Disruption in Resource-Intensive Supply Chains: Reshoring and Nearshoring as Strategies to Enable Them to Become More Resilient and Sustainable
Abstract
:1. Introduction
- GAP 2: There is a lack of empirical examples in the literature of the application of the transdisciplinary approach to solving complexities in the production operations environment [40].
2. Methodological Design
2.1. Manufacturing Process Overview
2.2. Environmental Analysis Overview
2.3. Technological Analysis Overview
- Dimensional compliance, measured by comparing the actual length with the nominal length, measurements were taken with the CNE100 1000 mm fiftieth caliper, ±0.02 mm, following ISO 10545-2 [46].
- Water absorption compliance, measured under vacuum according to ISO 10545-3 [46], measurements were made with Bel Engineering M6202Di Model Precision balance, ±0.01 g.
- Flexural strength, according to ISO 10545-4 [46], measurements were performed with the Gabbrielli Technology Flexi 1000 LX-650, ±100 g.
3. Transdisciplinary Analysis’s Findings
3.1. Assessment of Sectoral Scenarios
3.2. Designing a Strategic Sourcing Option
3.3. Environmental Assessment of Sourcing Option
3.4. Technological Assessment of Sourcing Option
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvstam, C.G.; Fang, T. Global Value Chain Strategies Before and After the Pandemic Crisis: The Case of Volvo Cars. In Globalization, Political Economy, Business and Society in Pandemic Times; Emerald Publishing Limited: Bingley, UK, 2021. [Google Scholar] [CrossRef]
- Hameiri, S. COVID-19: Is this the end of globalization? Int. J. 2021, 76, 30–41. [Google Scholar] [CrossRef]
- Van Hoek, R.; Dobrzykowski, D. Towards more balanced sourcing strategies–are supply chain risks caused by the COVID-19 pandemic driving reshoring considerations? Supply Chain. Manag. Int. J. 2021, 26, 689–701. [Google Scholar] [CrossRef]
- Magableh, G.M. Supply chains and the COVID-19 pandemic: A comprehensive framework. Eur. Manag. Rev. 2021, 18, 363–382. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of sustainability: Drivers, opportunities and policy implications. Sustainability 2021, 14, 200. [Google Scholar] [CrossRef]
- Miceli, A.; Hagen, B.; Riccardi, M.P.; Sotti, F.; Settembre-Blundo, D. Thriving, not just surviving in changing times: How sustainability, agility and digitalization intertwine with organizational resilience. Sustainability 2021, 13, 2052. [Google Scholar] [CrossRef]
- Settembre-Blundo, D.; González-Sánchez, R.; Medina-Salgado, S.; García-Muiña, F.E. Flexibility and resilience in corporate decision making: A new sustainability-based risk management system in uncertain times. Glob. J. Flex. Syst. Manag. 2021, 22, 107–132. [Google Scholar] [CrossRef]
- Alcaraz, J.L.G.; Reza, J.R.D.; Soto, K.C.A.; Escobedo, G.H.; Happonen, A.; Vidal, R.P.I.; Macías, E.J. Effect of Green Supply Chain Management Practices on Environmental Performance: Case of Mexican Manufacturing Companies. Mathematics 2022, 10, 1877. [Google Scholar] [CrossRef]
- Ahmadini, A.A.H.; Modibbo, U.M.; Shaikh, A.A.; Ali, I. Multi-objective optimization modelling of sustainable green supply chain in inventory and production management. Alex. Eng. J. 2021, 60, 5129–5146. [Google Scholar] [CrossRef]
- Alonso-Muñoz, S.; González-Sánchez, R.; Siligardi, C.; García-Muiña, F.E. Building exploitation routines in the circular supply chain to obtain radical innovations. Resources 2021, 10, 22. [Google Scholar] [CrossRef]
- Khanuja, A.; Jain, R.K. The conceptual framework on integrated flexibility: An evolution to data-driven supply chain management. TQM J. 2021. [Google Scholar] [CrossRef]
- Bogataj, M.; Grubbström, R.W.; Bogataj, L. Efficient location of industrial activity cells in a global supply chain. Int. J. Prod. Econ. 2011, 133, 243–250. [Google Scholar] [CrossRef]
