Sustainable Food Supply from the Perspective of Paddy Ecosystem Elasticity: Policies and Implications
Abstract
:1. Introduction
2. Literature Review
2.1. Food Consumption
2.2. Food Supply
2.3. Ecosystem Elasticity and Sustainable Food Supply
3. Theoretical Analysis and Hypothesis Development
3.1. Ecological Factors Underlying ANEV
3.1.1. Proportion of Paddy Area and ANEV
3.1.2. Per Capita Cultivated Land Area and ANEV
3.1.3. Wastewater Discharge Per Capita and ANEV
3.2. Economic Factor Underlying ANEV
3.2.1. Agricultural Economy Level and ANEV
3.2.2. Urbanization Rate and ANEV
3.3. Social Factors Underlying ANEV
3.3.1. Farmer Education Expenditure and ANEV
3.3.2. Rural Medical Level and ANEV
4. Materials and Methods
4.1. Panel Data Model
4.2. Variable Selection
4.2.1. Explained Variable
4.2.2. Paddy Ecosystem Elasticity
4.2.3. Explanatory Variables
4.3. Data
5. Results
5.1. Panel Regression Results
5.2. Threshold Regression Results
5.3. Threshold Regression Results
6. Discussion
6.1. Policy Recommendations for Ecological Factors
6.2. Policy Recommendations of Economic Factors
6.3. Policy Recommendations of Social Factors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Food Policy Report; International Food Policy Research Institute: Washington, DC, USA, 2020; Available online: https://www.ifpri.org (accessed on 7 April 2020).
- Schiefer, J.; Lair, G.J.; Blum, W. Potential and limits of land and soil for sustainable intensification of European agriculture. Agric. Ecosyst. Environ. 2016, 230, 283–293. [Google Scholar] [CrossRef]
- Lucia, R.; Ulrike, E.; Sylvia, L. Sustainable food consumption: An overview of contemporary issues and policies. Sustain. Sci. 2013, 9, 7–25. [Google Scholar]
- Holder, M.D. The contribution of food consumption to well-being. Ann. Nutr. Metab. 2019, 74, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Yang, X.Y. Policy orientation and strategy choice of ensuring food security in post-pandemic era. Issues Agric. Econ. 2021, 1, 41–53. [Google Scholar]
- Li, B.; Wang, R.M. A review of land tenure security and farmers’ behaviors of land improvement. Resour. Sci. 2021, 43, 909–920. [Google Scholar] [CrossRef]
- Yu, X.H.; Wu, Z.L.; Zhou, J.H. The implications of the reform of common agricultural policy in the EU for China: The Relationship between Long-term international grain price fluctuations and domestic agricultural subsidies. Chin. Rural. Econ. 2017, 2, 84–96. [Google Scholar]
- Pu, M.Z.; Lv, X.Y.; Zhong, Y. The evolution of grain procurement and storage policies in major countries(regions) and its enlightenment. China’s Rural. Econ. 2019, 11, 116–138. [Google Scholar]
- Zhu, J.; Li, T.X.; Zang, X.Y. Emerging challenges and coping strategies in China’s food security under the high-level opening up. Issues Agric. Econ. 2021, 7, 27–40. [Google Scholar]
- Li, Y.L.; Ma, W.Q.; Jiang, G.H.; Li, G.Y.; Zhou, D.Y. The degree of cultivated land abandonment and its influence on grain yield in main grain producing areas of China. J. Nat. Resour. 2021, 36, 1439–1454. [Google Scholar] [CrossRef]
- Yang, M.Z.; Pei, Y.S.; Li, X.D. Study on grain self-sufficiency rate in China: An analysis of grain, cereal grain and edible grain. J. Nat. Resour. 2019, 34, 881–889. [Google Scholar] [CrossRef]
- Wang, R.F.; Li, S.; Wang, H.L.; Li, J. Evaluation and realization path of high quality development of China’s grain industry. Stat. Decis. 2020, 14, 93–97. [Google Scholar]
- Lucia, A.R. Shaping healthy and sustainable food systems with behavioral. Food Policy 2021, 48, 665–693. [Google Scholar]
- Yang, Z.; Han, L. Institutional path and experience from supporting policy transformation of U.S. grain industry. World Agric. 2020, 7, 25–31. [Google Scholar]
- Chen, Z.; Li, X.J.; Xia, L.; Jin, B. The influence of urbanization development on agricultural green production efficiency. Stat. Decis. 2021, 37, 99–102. [Google Scholar]
