519–534. [Google Scholar] [CrossRef]
- Ansari, S.; Garud, R.; Kumaraswamy, A. The disruptor’s dilemma: TiVo and the U. S. television ecosystem. Strat. Manag. J. 2016, 37, 1829–1853. [Google Scholar] [CrossRef]
- Snihur, Y.; Thomas, L.; Burgelman, R.A. An Ecosystem-Level Process Model of Business Model Disruption: The Disruptor’s Gambit. J. Manag. Stud. 2018, 55, 1278–1316. [Google Scholar] [CrossRef]
- Aarikka-Stenroos, L.; Ritala, P. Network management in the era of ecosystems: Systematic review and management framework. Ind. Mark. Manag. 2017, 67, 23–36. [Google Scholar] [CrossRef]
- Adner, R. Ecosystem as structure: An actionable construct for strategy. J. Manag. 2017, 43, 39–58. [Google Scholar] [CrossRef]
- Verhulst, P.F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 1838, 10, 113–121. [Google Scholar]
- Cox, D.R. The Regression Analysis of Binary Sequences. J. R. Stat. Soc. Ser. B 1958, 20, 215–242. [Google Scholar] [CrossRef]
- Volterra, V. Fluctuations in the Abundance of a Species considered Mathematically1. Nature 1926, 118, 558–560. [Google Scholar] [CrossRef]
- Zhang, G.L.; Daniel, A.; Mc Adams, V. Technology evolution prediction using Lotka-Volterra Equations. J. Mech. Des. 2018, 140, 61–101. [Google Scholar] [CrossRef]
- Modis, T. Technological forecasting at the stock market. Technol. Forecast. Soc. Chang. 1999, 62, 173–202. [Google Scholar] [CrossRef]
- Chang, C.; Ku, C.; Ho, H. Fuzzy multi-choice goal programming for supplier selection. Int. J. Oper. Res. Inf. Syst. 2010, 1, 28–52. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental vulnerability assessment for mainland China based on entropy method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Yang, X.; Zhang, Z.; Gao, S.; Zhou, Q.; Zhuo, Y.; Wen, X.; Guo, Z. Evaluating urban ecological civilization and its obstacle factors based on integrated model of PSR-EVW-TOPSIS: A case study of 13 cities in Jiangsu Province, China. Ecol. Indic. 2021, 133, 108431. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, W.M.; Wang, R.; Zhao, T. Study on the Coordinated Development of Urbanization and Water Resources Utilization Efficiency in China. Water Supply 2022, 22, 749–765. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, W.M.; Liu, Y. Collaborative Product Portfolio Design Based on the Approach of Multi choice Goal Programming. Math. Probl. Eng. 2021, 2021, 6678533. [Google Scholar]
- Wang, S.-Y.; Chen, W.-M.; Wu, X.-L. Competition Analysis on Industry Populations Based on a Three-Dimensional Lotka–Volterra Model. Discret. Dyn. Nat. Soc. 2021, 2021, 9935127. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, W.M.; Wang, R.; Wu, X.L. Multi-objective Evaluation of Co-volution among Innovation Populations based on Lotka-Voterra Equilibrium. Discret. Dyn. Nat. Soc. 2021, 2021, 5569108. [Google Scholar]
