Review on Tunnel Communication Technology
Abstract
:1. Introduction
2. Wireless Transmission Technology
2.1. Wireless Communication Signal Sources
2.1.1. Cellular Base Stations
2.1.2. Microcellular Base Stations
2.1.3. Wireless Fiber Optic Repeaters
2.1.4. Wired Fiber Optic Repeaters
- (1)
- At the intersection of each tunnel and the ground, outdoor directional antennas are used to radiate the signal inside the tunnel in the direction of the tunnel to the outside, when the underground tunnel extends to the ground, the signal field strength inside the tunnel and the signal field strength outside the tunnel maintain a smooth transition state.
- (2)
- When the signal environment outside the tunnel is relatively good, the RF repeater is used to amplify the signal from outside the tunnel and then introduce it into the tunnel, so that the signal field strength inside the tunnel and outside the tunnel can be maintained in a smooth transition state in the underground tunnel near the tunnel entrance.
- (3)
- Using the characteristics of the leaky coaxial cable to feed the RF signal, the leaky cable will be extended out of the tunnel opening and continue to lay along the ground for a certain distance, so that when the underground tunnel is extended to the ground, the signal field strength inside and outside the tunnel maintains a smooth transition state.
2.1.5. Relay Equipment
2.2. Tunnel Overlay Antenna System
2.2.1. Tunnel Coverage Antenna Selection
2.2.2. Coaxial Passive Distributed Antenna System
2.2.3. Fiber Optic Active Distributed Antenna System
2.2.4. Leakage Cables
2.3. Wireless Signal Networking Methods
2.3.1. ZigBee
2.3.2. Bluetooth
2.3.3. Wi-Fi
2.3.4. NB-IoT
2.3.5. LoRa
2.3.6. RFID
2.3.7. GPRS
2.3.8. 3G/4G/5G
2.3.9. UWB Ultra-Wideband Technology
2.3.10. Wireless Bridges
2.3.11. Satellites
3. Wired Transmission Technology
3.1. RS485
3.2. PLC (Power Carrier)
4. Typical Tunnel Scenario Coverage Options
4.1. Short Tunnels
- (1)
- Directional cellular base station coverage: By pulling far away from the macro base station signal at the tunnel entrance, a directional wide beam antenna is used to provide directional coverage of the tunnel entrance.
- (2)
- Micro base station coverage: through the construction of micro-stations on the monitoring poles at the tunnel entrance, the tunnel will be covered in a directional manner, such as a two-way separated tunnel that can be covered by an antenna power division.
4.2. Medium-Length Tunnels
4.3. Extra Long Tunnels
4.4. Continuous Tunnel Complex
4.5. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.C. Exploration of wireless signal coverage solutions for bridges and tunnels in urban areas. Inf. Commun. 2020, 4, 194–197. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=HBYD202001097&uniplatform=NZKPT&v=x_pSycBxH6xvaMiRXkCNIA_nb-rBvH54OpPHUG_XyJN3EcO4cZAZHZ4kLjLjpc5a (accessed on 5 May 2022).