- Puig, F.; Cantarero, S.; Verdone, F. Coronavirus versus the textile industry: Cluster lessons for future challenges. Fash. Text. 2022, 9, 1–20. [Google Scholar] [CrossRef]
- Gothwal, S.; Saha, R. Plant location selection of a manufacturing industry using analytic hierarchy process approach. Int. J. Serv. Oper. Manag. 2015, 22, 235–255. [Google Scholar] [CrossRef]
- Krieger-Boden, C.; Soltwedel, R. Identifying European economic integration and globalization: A review of concepts and measures. Reg. Stud. 2013, 47, 1425–1442. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y. The impacts of offshore and onshore outsourcing on China’s upgrading in global value chains: Evidence from its manufacturing and service sectors. Struct. Change Econ. Dyn. 2021, 59, 263–280. [Google Scholar] [CrossRef]
- Baldwin, R.; Venables, A.J. Spiders and snakes: Offshoring and agglomeration in the global economy. J. Int. Econ. 2013, 90, 245–254. [Google Scholar] [CrossRef]
- Yu, U.J.; Kim, J.H. Financial productivity issues of offshore and “Made-in-USA” through reshoring. J. Fash. Mark. Manag. Int. J. 2018, 22, 317–334. [Google Scholar] [CrossRef]
- Johansson, M.; Olhager, J.; Heikkilä, J.; Stentoft, J. Offshoring versus backshoring: Empirically derived bundles of relocation drivers, and their relationship with benefits. J. Purch. Supply Manag. 2019, 25, 100509. [Google Scholar] [CrossRef]
- Cosimato, S.; Vona, R. Digital innovation for the sustainability of reshoring strategies: A literature review. Sustainability 2021, 13, 7601. [Google Scholar] [CrossRef]
- Fratocchi, L.; Di Mauro, C.; Barbieri, P.; Nassimbeni, G.; Zanoni, A. When manufacturing moves back: Concepts and questions. J. Purch. Supply Manag. 2014, 20, 54–59. [Google Scholar] [CrossRef]
- Barbieri, P.; Boffelli, A.; Elia, S.; Fratocchi, L.; Kalchschmidt, M.; Samson, D. What can we learn about reshoring after COVID-19? Oper. Manag. Res. 2020, 13, 131–136. [Google Scholar] [CrossRef]
- Ciravegna, L.; Michailova, S. Why the world economy needs, but will not get, more globalization in the post-COVID-19 decade. J. Int. Bus. Stud. 2021, 53, 172–186. [Google Scholar] [CrossRef]
- Settembre-Blundo, D.; del Hoyo, A.P.F.; García-Muiña, F.E. The risk associated with strategic decisions: Is it a marketing issue? Strateg. Dir. 2018, 35, 6–8. [Google Scholar] [CrossRef]
- Piatanesi, B.; Arauzo-Carod, J.M. Backshoring and nearshoring: An overview. Growth Chang. 2019, 50, 806–823. [Google Scholar] [CrossRef]
- Romanello, R.; Veglio, V. COVID-19 Crisis, Digitalization and Localization Decisions. In International Business in Times of Crisis: Tribute Volume to Geoffrey Jones; Emerald Publishing Limited: Bingley, UK, 2022. [Google Scholar] [CrossRef]
- Colamatteo, A.; Cassia, F.; Sansone, M. Near-shoring versus far-shoring: Effects on customer perceived quality and purchase intention. TQM J. 2021. [Google Scholar] [CrossRef]
- Merino, F.; Di Stefano, C.; Fratocchi, L. Back-shoring vs near-shoring: A comparative exploratory study in the footwear industry. Oper. Manag. Res. 2021, 14, 17–37. [Google Scholar] [CrossRef]
- Puška, A.; Beganović, A.; Stojanović, I.; Murtič, S. Green supplier’s selection using economic and environmental criteria in medical industry. Environ. Dev. Sustain. 2022, 1–22. [Google Scholar] [CrossRef]
- Appolloni, A.; Jabbour, C.J.C.; D’Adamo, I.; Gastaldi, M.; Settembre-Blundo, D. Green recovery in the mature manufacturing industry: The role of the green-circular premium and sustainability certification in innovative efforts. Ecol. Econ. 2022, 193, 107311. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.T.; Kumar, N.M.; Shafiullah, G.M.; Chopra, S.S.; Nadarajah, M. Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world. Appl. Energy 2021, 292, 116665. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. A profitability assessment of small-scale photovoltaic systems in an electricity market without subsidies. Energy Convers. Manag. 2016, 129, 62–74. [Google Scholar] [CrossRef]