Report Date | BYD | Tesla China | Xiaopeng | Hozon | WM | Lixiang | Nio | Leap |
---|---|---|---|---|---|---|---|---|
May-22 | 114,183 | 32,165 | 10,125 | 11,009 | 3003 | 11,496 | 7024 | 10,069 |
Apr-22 | 105,475 | 1512 | 9002 | 8813 | 1521 | 4167 | 5074 | 9087 |
Mar-22 | 103,852 | 65,814 | 15,414 | 12,026 | 3719 | 11,034 | 9985 | 10,059 |
Feb-22 | 88,093 | 56,515 | 6225 | 7117 | 1557 | 8414 | 6131 | 3435 |
Jan-22 | 93,363 | 59,845 | 12,922 | 11,009 | 2200 | 12,268 | 9652 | 8085 |
Dec-21 | 97,990 | 70,847 | 16,000 | 10,127 | 5062 | 14,087 | 10,352 | 7046 |
Nov-21 | 97,242 | 52,859 | 15,613 | 10,013 | 5027 | 13,485 | 10,400 | 5775 |
Oct-21 | 88,898 | 54,391 | 10,138 | 8107 | 5025 | 7649 | 5225 | 3827 |
Sep-21 | 79,037 | 56,006 | 10,168 | 7699 | 2635 | 7094 | 9227 | 3766 |
Aug-21 | 62,848 | 44,264 | 7265 | 6613 | 3627 | 9433 | 4365 | 4270 |
Jul-21 | 56,975 | 32,968 | 7460 | 6011 | 4027 | 8589 | 8800 | 4157 |
Jun-21 | 49,765 | 33,155 | 7061 | 5138 | 4007 | 7713 | 8438 | 4050 |
May-21 | 45,176 | 33,463 | 5944 | 4508 | 3082 | 4323 | 6822 | 3121 |
Apr-21 | 44,606 | 25,845 | 5605 | 4015 | 3027 | 5539 | 8155 | 2864 |
Mar-21 | 37,189 | 35,478 | 4423 | 3246 | 2503 | 4900 | 7449 | 2863 |
Feb-21 | 19,529 | 18,318 | 3035 | 2002 | 1006 | 2300 | 5890 | 393 |
Jan-21 | 42,094 | 15,484 | 5180 | 2195 | 2040 | 5379 | 7748 | 1668 |
Dec-20 | 55,075 | 23,804 | 6420 | 3015 | 2588 | 6126 | 6623 | 3024 |
Nov-20 | 52,806 | 21,604 | 4650 | 2122 | 3018 | 4646 | 5500 | 2032 |
Oct-20 | 46,560 | 12,143 | 815 | 2056 | 3003 | 3692 | 5145 | 1743 |
Sep-20 | 40,905 | 11,329 | 853 | 2023 | 2107 | 3504 | 5003 | 1050 |
Aug-20 | 30,024 | 11,811 | 623 | 1205 | 2057 | 2711 | 3761 | 928 |
Jul-20 | 27,890 | 11,014 | 551 | 1016 | 2036 | 2445 | 3680 | 884 |
Jun-20 | 31,738 | 14,954 | 821 | 1333 | 2028 | 1834 | 4018 | 879 |
Enterprise | Intrinsic Growth Rate (α1) | Internal Inhibition Coefficient (γ2) | Theoretical Upper Limit of Sales Volume (K1) |
---|---|---|---|
BYD | 0.104 (0.945) | −0.00000068 (−0.524) | 153,407 |
Tesla China | 0.550 (1.790) * | −0.00001201 (−2.141) ** | 45,795 |
Xiaopeng | 0.563 (2.393) ** | −0.00005074 (−2.729) *** | 11,098 |
Hozon | 0.577 (3.443) *** | −0.00006184 (−3.406) *** | 9327 |
WM | 0.487 (1.866) * | −0.00014673 (−2.198) ** | 3317 |
Lixiang | 0.471 (1.907) * | −0.00004985 (−2.133) ** | 9452 |
Nio | 0.919 (3.630) *** | −0.00011973 (−3.947) *** | 7680 |
Leap | 0.390 (1.552) * | −0.00005330 (−1.593) * | 7320 |
Report Date | Total National Sales | Faw-VW | Gac-Toyota | Saic-VW | SGMW | Chang’an | Geely | BMW-Brilliance | Dongfeng-Nissan |
---|---|---|---|---|---|---|---|---|---|
May-22 | 1,576,803 | 89,025 | 83,730 | 83,502 | 71,493 | 66,091 | 60,197 | 62,567 | 52,531 |