- Mak, T.M.W.; Xiong, X.; Tsang, D.C.W.; Yu, I.K.M.; Sun, P.C. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresour. Technol. 2020, 297, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Harry, G.; Dušan, D.; David, R.; Justa, C.R.; Geeta, S. Analyzing the economics of food loss and waste reductions in a food supply chain. Food Policy 2020, 101953, 1–15. [Google Scholar]
- Yao, C.S.; Yin, W.; Li, Z.T. The vulnerability assessment and driving mechanism analysis of China’s food security system. J. Nat. Resour. 2019, 34, 1720–1734. [Google Scholar] [CrossRef]
- Yang, T.; Sun, Y.H.; Li, X.L.; Li, Q.Y. An ecosystem elasticity perspective of paddy ecosystem sustainability evaluation: The case of China. J. Clean. Prod. 2021, 295, 1–13. [Google Scholar] [CrossRef]
- Geraldine, C.; Paule, M. The role of diverse distribution channels in reducing food loss and Waste: The case of the Cali tomato supply chain in Colombia. Food Policy 2020, 10, 1–12. [Google Scholar]
- Huang, X.S.; Zheng, R. On the concept of resource sociability and its legislative realization. Law Rev. 2011, 29, 87–93. [Google Scholar]
- Hu, D.S. The evolution of ecological civilization policies and laws in Western countries. Soc. Sci. Abroad 2018, 1, 81–90. [Google Scholar]
- Pu, M.Z.; Zheng, F.T. Where should China’s grain support policy go? China Popul. Resour. Environ. 2020, 30, 115–125. [Google Scholar]
- Yang, D.Q.; Wang, K.J.; Jiang, H.P. Analysis of the Impact of food production reduction on food security in China and policy. Suggest. Econ. 2018, 12, 71–80. [Google Scholar]
- Guo, X.P. Analysis of China’s food self-sufficiency rate fluctuation and protection of food security. J. Chin. Agric. Mech. 2016, 37, 258–263. [Google Scholar]
- Jiang, H.P.; Yao, Y.; Jiang, L. Development thoughts and policy suggestions for China’s food security in the new era. Economist 2020, 1, 110–118. [Google Scholar]
- Jiang, H.; Zhang, K.J. Current situation and policy choice of grain supply-side structural reform. Issues Agric. Econ. 2016, 10, 8–17. [Google Scholar]
- Rizou, M.; GaLanakis, I.M.; Aldawoud, T.M.S.; GaLanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 239–299. [Google Scholar] [CrossRef]
- Luo, S.X.; He, K.; Zhang, J.B. The more grain production, the more fertilizers pollution? Empirical evidence from major grain-producing areas in China. China Agric. Econ. 2020, 1, 108–131. [Google Scholar]
- Zhou, B.; Zhai, Y.L.; Qian, W.; Yu, Z.G. An analysis of the factors affecting China’s food security from the perspective of agricultural sustainable development—An empirical analysis based on structural Equation Mode. Rural. Econ. 2015, 11, 15–19. [Google Scholar]
- Marta, K.; Sarah, K.J.; Elisabetta, G.; Dolapo, E. Cross scale trade of analysis for sustainable development: Linking future demand for animal source foods and ecosystem services provision to the SDGs. Sustain. Sci. 2022, 17, 209–220. [Google Scholar]
- Garnett, T. Three perspectives on sustainable food security: Efficiency, demand restraint, food system transformation. What role for LCA? J. Clean. Prod. 2014, 73, 10–18. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K.N.; Zhang, X.D.; Feng, Z. Evaluation on farmland health productivity in main grain production areas: A case study in Wen county of Henan province. China Land Sci. 2019, 33, 31–45. [Google Scholar]
- Amiri, Z.; Asgharipour, M.R.; Campbell, D.E. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on emergy and economic analyses. J. Clean. Product. 2019, 226, 1051–1066. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, K.D.N.; Basnayake, S.; Arambepola, N.M.S.I.; Rathnayake, U.; Nawaratne, C. A local level technology and policy intervention approach to restore paddy ecosystems in the Nilwala downstream, affected due to Nilwala flood protection scheme, southern Sri Lanka. Procedia Econ. Financ. 2014, 18, 336–344. [Google Scholar] [CrossRef]
- Ecosystems and human well-being: Biodiversity synthesis. In Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2003.