- Yang, Y.; Li, Y.L.; Li, J. Radio Channel Research in Coal Mine Laneways. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch SZ, Switzerland, 2013; Volume 605, pp. 2222–2226. [Google Scholar]
- Coll, J.F.; Ängskog, P.; Shabai, H.; Chilo, J.; Stenumgaard, P. Analysis of wireless communications in underground tunnels for industrial use. In Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3216–3220. [Google Scholar]
- Masson, E.; Combeau, P.; Cocheril, Y.; Berbineaucd, M.; Aveneaub, L.; Vauzelleb, R. Radio wave propagation in arch-shaped tunnels: Measurements and simulations by asymptotic methods. Comptes Rendus Phys. 2010, 11, 44–53. [Google Scholar] [CrossRef]
- Song, D. Research on the Propagation Characteristics of Mobile Communication Frequency Band Based on SBR/Image in Tunnel Environment; Nanjing University of Posts and Telecommunications: Nanjing, China, 2015. [Google Scholar]
- Xu, T. Study on the Propagation Characteristics of Electric Waves in Curved Tunnels Based on Ray-Tracing Simulation; Beijing Jiaotong University: Beijing, China, 2015. [Google Scholar]
- Zhai, W.Y. Capacity and Performance Optimization of Wireless Collaborative Communication Systems in Tunnels; China University of Mining and Technology: Beijing, China, 2015. [Google Scholar]
- Wang, T.S.; Yang, C.F. Simulations and Measurements of Wave Propagations in Curved Road Tunnels for Signals From GSM Base Stations. IEEE Trans. Antennas Propag. 2006, 54, 2577–2584. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, D.; Liao, C.; Du, Z.; Xiong, J. Binary Phased Array Antenna System Suitable for Tunnel Environment. Intense Laser Part Beam 2020, 32, 053006. [Google Scholar]
- Wei, Y.; Huang, Y.; Wu, S. Discussion on various deployment schemes and business models of 5G base station private network modules. Telecommun. Sci. 2022, 38, 164–173. [Google Scholar]
- Tao, J. Research on the scheme of intelligent construction of communication bearing platform for railway tunnels. Railw. Commun. Signal Eng. Technol. 2022, 19, 53. [Google Scholar]
- Li, B. Discussion on construction technical points and quality control of subway communication engineering. China Informatiz. 2022, 66–67. Available online: http://webvpn.lzjtu.edu.cn/https/494a553139386968732a235e35546e283b214e30190ce109615cefc6/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2022&filename=IGXN202201027&uniplatform=NZKPT&v=vfkct43qsZFem2Yb7WpKqpfebo8hlLpL9tnYN-PjGTKEY5tUDmzgaf2gRrAr_xgk (accessed on 5 May 2022).
- Zhang, L.; Jiao, J.; Dai, G.; Ding, B. Research on construction technology of high-speed rail tunnels close to existing lines with small clearance distance. In Proceedings of the 2021 Academic Annual Conference of the Chinese Society of Civil Engineering, Changsha, China, 27 September 2021. [Google Scholar]
- Zhang, C. Design of real-time low-power wireless sensor network. Instrum. Technol. Sens. 2013, 1, 89–91. [Google Scholar]
- Li, Q. A Low-Power Wireless Sensor Network Node Location Method Based on RSSI., Electronic Technology and Software Engineering. 2022. Available online: http://webvpn.lzjtu.edu.cn/https/494a553139386968732a235e35546e283b214e30190ce109615cefc6/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2022&filename=DZRU202203005&uniplatform=NZKPT&v=EIiuf4RA871WRYMqAAKdAlu3I42DtCR595DuhdjkUjWIcwpMsqwDp3n3sZj91cj1 (accessed on 3 April 2022).
- Tang, X.; Zhou, F.; Wu, G. Research on Low-Power Adaptive Hybrid Cluster Hierarchical Protocol for Laboratory Secure Wireless Perception Network. J. Sens. Technol. 2022, 35. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2022&filename=CGJS202202016&uniplatform=NZKPT&v=5_pZZGviBxiNtn4CY0fLKK4uLw2-vCPZoPwEnu0i4Pdlrp2k64RPya1MZtBhS3BA (accessed on 7 May 2022).