Apr-22 | 950,343 | 39,444 | 68,450 | 28,685 | 44,002 | 47,980 | 49,137 | 31,743 | 37,636 |
Mar-22 | 1,819,405 | 76,586 | 96,984 | 104,200 | 102,951 | 110,015 | 75,447 | 35,723 | 56,114 |
Feb-22 | 1,451,420 | 70,638 | 49,710 | 86,076 | 43,645 | 53,034 | 55,357 | 43,558 | 74,308 |
Jan-22 | 2,138,181 | 103,462 | 99,707 | 124,491 | 72,639 | 123,707 | 112,325 | 79,087 | 110,996 |
Dec-21 | 2,398,523 | 113,635 | 93,587 | 130,878 | 151,144 | 64,830 | 122,056 | 51,427 | 88,326 |
Nov-21 | 2,175,564 | 87,518 | 81,099 | 127,201 | 128,951 | 76,113 | 103,497 | 47,158 | 92,360 |
Oct-21 | 1,990,339 | 85,096 | 56,921 | 112,400 | 115,808 | 82,402 | 86,047 | 54,836 | 78,971 |
Sep-21 | 1,737,510 | 58,593 | 44,704 | 116,840 | 75,343 | 72,032 | 84,500 | 53,837 | 74,297 |
Aug-21 | 1,543,903 | 57,844 | 38,756 | 117,644 | 100,033 | 62,997 | 77,278 | 58,511 | 80,662 |
Jul-21 | 1,543,474 | 39,391 | 75,130 | 68,451 | 72,446 | 70,200 | 79,185 | 43,466 | 74,813 |
Jun-21 | 1,553,528 | 53,688 | 73,210 | 63,671 | 61,571 | 68,086 | 81,502 | 59,640 | 77,078 |
May-21 | 1,642,018 | 96,495 | 70,018 | 107,370 | 69,914 | 75,820 | 76,575 | 62,858 | 73,864 |
Apr-21 | 1,746,754 | 67,003 | 73,900 | 101,349 | 79,732 | 83,912 | 80,549 | 61,303 | 79,744 |
Mar-21 | 1,914,414 | 129,871 | 68,800 | 107,537 | 82,734 | 83,737 | 82,668 | 65,543 | 72,746 |
Feb-21 | 1,148,130 | 69,160 | 41,500 | 48,039 | 40,957 | 81,934 | 64,860 | 41,696 | 50,985 |
Jan-21 | 2,358,372 | 120,848 | 89,800 | 85,422 | 60,933 | 114,048 | 129,644 | 73,333 | 108,274 |
Dec-20 | 2,285,751 | 123,029 | 72,159 | 145,983 | 112,855 | 68,887 | 127,932 | 54,834 | 121,886 |
Nov-20 | 2,098,448 | 154,391 | 77,400 | 145,735 | 95,663 | 97,054 | 125,712 | 61,219 | 117,430 |
Oct-20 | 2,300,447 | 141,050 | 72,000 | 137,300 | 84,716 | 95,266 | 116,244 | 47,166 | 110,507 |
Sep-20 | 2,075,889 | 137,077 | 81,000 | 156,839 | 75,526 | 81,796 | 102,451 | 56,350 | 110,523 |
Aug-20 | 1,754,600 | 112,508 | 66,314 | 129,046 | 64,770 | 73,831 | 91,641 | 65,558 | 101,901 |
Jul-20 | 1,664,826 | 92,150 | 73,952 | 122,000 | 50,506 | 69,657 | 86,508 | 63,596 | 93,787 |
Jun-20 | 1,720,593 | 105,421 | 66,888 | 127,794 | 43,151 | 68,608 | 92,593 | 46,597 | 106,570 |
Enterprise | Intrinsic Growth Rate (α1) | Internal Inhibition Coefficient (γ2) | Theoretical Upper Limit of Sales Volume (K1) |
---|---|---|---|
Total national sales | 0.697 (2.758) *** | −0.000000372 (−2.909) *** | 1,878,113 |
Faw-vw | 0.421 (1.615) * | −0.00000424 (−1.892) * | 99,518 |
Gac-toyota | 1.214 (4.778) *** | −0.00001613 (−5.013) *** | 75,265 |
SAIC-VW | 0.441 (1.303) | −0.00000405 (−1.499) * | 108,821 |
SGMW | 0.620 (2.601) *** | −0.00000686 (−3.002) *** | 90,348 |
Chang’an | 1.217 (5.843) *** | −0.00001462 (−6.330) *** | 83,228 |