- Matyushok, V.; Krasavina, V.; Berezin, A.; García, J.S. The global economy in technological transformation conditions: A review of modern trends. Econ. Res.-Ekon. Istraž. 2021, 34, 1471–1497. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, M.; Ali, S.; Kirikkaleli, D.; Khan, Z. Natural resources commodity prices volatility and economic performance: Evidence from China pre and post COVID-19. Resour. Policy 2021, 74, 102338. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.M.; Chopra, S.S. Leveraging Blockchain and Smart Contract Technologies to Overcome Circular Economy Implementation Challenges. Sustainability 2022, 14, 9492. [Google Scholar] [CrossRef]
- Gligor, D.M.; Holcomb, M.C.; Stank, T.P. A multidisciplinary approach to supply chain agility: Conceptualization and scale development. J. Bus. Logist. 2013, 34, 94–108. [Google Scholar] [CrossRef]
- Xu, L.D. The contribution of systems science to industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 618–631. [Google Scholar] [CrossRef]
- Broo, D.G. Transdisciplinarity and three mindsets for sustainability in the age of cyber-physical systems. J. Ind. Inf. Integr. 2022, 27, 100290. [Google Scholar] [CrossRef]
- Peruzzini, M.; Stjepandić, J. Editorial to the special issue “Transdisciplinary analytics in supply chain management”. J. Manag. Anal. 2018, 5, 75–80. [Google Scholar] [CrossRef]
- Peruzzini, M.; Wognum, N.; Bil, C.; Stjepandic, J. Special issue on ‘transdisciplinary approaches to digital manufacturing for industry 4.0′. Int. J. Comput. Integr. Manuf. 2020, 33, 321–324. [Google Scholar] [CrossRef]
- Nallapaneni, M.K.; Chopra, S.S. Sustainability and Resilience of Circular Economy Business Models Based on Digital Ledger Technologies; Waste Management and Valorisation for a Sustainable Future: Seoul, Korea, 2021. [Google Scholar]
- Nallapaneni, M.K. Leveraging Blockchain and Smart Contract Technology for Sustainability and Resilience of Circular Economy Business Models. Doctoral Dissertation, City University of Hong Kong, Hong Kong, China, 2021. PhD-SEE-55632135. [Google Scholar]
- García-Muiña, F.E.; Medina-Salgado, M.S.; Ferrari, A.M.; Cucchi, M. Sustainability transition in industry 4.0 and smart manufacturing with the triple-layered business model canvas. Sustainability 2020, 12, 2364. [Google Scholar] [CrossRef]
- Settembre Blundo, D.S.; García-Muiña, F.E.; Pini, M.; Volpi, L.; Siligardi, C.; Ferrari, A.M. Sustainability as source of competitive advantages in mature sectors: The case of Ceramic District of Sassuolo (Italy). Smart Sustain. Built Environ. 2019, 8, 53–79. [Google Scholar] [CrossRef]
- Appolloni, A.; D’Adamo, I.; Gastaldi, M.; Yazdani, M.; Settembre-Blundo, D. Reflective backward analysis to assess the operational performance and eco-efficiency of two industrial districts. Int. J. Product. Perform. Manag. 2021. [Google Scholar] [CrossRef]
- Vacchi, M.; Siligardi, C.; Cedillo-González, E.I.; Ferrari, A.M.; Settembre-Blundo, D. Industry 4.0 and smart data as enablers of the circular economy in manufacturing: Product re-engineering with circular eco-design. Sustainability 2021, 13, 10366. [Google Scholar] [CrossRef]
- Dondi, M.; Garcia-Ten, J.; Rambaldi, E.; Zanelli, C.; Vicent-Cabedo, M. Resource efficiency versus market trends in the ceramic tile industry: Effect on the supply chain in Italy and Spain. Resour. Conserv. Recycl. 2021, 168, 105271. [Google Scholar] [CrossRef]