- Infantolino, J.K.; Kuhlman, A.J.; Weiss, M.D.; Haupt, R.L. Modeling RF attenuation in a mine due to tunnel diameter and shape. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1914–1915. [Google Scholar]
- Mahmoud, S.F. Wireless transmission in tunnels with non-circular cross section. IEEE Trans. Antennas Propag. 2009, 58, 6. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, E. The analysis of some simulation results of wireless channel in rectangular tunnel. In Proceedings of the 2002 3rd International Conference on Microwave Proceedings. ICMMT 2002, Beijing, China, 17–19 August 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 341–344. [Google Scholar]
- Chen, X.; Pan, Y.; Wu, Y.; Zheng, G. Research on Doppler spread of multipath channel in subway tunnel. In Proceedings of the 2014 IEEE International Conference on Communiction Problem-Solving, Beijing, China, 4–7 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 56–59. [Google Scholar]
- Xiao, J.; Hu, F.; Zhang, P.; Huang, L. Compressed Sensing for Energy Conservation Pavement Temperature Compression on Epave. IEEE Access 2020, 8, 17892–17902. [Google Scholar] [CrossRef]
- Joshi, J.; Mukherjee, S.; Kumar, R.; Awasthi, P.; Deka, M.; Kurian, D.S.; Mittal, S.; Birdi, B. Monitoring of Earth Air Tunnel (EAT) a smart cooling system using Wireless Underground Sensor Network. In Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1212–1216. [Google Scholar]
- Li, W.; Chan, E.; Hamdi, M.; Lu, S.; Chen, D. Communication cost minimization in wireless sensor and actor networks for road surveillance. IEEE Trans. Veh. Technol. 2010, 60, 618–631. [Google Scholar] [CrossRef]
- Wang, D.F.; Zhao, X.; Chen, M.C. Typical application of AAU3240 in high-speed tunnel. Commun. Manag. Technol. 2019, 3. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=HLTJ201901034&uniplatform=NZKPT&v=UgUK9MB0ufEZ_0f9D97dGlKjzlV7jpkB9oHcpwD6aVJ8TCyGDg-wic88DloCdt9Z (accessed on 7 April 2022).
- Libman, L.; Bastani, S.; Waller, S.T. Real-time traffic monitoring using wireless beacons with the cell transmission model. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Indianapolis, IN, USA, 19–22 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1079–1084. [Google Scholar]
- Li, L. Network coverage technology based on fiber optic repeater. Small Medium Enterp. Manag. Technol. 2010, 1. Available online: http://webvpn.lzjtu.edu.cn/https/494a553139386968732a235e35546e283b214e30190ce109615cefc6/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=ZXQX201001150&uniplatform=NZKPT&v=V0cuK9pm6C8ZH6H4-1rnS8SraUoImTG-qrJ3TPn6U2E4WQfsXy5r7KNaebVkzlRM (accessed on 7 June 2022).
- Wu, J.Q.; Xu, H.; Zhang, Y.; Sun, R. An improved vehicle-pedestrian near-crash identification method with a roadside LiDAR sensor. J. Saf. Res. 2020, 73, 211–224. [Google Scholar] [CrossRef]
- Li, D.; Ding, G.P.; Zhao, M.; Gao, D.G. Comparative study on the setting of mobile communication switching area in tunnel. J. Railw. Eng. 2007, 4. Available online: http://webvpn.lzjtu.edu.cn/https/494a553139386968732a235e35546e283b214e30190ce109615cefc6/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2007&filename=TDGC200711011&uniplatform=NZKPT&v=et7BrKgRhLVmNYu67s19eRbxecaFqvw7wQR9F0RlqSB-GGQt05u6IMUwzKbpu3iU (accessed on 5 May 2022).
- Liu, H.L. Exploration of tunnel coverage technology for public mobile communication network. Railw. Surv. Des. 2010, 3. Available online: http://www.cqvip.com/qk/92130x/201004/35424366.html (accessed on 9 July 2022).
- Shi, J.Q. Construction and maintenance of antenna installation in mobile communication base stations. Telecommun. Eng. Technol. Stand. 2003, 6. Available online: http://webvpn.lzjtu.edu.cn/https/494a553139386968732a235e35546e283b214e30190ce109615cefc6/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2003&filename=DGJB200308012&uniplatform=NZKPT&v=28jYzgm2WKCcPBlcrF8529UPt1QoJ4nYOrxWkjL8tvESuirJyiMLUtJNSIbPuHA0 (accessed on 7 June 2022).