Geely | 0.410 (1.916) * | −0.00000439 (−2.136) ** | 93,256 |
BMW-brilliance | 1.201 (5.188) *** | −0.00002081 (−5.412) *** | 57,710 |
Dongfeng-nissan | 0.296 (1.385) | −0.00000352 (−1.619) * | 84,042 |
Report Date | GAC Acura | Chang’an Ford | SAIC SKODA | GAC Jeep |
---|---|---|---|---|
May-22 | 617 | 16,296 | 3300 | 0 |
Apr-22 | 458 | 9292 | 3284 | 1 |
Mar-22 | 11 | 6931 | 1200 | 52 |
Feb-22 | 412 | 13,031 | 5501 | 91 |
Jan-22 | 36 | 8097 | 4270 | 132 |
Dec-21 | 101 | 18,069 | 5800 | 1724 |
Nov-21 | 5158 | 24,627 | 5704 | 1376 |
Oct-21 | 376 | 25,412 | 7800 | 1829 |
Sep-21 | 394 | 22,483 | 7601 | 2171 |
Aug-21 | 445 | 22,930 | 6600 | 1735 |
Jul-21 | 134 | 22,754 | 4400 | 724 |
Jun-21 | 221 | 18,436 | 2900 | 528 |
May-21 | 406 | 14,032 | 1900 | 555 |
Apr-21 | 524 | 13,367 | 4000 | 1503 |
Mar-21 | 643 | 10,074 | 8300 | 2176 |
Feb-21 | 756 | 15,171 | 5000 | 2523 |
Jan-21 | 362 | 8192 | 2500 | 2501 |
Dec-20 | 825 | 22,331 | 5000 | 2502 |
Nov-20 | 1224 | 25,661 | 7000 | 5176 |
Oct-20 | 906 | 22,683 | 9000 | 3655 |
Sep-20 | 1260 | 20,584 | 11,000 | 4007 |
Aug-20 | 1163 | 21,388 | 13,500 | 3862 |
Jul-20 | 802 | 15,740 | 16,000 | 3201 |
Jun-20 | 1002 | 16,702 | 11,960 | 3034 |
Enterprise | Intrinsic Growth Rate (α1) | Internal Inhibition Coefficient (γ2) | Theoretical Upper Limit of Sales Volume (K1) |
---|---|---|---|
GAC Acura | 0.305 (0.803) | −0.00025116 (−2.868) *** | 1215 |
Chang’an Ford | 0.417 (1.535) * | −0.00002241 (−1.743) * | 18,606 |
SAIC SKODA | −0.018 (−0.106) | −0.00000867 (−0.588) | −2140 |
GAC Jeep | 0.227 (1.080) | −0.00009241 (−1.583) * | 2462 |
Enterprise | Intrinsic Growth Rate (α1) | Internal Inhibition Coefficient (γ2) | Theoretical Upper Limit of Sales Volume (K1) | γ3 | Symbiotic Influence Factor (β12) | Market Influence Mechanism |
---|---|---|---|---|---|---|
BYD | 0.425 (2.895) *** | −0.00000103 (−0.907) | 439,740 | −0.00000017 (−2.819) *** | −0.725 | Market competition |
Tesla China | 0.481 (0.889) | −0.00001241 (−1.981) * | 38,757 | 0.00000005 (0.157) | 0.184 | Market driven |
Xiaopeng | 0.707 (1.751) * | −0.00004523 (−1.994) * | 15,628 | −0.00000011 (−0.442) | −0.287 | Market competition |
Hozon | 0.867 (3.674) *** | −0.00005261 (−2.882) *** | 16,494 | −0.00000020 (−1.681) * | −0.436 | Market competition |
WM | 1.130 (2.559) * | −0.00010121 (−1.473) * | 11,161 | −0.00000042 (−1.762) * | −0.703 | Market competition |
Lixiang | 0.738 (1.597) * | −0.00003884 (−1.359) | 19,004 | −0.00000019 (−0.687) | −0.491 | Market competition |
Nio | 0.794 (2.198) ** | −0.00012581 (−3.784) *** | 6313 | 0.00000009 (0.495) | 0.218 | Market driven |
Leap | 1.012 (2.226) ** | −0.00006453 (−1.956) * | 15,685 | −0.00000031 (−1.616) | −0.567 | Market competition |