- Zhu, Z.W.; Li, K.X.; Wang, H. The characteristics, development and policy suggestions of rice planting integrated with fishery in China. China Fish 2016, 10, 32–35. [Google Scholar]
- Cui, N.X.; Cai, M.; Zhang, X.; AhMed, A.A.; Zhou, L.; Sun, H.F.; Chen, G.F.; Zou, G.Y.; Zhou, S. Runoff loss of nitrogen and phosphorus from a rice paddy in the east of China: Effects of long-term chemical N fertilizer and organic manure applications. Glob. Ecol. Conserv. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.J.; Zhang, X.Z.; Li, T.X. Variation of cadmium uptake, translocation among rice lines and detecting for potential cadmium-safe cultivars. Environ. Earth Sci. 2014, 71, 277–286. [Google Scholar]
- Liu, Y.H.; Li, Y.B.; Liang, X.Y. Study on economic loss accounting of water environmental pollution in the three gorges reservoir Area. J. Chongqing Norm. Univ. Nat. Sci. 2019, 36, 56–63. [Google Scholar]
- Liao, L.W.; Qin, J.X.; Liu, Y.Q.; Li, T.T. Study on ecological elasticity of Hunan province based on land use transition. Econ. Geogr. 2015, 9, 16–23. [Google Scholar]
- Yang, T.; Sun, Y.H. Evaluation of the net value of paddy ecosystem services in China. J. China Agric. Univ. 2020, 25, 159–172. [Google Scholar]
- MacArthur, R.H. On the relative abundance of bird species. Proc. Natl. Acad. Sci. USA 1957, 43, 293–295. [Google Scholar] [CrossRef]
- Eshetu, S.F.; Jinming, S.; Li, X.M.; Bao, Z.C.; Zhou, Z.L. An insight into Land-cover changes and their impacts on ecosystem services before and after the implementation of a comprehensive experimental zone plan in pingtan island, China. Land Use Policy 2019, 82, 631–642. [Google Scholar]
- Luo, H.P.; Zhu, Q.Q.; Pan, L.X.; Song, Y. Dynamic evolution and spatial differentiation of farmland ecosystem service value in major grain-producing Areas. Stat. Decis. 2020, 4, 49–52. [Google Scholar]
- Zheng, K.Q.; Jin, E.T.; Song, Y.; Luo, H.P. Study on the spatial inclusion of food security and ecological security in China—A case study of main grain producing Areas. Shangdong Soc. Sci. 2019, 2, 124–129. [Google Scholar]
- Xu, J.M.; Meng, J.; Liu, X.M.; Shi, J.C.; Tang, X.J. Control of heavy metal pollution in farmland of China in terms of food security. Chin. Acad. Sci. 2018, 33, 153–159. [Google Scholar]
- Wu, Y.Z.; Shan, L.P.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Qin, X.C.; Fu, B.H. Spatio-temporal coordination between ecosystem services and economic development and its optimal utilization in Qingdao metropolitan region, China. Acta Ecol. Sin. 2020, 40, 8251–8264. [Google Scholar]
- Han, L.; Wang, S.K.; Liu, C.Q. China’s rural development progress and regional comparison: A study based on assessment of China’s rural development index from 2011 to 2017. Chin. Rural. Econ. 2019, 7, 1–20. [Google Scholar]
- Peng, Y.; Lai, Y.; Li, X.W.; Zhang, X.L. An alternative model for measuring the sustainability of Urban regeneration: The way forward. J. Clean. Product. 2015, 109, 76–83. [Google Scholar] [CrossRef]
- Wei, S.; Pijanowski, B.C.; Tayyebi, A. Urban expansion and its consumption of high-quality farmland in beijing, China. Ecol. Indic. 2015, 54, 60–70. [Google Scholar]
- Ding, R.Z.; He, Y. Urban sprawl and stranded urbanized people in China. China Popul. Resour. Environ. 2016, 4, 30–39. [Google Scholar]