- Masson, E.; Cocheril, Y.; Berbineau, M.; Hovinen, V.; Roivanen, A. MIMO channel characterization in subway tunnel for train-to-wayside applications. In Proceedings of the 2012 12th International Conference on ITS Telecommunications, Taipei, Taiwan, 5–8 November 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 732–736. [Google Scholar]
- Shi, D.B. Antenna installation requirements and applications for tunnel coverage. China Manag. Inf. Technol. 2017, 20, 2. [Google Scholar]
- Available online: https://baijiahao.baidu.com/sid=1640382707843654562&wfr=spider&for=pc (accessed on 5 May 2022).
- Zhang, B. Comparative analysis of digital TV signal coverage methods in tunnels. Commun. World 2016, 1. Available online: http://webvpn.lzjtu.edu.cn/https/494a553139386968732a235e35546e283b214e30190ce109615cefc6/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2017&filename=TXSJ201623052&uniplatform=NZKPT&v=owzu0CqipIJjqqgxy760ix9RExSYKDVDDc_hhL3pB1PxGAXJBzHO2QHK3-JNG9en (accessed on 9 April 2022).
- Long tunnel coverage problems and solutions for 3G networks. Commun. World 2005, 39. Available online: http://webvpn.lzjtu.edu.cn/https/494a553139386968732a235e35546e283b214e30190ce109615cefc6/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2005&filename=JSTX200519034&uniplatform=NZKPT&v=lOq0rWyoe6MDiBdT2_wvIMj9n2gLNlwarFFHhelfLnvwcdHgOu6yGGEcDW4diSrM (accessed on 18 March 2022).
- Dai, Y.H.; Xia, X.Z.; Zhang, L. Comparative analysis of digital TV signal coverage in tunnels. Chin. J. Graph. 2007, 10, 1693–1695. [Google Scholar]
- Shan, S. Overview of indoor coverage signals and tunnel coverage design for small base stations and 5G networks. Inf. Commun. 2019, 214–215. Available online: https://www.cnki.com.cn/Article/CJFDTotal-HBYD201912103.htm (accessed on 18 June 2022).
- Available online: https://baijiahao.baidu.com/sid=1668267254425221908&wfr=spider&for=pc (accessed on 18 June 2022).
- Tang, Q.T.; Ma, Z.; Guan, K.; Luo, D.; Xu, H. Research on wireless signal coverage in urban tunnels based on high-performance ray-tracing technology. J. Beijing Jiaotong Univ. 2021, 45, 16–21. [Google Scholar]
- Jilal, R.A.; Nedil, M.; Coulibaly, Y.; Denidni, T.A.; Mabrouk, I.B.; Talbi, L. Characterization of the MIMO channel for LTE standard inmine. In Proceedings of the IEEE International Symposium on Antennas and Propagation, Spokane, WA, USA, 3–8 July 2011; pp. 2777–2780. [Google Scholar]
- Cao, W. Leaky cable communication system for Hong Kong tunnels. Fiber Opt. Cables Appl. Technol. 1988, 1. Available online: https://doi.org/10.19467/j.cnki.1006-1908.1988.01.014 (accessed on 15 June 2022).
- Jiang, C.; Gu, Y.; Chen, M.; Zhong, Y. Application of broadband leaky coaxial cable in the Huangpu River tunnel. Fibers Cables Appl. Technol. 1991. [Google Scholar] [CrossRef]
- Volner, R.; Ticha, D. Main security system of the first highway tunnel on Slovakia. In Proceedings of the IEEE International Carnahan Conference on Security Technology, Madrid, Spain, 5–7 October 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 398–404. [Google Scholar]
- Wang, X.; Xiu, K. Research on wireless signal coverage in tunnels. Silicon Val. 2015, 8, 67–79. [Google Scholar]
- Wu, D. Design and experience of tunnel operation and management facilities in Taizhou section of Yongtaiwen Expressway. Highw. Tunn. 2001, 1, 2–9. [Google Scholar]
- Feng, L.; Wang, C. Application of new leaky cables in the construction of 5G networks in underground tunnel scenarios. China New Commun. 2021, 23. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=TXWL202102049&uniplatform=NZKPT&v=TVNvMD85LNdH4duhGCODK-f_qKNVb7qQrDpGkM9aEWUX1Ar7YL-Fw6iHq444U3is (accessed on 8 April 2022).