Faw-vw | 0.684 (1.626) * | −0.00000272 (−0.924) | 251,192 | −0.00000022 (−0.800) | −0.598 | Market competition |
Gac-toyota | 1.109 (3.821) *** | −0.00001773 (−4.611) *** | 62,511 | 0.00000012 (0.778) | 0.203 | Market driven |
SAIC-VW | 0.768 (1.844) * | −0.00000152 (−0.463) | 504,277 | −0.00000033 (−1.307) | −0.800 | Market competition |
SGMW | 1.010 (2.267) ** | −0.00000463 (−1.476) * | 218,156 | −0.00000031 (−1.036) | −0.573 | Market competition |
Chang’an | 0.767 (3.198) *** | −0.00001813 (−7.723) *** | 42,289 | 0.00000040 (2.844) *** | 0.971 | Market driven |
Geely | 0.431 (1.522) * | −0.00000385 (−0.760) | 111,727 | −0.00000004 (−0.116) | −0.167 | Market competition |
BMW-brilliance | 1.169 (4.025) *** | −0.00002113 (−4.923) *** | 55,332 | 0.00000003 (0.188) | 0.043 | Market driven |
Dongfeng-nissan | 0.355 (1.345) * | −0.00000266 (−0.858) | 133,400 | −0.00000007 (−0.397) | −0.385 | Market competition |
GAC Acura | −0.103 (−0.051) | −0.00027559 (−2.233) ** | −373 | 0.00000025 | −4.481 | Market competition |
Chang’an Ford | 0.717 (1.906) * | −0.00001710 (−1.215) | 41,942 | −0.00000022 (−1.123) | −0.564 | Market competition |
SAIC SKODA | 0.737 (1.442) | −0.00001256 (−0.770) | 58,654 | −0.00000038 (−1.614) * | −0.979 | Market competition |
GAC Jeep | 0.303 (0.637) | −0.00008887 (−1.399) | 3405 | −0.00000005 (−0.187) | −0.283 | Market competition |
Enterprise | Logistic Model | LV Model | TOPSIS Result | RANK | ||||||
---|---|---|---|---|---|---|---|---|---|---|
α1 | γ2 | K1 | α1 | γ2 | K1 | γ3 | β12 | |||
BYD | 0.0989 | 1.0001 | 1.0001 | 0.4152 | 1.0001 | 0.8722 | 0.3050 | 0.6890 | 0.6136 | 15 |
Tesla China | 0.4600 | 0.9549 | 0.3083 | 0.4592 | 0.9587 | 0.0776 | 0.5733 | 0.8557 | 0.6833 | 5 |
Xiaopeng | 0.4705 | 0.8002 | 0.0852 | 0.6369 | 0.8391 | 0.0318 | 0.3781 | 0.7694 | 0.6422 | 9 |
Hozon | 0.4819 | 0.7559 | 0.0738 | 0.7627 | 0.8122 | 0.0335 | 0.2684 | 0.7420 | 0.6339 | 10 |
WM | 0.4090 | 0.4170 | 0.0352 | 0.9694 | 0.6352 | 0.0230 | 0.0001 | 0.6931 | 0.5377 | 18 |
Lixiang | 0.3961 | 0.8038 | 0.0746 | 0.6613 | 0.8624 | 0.0385 | 0.2806 | 0.7319 | 0.6232 | 14 |
Nio | 0.7588 | 0.5248 | 0.0632 | 0.7053 | 0.5456 | 0.0133 | 0.6221 | 0.8620 | 0.6276 | 13 |
Leap | 0.3305 | 0.7900 | 0.0609 | 0.8767 | 0.7688 | 0.0319 | 0.1342 | 0.7180 | 0.6084 | 16 |
Faw-vw | 0.3556 | 0.9859 | 0.6537 | 0.6188 | 0.9939 | 0.4986 | 0.2440 | 0.7123 | 0.6614 | 6 |
Gac-toyota | 0.9977 | 0.9384 | 0.4977 | 0.9529 | 0.9393 | 0.1247 | 0.6586 | 0.8592 | 0.8406 | 2 |
SAIC-VW | 0.3718 | 0.9866 | 0.7135 | 0.6848 | 0.9983 | 1.0001 | 0.1099 | 0.6753 | 0.6533 | 8 |
SGMW | 0.5167 | 0.9754 | 0.5947 | 0.8751 | 0.9870 | 0.4331 | 0.1342 | 0.7169 | 0.6930 | 4 |
Chang’an | 1.0001 | 0.9444 | 0.5489 | 0.6841 | 0.9378 | 0.0846 | 1.0001 | 1.0001 | 0.8446 | 1 |
Geely | 0.3467 | 0.9853 | 0.6134 | 0.4199 | 0.9898 | 0.2222 | 0.4635 | 0.7914 | 0.6608 | 7 |