- Esteller-Cucala, M.; Fernandez, V.; Villuendas, D. Towards data-driven culture in a Spanish automobile manufacturer: A case study. J. Ind. Eng. Manag. 2020, 13, 228–245. [Google Scholar] [CrossRef]
- Zucchella, A.; Previtali, P. Circular business models for sustainable development: A “waste is food” restorative ecosystem. Bus. Strategy Environ. 2019, 28, 274–285. [Google Scholar] [CrossRef]
- Settembre Blundo, D.S.; Politi, A.L.M.; del Hoyo, A.P.F.; Muiña, F.E.G. The Gadamerian hermeneutics for a mesoeconomic analysis of Cultural Heritage. J. Cult. Herit. Manag. Sustain. Dev. 2019, 9, 300–333. [Google Scholar] [CrossRef]
- Ros-Dosdá, T.; Fullana-i-Palmer, P.; Mezquita, A.; Masoni, P.; Monfort, E. How can the European ceramic tile industry meet the EU’s low-carbon targets? A life cycle perspective. J. Clean. Prod. 2018, 199, 554–564. [Google Scholar] [CrossRef]
- Türkmen, B.A.; Özbilen, Ş.K.; Duhbacı, T.B. Improving the sustainability of ceramic tile production in Turkey. Sustain. Prod. Consum. 2021, 27, 2193–2207. [Google Scholar] [CrossRef]
- Vacchi, M.; Siligardi, C.; Demaria, F.; Cedillo-González, E.I.; González-Sánchez, R.; Settembre-Blundo, D. Technological sustainability or sustainable technology? A multidimensional vision of sustainability in manufacturing. Sustainability 2021, 13, 9942. [Google Scholar] [CrossRef]
- Garcia-Muiña, F.E.; González-Sánchez, R.; Ferrari, A.M.; Settembre-Blundo, D. The paradigms of Industry 4.0 and circular economy as enabling drivers for the competitiveness of businesses and territories: The case of an Italian ceramic tiles manufacturing company. Soc. Sci. 2018, 7, 255. [Google Scholar] [CrossRef]
- Keller, F.; Lee, R.P.; Meyer, B. Life cycle assessment of global warming potential, resource depletion and acidification potential of fossil, renewable and secondary feedstock for olefin production in Germany. J. Clean. Prod. 2020, 250, 119484. [Google Scholar] [CrossRef]
- Toniolo, S.; Tosato, R.C.; Gambaro, F.; Ren, J. Life cycle thinking tools: Life cycle assessment, life cycle costing and social life cycle assessment. In Life Cycle Sustainability Assessment for Decision-Making; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–56. [Google Scholar]
- Hosseini-Motlagh, S.M.; Johari, M.; Zirakpourdehkordi, R. Grain production management to reduce global warming potential under financial constraints and time value of money using evolutionary game theory. Int. J. Prod. Res. 2021, 59, 5108–5129. [Google Scholar] [CrossRef]
- Dondi, M.; Raimondo, M.; Zanelli, C. Clays and bodies for ceramic tiles: Reappraisal and technological classification. Appl. Clay Sci. 2014, 96, 91–109. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Y.; Zhao, W.; Wang, J.; Chen, L. Supporting resilient conceptual design using functional decomposition and conflict resolution. Adv. Eng. Inform. 2021, 48, 101262. [Google Scholar] [CrossRef]
- Fiori, C.; Vitali, D.; Camurri, E.; Fabbri, B.; Gualtieri, S. Archaeometrical study of Celtic ceramics from Monte Bibele (Bologna, Italy). Appl. Clay Sci. 2011, 53, 454–465. [Google Scholar] [CrossRef]
- Vázquez, M.; Jiménez-Millán, J. Clay raw materials from the Triassic Red Beds (Northern Jaen, Spain) for making ceramic construction materials. Mater. Constr. 2004, 54, 5–20. [Google Scholar] [CrossRef]
- Saracevic, E.; Koch, D.; Stuermer, B.; Mihalyi, B.; Miltner, A.; Friedl, A. Economic and global warming potential assessment of flexible power generation with biogas plants. Sustainability 2019, 11, 2530. [Google Scholar] [CrossRef]
- Cucchi, M.; Volpi, L.; Ferrari, A.M.; García-Muiña, F.E.; Settembre-Blundo, D. Industry 4.0 real-world testing of dynamic organizational life cycle assessment (O-LCA) of a ceramic tile manufacturer. Environ. Sci. Pollut. Res. 2022, 1–20. [Google Scholar] [CrossRef]