- Cui, K. Design of Tunnel Personnel Location System Based on ZigBee Technology; Northeast Petroleum University: Daqing, China, 2018. [Google Scholar]
- Ramya, C.M.; Shanmugaraj, M.; Prabakaran, R. Study on ZigBee technology. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; IEEE: Piscataway, NJ, USA, 2011; Volume 6, pp. 297–301. [Google Scholar]
- Safaric, S.; Malaric, K. ZigBee wireless standard. In Proceedings of the ELMAR 2006, Zadar, Croatia, 7–9 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 259–262. [Google Scholar]
- Gislason, D. Zigbee Wireless Networking; Newnes: London, UK, 2008. [Google Scholar]
- Chen, Y.; Li, X. Gas monitoring system for power cable tunnel based on ZigBee. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1809–1812. [Google Scholar]
- Wang, H.; Liang, P.; Ruan, Q.; Zhao, L.; Qiu, X. Design of ZigBee-based tunnel personnel location system. J. Lanzhou Jiaotong Univ. 2016, 35, 94–99. [Google Scholar]
- Wang, H. Design of ZigBee-Based Tunnel Personnel Location System; Chang’an University: Xi’an, China, 2014. [Google Scholar]
- Xu, T.; Cao, S.; Zhou, W.; Wang, Y. Research on the design of long and large tunnel construction personnel positioning tracking system. Highway 2014, 59, 113–117. [Google Scholar]
- Liang, Z. Research on ZigBee-Based Tunnel Personnel Location System; Shenyang University of Technology: Shenyang, China, 2019. [Google Scholar]
- Pu, L.; Yang, L.H.; Li, S. Review of research and prospect of wireless communication technology in tunnel health monitoring. Sichuan Constr. 2022, 42, 153–158. [Google Scholar]
- Wang, N. Research on WSN-Based Vehicle Monitoring and Positioning System for Highway Tunnels; Chang’an University: Xi’an, China, 2014. [Google Scholar]
- Zhang, G.; Zhang, W.; Pan, B.; Zhou, D. Environmental sensitivity analysis of tunnel wireless health monitoring system. Highw. Traffic Technol. 2014, 109–112+119. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, X. Technical research on the safety network platform system for tunnel construction. China Saf. Prod. Sci. Technol. 2010, 6, 97–101. [Google Scholar]
- Sairam, K.V.S.; Gunasekaran, N.; Redd, S.R. Bluetooth in wireless communication. IEEE Commun. Mag. 2002, 40, 90–96. [Google Scholar] [CrossRef]
- Haartsen, J.C. The Bluetooth radio system. IEEE Pers. Commun. 2000, 7, 28–36. [Google Scholar] [CrossRef]
- Yang, M.F.; Wang, X.L. Development and application of a multi-terminal monitoring system for tunnels on the Ping Chang Line of Shanxi Provincial Road. Shanxi Transp. Sci. Technol. 2020, 93–96. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=SXJT202003030&uniplatform=NZKPT&v=m1NuQyp2GXV9g-28TUAemXwgHYSw6lkiJCmwybR9Qm4VQSL47FPaiMDk-KuJpqQl (accessed on 10 June 2022).