- Chen, W.X.; Liu, Z.L.; Li, J.F.; Ran, D.; Zeng, J. Mapping the spatial relationship between ecosystem services and urbanization in the middle reaches of the Yangtze river urban agglomerations. Acta Ecol. Sin. 2020, 40, 5137–5150. [Google Scholar]
- Gao, Y.L.; Zhang, Z.Y.; Wei, S.H.; Wang, Z.G. Impact of urbanization on food security: Evidence from provincial panel data in China. Resour. Sci. 2019, 41, 1462–1474. [Google Scholar] [CrossRef]
- Marshall, A. The Principles of Economics; Macmillan: London, UK, 1992. [Google Scholar]
- Wang, Q.Y.; Zhao, W.; Liu, X.Y. Member identity and environment protection: An investigation based on identity economics. China Econ. Stud. 2020, 5, 43–54. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook; China Statistical Press: Beijing, China, 2008–2017. [Google Scholar]
- Department of Socio-economic Research for Rural National Bureau of Statistics. China Rural Statistical Yearbook; China Statistical Press: Beijing, China, 2008–2017. [Google Scholar]
- Department of Ecology and Environment for National Bureau of Statistics. China Statistics Yearbook of Environment; China Statistical Press: Beijing, China, 2008–2017. [Google Scholar]
- Min, J.S.; Kong, X.Z. The restrictive factors and system breakthrough of the innovation of the new-type agricultural operation subject’s management mode. Econ. Rev. J. 2016, 5, 66–70. [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Brunori, G.; Galli, F.; Barjolle, D.; Van Broekhuizen, R.; Colombo, L.; Giampietro, M.; Kirwan, H.; Lang, T.; Mathijs, E.; Maye, D.; et al. Are local food chains more sustainable than global food chains? Considerations for assessment. Sustainability 2016, 8, 449. [Google Scholar] [CrossRef]
- Smith, J.; Lang, T.; Vorley, B.; Barling, D. Addressing policy challenges for more sustainable local–global food chains: Policy frameworks and possible food “futures”. Sustainability 2016, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.N.; Huang, J.K.; Hou, L.L. Impacts of the grassland ecological compensation policy on household livestock production in China: An empirical study in Inner Mongolia. Ecol. Econ. 2019, 161, 248–256. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, Q. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield. Acta Agron. Sin. 2021, 47, 2522–2531. [Google Scholar]
- Xiong, X.; Duan, Y.J.; Fu, W.Y.; Xiao, J. Evaluation of urbanization efficiency of urban agglomeration in the middle reaches of Yangtze river and its spatial-temporal differentiation characteristic. Econ. Geogr. 2021, 41, 105–112. [Google Scholar]
Type | Variable Name | Code | Variable Definition |
---|---|---|---|
Ecological | Proportion of paddy area | Are | Proportion of paddy to total sown area |
Per capita cultivated land area | Lan | Proportion of cultivated land area to population | |
Annual wastewater discharge per capita | Was | Proportion of total wastewater discharge to population (tons/person) | |
Economic | Agricultural economy level | Inv | Percentage of GDP in primary industry |
Urbanization rate | Urb | Percentage of total urban population | |
Social | Education of farmers | Edu | Proportion of rural expenditure on culture, education and entertainment to consumption expenditure |
Rural medical level | Med | Number of doctors per 1000 population |