Tiles Production (Millions of m2) | Turnover (EUR Million) | Exports (%) | No. of Employees | |
---|---|---|---|---|
2021 | 435 | 6166 | 84 | 18,528 |
2020 | 344 | 5132 | 86 | 18,747 |
2019 | 401 | 5341 | 84 | 19,318 |
2018 | 416 | 5381 | 85 | 19,692 |
2017 | 395 | 5546 | 85 | 19,515 |
Raw Materials | Source | Sourcing Criticisms | S0 | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|---|---|---|
High-plasticity ball clay | Ukraine | 5 | 25% | 10% | ||||
Medium-plasticity ball clay | Germany | 2 | 10% | 25% | 30% | 30% | 25% | 20% |
Low-plasticity kaolinitic clay | Italy | 1 | 10% | 10% | 15% | 30% | 25% | 30% |
Medium-plasticity red-bed clays | Italy | 3 | 10% | 15% | ||||
Sodium feldspar | Turkey | 4 | 35% | 35% | 35% | 20% | 20% | 15% |
Potassium feldspar | Italy | 1 | 10% | 10% | 10% | 15% | 10% | 10% |
Quartz sand | Italy | 1 | 10% | 10% | 10% | |||
Feldspathic sand | Italy | 1 | 5% | 10% | 10% |
wt% | S0 | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|---|
SiO2 | 67.70 | 68.76 | 69.73 | 69.79 | 69.02 | 68.82 |
Al2O3 | 19.42 | 18.40 | 17.46 | 17.35 | 17.46 | 17.24 |
Fe2O3 | 0.85 | 0.89 | 0.91 | 1.09 | 1.67 | 2.03 |
TiO2 | 0.64 | 0.64 | 0.59 | 0.56 | 0.57 | 0.54 |
MgO | 0.44 | 0.42 | 0.40 | 0.38 | 0.57 | 0.65 |
CaO | 0.87 | 0.86 | 0.86 | 0.61 | 0.56 | 0.53 |
Na2O | 3.99 | 3.94 | 3.97 | 2.60 | 2.72 | 2.34 |
K2O | 2.47 | 2.37 | 2.44 | 3.22 | 3.14 | 3.41 |
Loss On Ignition | 3.70 | 3.75 | 3.65 | 4.36 | 4.25 | 4.34 |
Criticism level | 3.15 | 2.70 | 2.35 | 1.90 | 2.05 | 1.95 |
Technological Performance | Composition of Ceramic Bodies | |||||
---|---|---|---|---|---|---|
S0 | S1 | S2 | S3 | S4 | S5 | |
Sourcing Strategy | Starting Point | Reshoring | Nearshoring | |||
Length (nominal L = 604 mm) | 603.8 | 603.5 | 603.1 | 602.9 | 602.5 | 601.9 |
Dimensional conformity (ISO 10545-2) | L ± 2.0 mm | L ± 2.0 mm | L ± 2.0 mm | L ± 2.0 mm | L ± 2.0 mm | L ± 2.0 mm |
Water absorption (%) | 0.29 | 0.31 | 0.35 | 0.41 | 0.28 | 0.18 |
Water absorption conformity (ISO 10545-3) | ≤0.5% | ≤0.5% | ≤0.5% | ≤0.5% | ≤0.5% | ≤0.5% |
Bending strength (N) | 1780 ± 1 | 1759 ± 1 | 1734 ± 1 | 1691 ± 1 | 1682 ± 1 | 1715 ± 1 |
Bending strength conformity (ISO 10545-4) | ≥1300 N | ≥1300 N | ≥1300 N | ≥1300 N | ≥1300 N | ≥1300 N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Miguel, A.; Riccardi, M.P.; Veglio, V.; García-Muiña, F.E.; Fernández del Hoyo, A.P.; Settembre-Blundo, D. Disruption in Resource-Intensive Supply Chains: Reshoring and Nearshoring as Strategies to Enable Them to Become More Resilient and Sustainable. Sustainability 2022, 14, 10909. https://doi.org/10.3390/su141710909
Fernández-Miguel A, Riccardi MP, Veglio V, García-Muiña FE, Fernández del Hoyo AP, Settembre-Blundo D. Disruption in Resource-Intensive Supply Chains: Reshoring and Nearshoring as Strategies to Enable Them to Become More Resilient and Sustainable. Sustainability. 2022; 14(17):10909. https://doi.org/10.3390/su141710909
Chicago/Turabian StyleFernández-Miguel, Andrés, Maria Pia Riccardi, Valerio Veglio, Fernando E. García-Muiña, Alfonso P. Fernández del Hoyo, and Davide Settembre-Blundo. 2022. "Disruption in Resource-Intensive Supply Chains: Reshoring and Nearshoring as Strategies to Enable Them to Become More Resilient and Sustainable" Sustainability 14, no. 17: 10909. https://doi.org/10.3390/su141710909
APA StyleFernández-Miguel, A., Riccardi, M. P., Veglio, V., García-Muiña, F. E., Fernández del Hoyo, A. P., & Settembre-Blundo, D. (2022). Disruption in Resource-Intensive Supply Chains: Reshoring and Nearshoring as Strategies to Enable Them to Become More Resilient and Sustainable. Sustainability, 14(17), 10909. https://doi.org/10.3390/su141710909