BMW-brilliance | 0.9871 | 0.9197 | 0.3849 | 1.0001 | 0.9269 | 0.1105 | 0.5489 | 0.8299 | 0.8074 | 3 |
Dongfeng-nissan | 0.2544 | 0.9888 | 0.5542 | 0.3602 | 0.9942 | 0.2652 | 0.4269 | 0.7514 | 0.6300 | 12 |
GAC Acura | 0.2616 | 0.0001 | 0.0217 | 0.0001 | 0.0001 | 0.0001 | 0.8172 | 0.0001 | 0.2268 | 20 |
Chang’an Ford | 0.3523 | 0.9133 | 0.1335 | 0.6448 | 0.9416 | 0.0840 | 0.2440 | 0.7186 | 0.6336 | 11 |
SAIC SKODA | 0.0001 | 0.9682 | 0.0001 | 0.6605 | 0.9581 | 0.1171 | 0.0489 | 0.6424 | 0.5699 | 17 |
GAC Jeep | 0.1985 | 0.6339 | 0.0297 | 0.3193 | 0.6802 | 0.0076 | 0.4513 | 0.7701 | 0.5199 | 19 |
wj | 0.130 | 0.164 | 0.073 | 0.156 | 0.167 | 0.022 | 0.119 | 0.169 |
β12 | 0.10 | 0.25 | 0.40 | 0.55 | 0.70 | 0.85 | 1.00 |
BYD | 154,134 | 161,413 | 168,693 | 175,972 | 183,251 | 190,530 | 197,809 |
Tesla China | 36,344 | 38,664 | 40,985 | 43,306 | 45,627 | 47,947 | 50,268 |
Xiaopeng | 22,635 | 23,709 | 24,783 | 25,857 | 26,931 | 28,004 | 29,078 |
Hozon | 15,132 | 16,563 | 17,995 | 19,427 | 20,858 | 22,290 | 23,722 |
WM | 5823 | 6332 | 6848 | 7350 | 7859 | 8368 | 8877 |
Lixiang | 15,695 | 16,968 | 18,240 | 19,513 | 20,785 | 22,058 | 23,331 |
Nio | 13,975 | 14,812 | 15,648 | 16,485 | 17,321 | 18,158 | 18,995 |
Leap | 14,735 | 16,263 | 17,792 | 19,320 | 20,849 | 22,377 | 23,906 |
β12 | −2 | −1.2 | −1 | −0.6 | 0.6 | 1.2 | 2 |
BYD | 52,226 | 91,048 | 100,754 | 120,165 | 178,398 | 207,515 | 246,337 |
Tesla China | 3854 | 16,231 | 19,325 | 25,514 | 44,079 | 53,362 | 65,739 |
Xiaopeng | 7603 | 13,330 | 14,761 | 17,625 | 26,215 | 30,510 | 36,236 |
Hozon | <0 | 2723 | 4632 | 8450 | 19,904 | 25,631 | 33,267 |
WM | <0 | 1411 | 2090 | 3447 | 7519 | 9555 | 12,270 |
Lixiang | <0 | 4666 | 6362 | 9756 | 19,937 | 25,027 | 31,815 |
Nio | <0 | <0 | 816 | 3047 | 9740 | 13,086 | 17,548 |
Leap | <0 | 1488 | 3526 | 7602 | 19,830 | 25,944 | 34,096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S. Exploring the Sustainability of China’s New Energy Vehicle Development: Fresh Evidence from Population Symbiosis. Sustainability 2022, 14, 10796. https://doi.org/10.3390/su141710796
Wang S. Exploring the Sustainability of China’s New Energy Vehicle Development: Fresh Evidence from Population Symbiosis. Sustainability. 2022; 14(17):10796. https://doi.org/10.3390/su141710796
Chicago/Turabian StyleWang, Shengyuan. 2022. "Exploring the Sustainability of China’s New Energy Vehicle Development: Fresh Evidence from Population Symbiosis" Sustainability 14, no. 17: 10796. https://doi.org/10.3390/su141710796
APA StyleWang, S. (2022). Exploring the Sustainability of China’s New Energy Vehicle Development: Fresh Evidence from Population Symbiosis. Sustainability, 14(17), 10796. https://doi.org/10.3390/su141710796