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
ANEV | 300 | 3379 | 1376 | 1359 | 6660 |
Are | 300 | 0.19 | 0.18 | 0.0002 | 0.73 |
Lan | 300 | 0.11 | 0.08 | 0.01 | 0.42 |
Was | 300 | 47.97 | 17.73 | 11.67 | 107.79 |
Inv | 300 | 0.101 | 0.079 | 0.003 | 1.12 |
Urb | 300 | 0.55 | 0.14 | 0.22 | 0.90 |
Edu | 300 | 0.09 | 0.03 | 0.01 | 0.15 |
Med | 300 | 5.67 | 1.79 | 2.37 | 15.46 |
e | 300 | 7.94 | 15.50 | 0.22 | 86.07 |
ANEV | Coef. | Robust Std. Err | t | p > |t| |
---|---|---|---|---|
Are | −2176.97 | 649.65 | −3.35 | 0.002 *** |
Lan | 774.05 | 269.33 | 2.87 | 0.008 *** |
Was | −2.73 | 1.15 | −2.37 | 0.025 ** |
Inv | −275.00 | 281.92 | −1.78 | 0.086 * |
Urb | 1740.08 | 467.86 | 3.72 | 0.001 *** |
Edu | −1557.57 | 645.20 | −2.41 | 0.022 ** |
Med | 60.88 | 15.51 | 3.93 | 0.001 *** |
LnANEV | Coef. | Robust Std. Err | t | p > |t| |
---|---|---|---|---|
lnAre | −0.08 | 0.12 | −2.60 | 0.015 ** |
lnLan | 0.02 | 0.19 | 0.97 | 0.338 |
lnWas | −0.08 | 0.00 | −3.33 | 0.002 *** |
lnInv | −0.05 | 0.01 | −2.40 | 0.023 ** |
lnUrb | 0.03 | 0.11 | 0.37 | 0.715 |
lnEdu | −0.03 | 0.11 | −2.22 | 0.034 ** |
lnMed | 0.09 | 0.00 | 3.58 | 0.001 *** |
_cons | 8.06 | 0.06 | 42.50 | 0.000 |
rho | 0.9959 |
Threshold Variables | Threshold | Th-e | Coef. | F.stat | Prob | Different Significance-Level Critical Values | ||
---|---|---|---|---|---|---|---|---|
Crit10 | Crit5 | Crit1 | ||||||
Lan | Single | 55.07 | 0.02\0.01 | 32.62 *** | 0.00 | 13.21 | 15.62 | 22.63 |
Double | —— | 3.01 | 0.86 | 9.46 | 13.03 | 19.92 | ||
Triple | —— | 2.88 | 0.83 | 11.04 | 13.96 | 20.82 | ||
Urb | Single | 38.90 | 0.07\−0.02 | 26.10 *** | 0.00 | 9.80 | 11.98 | 15.92 |
Double | —— | 23.29 | 0.13 | 26.25 | 31.97 | 46.28 | ||
Triple | —— | 14.40 | 0.30 | 30.55 | 37.46 | 47.79 |
Th-e | Threshold Variables | Coef. |
---|---|---|
0 ≤ e < 38.90 | Lan | 0.02 |
Urb | 0.07 | |
38.8928 ≤ e < 55.07 | Lan | 0.02 |
Urb | −0.02 | |
e ≥ 55.07 | Lan | 0.01 |
Urb | −0.02 |
Provinces | Year | e | Provinces | Year | e |
---|---|---|---|---|---|
Heilongjiang | 2009 | 66.77 | Jiangxi | 2016 | 75.57 |
Heilongjiang | 2010 | 74.21 | Hubei | 2016 | 75.24 |
Tianjin | 2013 | 55.07 | Hunan | 2016 | 61.04 |
Jilin | 2016 | 86.07 | Guangdong | 2016 | 72.59 |
Heilongjiang | 2016 | 85.59 | Guangxi | 2016 | 82.58 |
Jiangsu | 2016 | 43.09 | Chongqing | 2016 | 58.81 |
Anhui | 2016 | 55.34 | Guizhou | 2016 | 63.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Sun, Y.; Li, X. Sustainable Food Supply from the Perspective of Paddy Ecosystem Elasticity: Policies and Implications. Sustainability 2022, 14, 10917. https://doi.org/10.3390/su141710917
Yang T, Sun Y, Li X. Sustainable Food Supply from the Perspective of Paddy Ecosystem Elasticity: Policies and Implications. Sustainability. 2022; 14(17):10917. https://doi.org/10.3390/su141710917
Chicago/Turabian StyleYang, Teng, Yanhua Sun, and Xiaolin Li. 2022. "Sustainable Food Supply from the Perspective of Paddy Ecosystem Elasticity: Policies and Implications" Sustainability 14, no. 17: 10917. https://doi.org/10.3390/su141710917
APA StyleYang, T., Sun, Y., & Li, X. (2022). Sustainable Food Supply from the Perspective of Paddy Ecosystem Elasticity: Policies and Implications. Sustainability, 14(17), 10917. https://doi.org/10.3390/su141710917