- Balasubramanian, A.; Mahajan, R.; Venkataramani, A. Augmenting mobile 3G using WiFi. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, San Francisco, CA, USA, 15–18 June 2010; pp. 209–222. [Google Scholar]
- Henry, P.S.; Luo, H. WiFi: What’s next? IEEE Commun. Mag. 2002, 40, 66–72. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, G.; Wang, S. WiFi sensing with channel state information: A survey. ACM Comput. Surv. 2019, 52, 1–36. [Google Scholar] [CrossRef]
- Yang, D. Design of highway tunnel lighting control system based on wifi wireless network. Sci. Technol. Perspect. 2017, 155–156. [Google Scholar] [CrossRef]
- Zhou, C.; Luo, H.; Fang, W.; Wei, R.; Ding, L. Cyber-physical-system-based safety monitoring for blind hoisting with the internet of things: A case study. Autom. Constr. 2019, 97, 138–150. [Google Scholar] [CrossRef]
- Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT system for M2M communication. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Adhikary, A.; Lin, X.; Wang, Y.P.E. Performance evaluation of NB-IoT coverage. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Martinez, B.; Adelantado, F.; Bartoli, A.; Vilajosana, X. Exploring the performance boundaries of NB-IoT. IEEE Internet Things J. 2019, 6, 5702–5712. [Google Scholar] [CrossRef]
- Ji, B.; Cai, Y.; Zhang, J.; Chang, J.; Zhao, Z.; Zhao, Y.; Zhao, Y. Autonomous tunnel control system based on NB-IOT design. Digit. Des. 2021, 10, 1. [Google Scholar]
- Shi, H.; Wang, X.; Yang, L.; Ding, X. Design of NB-IOT-based monitoring system for roadheading machine operation status. Intell. Comput. Appl. 2021, 11, 110–113. [Google Scholar]
- Lin, H. LoRa wireless technology based tunnel intelligent lighting control system. Fujian Transp. Sci. Technol. 2020, 130–132+138. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=FJJT202002034&uniplatform=NZKPT&v=uhinBuM1jIp0HCu7MNciXL8uApsEznLNKna-tcxOsJ8BMk1accXJGNTDlSp74BUm (accessed on 8 April 2022).
- Bor, M.; Vidler, J.E.; Roedig, U. LoRa for the Internet of Things. In Proceedings of the EWSN’16 Proceedings of the 2016 International Conference on Embedded, Graz, Austria, 15–17 February 2016. [Google Scholar]
- Chen, L.; Hong, W.; Jiang, Z.Y. Research on Multi-sensor Wireless Network Based on Complex Tunnel Engineering and Its Data Pushing Method. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2601–2606. [Google Scholar]
- Wang, D.; Teng, D.; Li, C. A tunnel health monitoring system based on low-power wireless sensor network. Surv. Mapp. Bull. 2018, 273–277. [Google Scholar] [CrossRef]
- Lin, H. Tunnel Intelligent Lighting Control System Based on LoRa Wireless Technology. Fujian Transp. Sci. Technol. 2020, 4. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=FJJT202002034&uniplatform=NZKPT&v=uhinBuM1jIp0HCu7MNciXL8uApsEznLNKna-tcxOsJ8BMk1accXJGMfgWx0-Ngj7 (accessed on 1 June 2022).
- Wang, Y. Research on the optimal deployment of base stations for tunnel personnel positioning based on RF technology. Road Traffic Saf. 2016, 16, 33–37. [Google Scholar] [CrossRef]
- Weinstein, R. RFID: A technical overview and its application to the enterprise. IT Prof. 2005, 7, 27–33. [Google Scholar] [CrossRef]
- Juels, A. RFID security and privacy: A research survey. IEEE J. Sel. Areas Commun. 2006, 24, 381–394. [Google Scholar] [CrossRef]
- Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-field Communication; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Available online: http://www.yours-iot.com/index.php?c=content&a=show&id=336 (accessed on 5 May 2022).
- Yan, W.; Gao, Y.; Xu, J. Research on tunnel construction personnel positioning and safety management system. Constr. Saf. 2015, 30, 15–20. [Google Scholar]
- Wang, G.W.; Du, R.H.; Hu, L.Q.; Wang, Y.; Yang, X.G. Design and implementation of a tunnel traffic event detection system based on RFID pass card. Traffic Inf. Saf. 2011, 29, 112–115. [Google Scholar]
- Guo, Z.; Li, Z.; Fu, D.; She, Z. A tunnel electromechanical equipment operation monitoring system based on RFID and ZigBee technology. Ind. Saf. Environ. Prot. 2020, 46, 17–21. [Google Scholar]
- Manuello, A.; Niccolini, G.; Carpinteri, A. AE monitoring of a concrete arch road tunnel: Damage evolution and localization. Eng. Fract. Mech. 2019, 210, 279–287. [Google Scholar] [CrossRef]
- GSM, GPRS and EDGE Performance: Evolution towards 3G/UMTS; John Wiley & Sons: Hoboken, NJ, USA, 2004.
- Bettstetter, C.; Vogel, H.J.; Eberspacher, J. GSM phase 2+ general packet radio service GPRS: Architecture, protocols, and air interface. IEEE Commun. Surv. 1999, 2, 2–14. [Google Scholar] [CrossRef]
- Ghribi, B.; Logrippo, L. Understanding GPRS: The GSM packet radio service. Comput. Netw. 2000, 34, 763–779. [Google Scholar] [CrossRef]
- Dong, Z.; Li, Y.; Feng, J. Research and Design on Vehicle-Mounted Wireless Transmission Terminal. In Proceedings of the 2009 International Forum on Computer Science, Chongqing, China, 25–27 December 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 2, pp. 295–298. [Google Scholar]
- Xing, R.; Jiang, S.; Xu, P. Long-term temperature monitoring of tunnel in high-cold and high-altitude area using distributed temperature monitoring system. Measurement 2016, 95, 456–464. [Google Scholar] [CrossRef]
- Mi, J.; Wang, L.; Du, X. Application design of 3G trunked intercom system in long tunnels and emergency rescue. China Transp. Informatiz. 2014, 111–112. [Google Scholar] [CrossRef]
- Aigner, R.; Fattinger, G. 3G-4G-5G: How BAW filter technology enables a connected world. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 523–526. [Google Scholar]
- Hua, Q.; Huang, Y.; Song, C.; Akinsolu, M.O.; Liu, B.; Jia, T.; Xu, Q.; Alieldin, A. A novel compact quadruple-band indoor base station antenna for 2G/3G/4G/5G systems. IEEE Access 2019, 7, 151350–151358. [Google Scholar] [CrossRef]
- Li, G.; Deng, J.; Xin, S.; Huang, X.H. A radio over fiber system compatible with 3G/4G/5G for full spectrum access and handover with multi-scenarios. J. Lightwave Technol. 2021, 39, 7885–7893. [Google Scholar] [CrossRef]
- Qian, C.; Deng, M.; Li, H.; Chen, J.; Wang, C. Design and implementation of a highway tunnel environment sensing system. Tunn. Constr. 2021, 41, 1502–1508. [Google Scholar]
- Yang, Y.; Zhang, T.; Guo, X.; Pan, X. 5G road tunnel deployment scheme and performance verification. Telecommun. Sci. 2020, 36, 126–133. [Google Scholar]
- Cha, H.; Zhu, Q. Low-cost 5G coverage for road tunnels. Commun. Inf. Technol. 2021, 73–74+95. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=SCTJ202103036&uniplatform=NZKPT&v=84nGAXZgN4vS1bPukWegVEWTPRneBruD0O3BIk89exTeNLOoFa7VfahrMTo8gLQT (accessed on 6 June 2022).
- Zhang, L. Research on 5G coverage scheme in Wuhan Yangtze River Tunnel. Commun. World 2021, 28, 3. [Google Scholar]
- China Tower 5G Passive Room Division Technical Guidance. Available online: https://wenku.baidu.com/view/2c319ac31ae8b8f67c1cfad6195f312b3169eb8e.html (accessed on 13 July 2022).
- Yang, B. A tunnel intelligent traffic system based on UWB positioning technology. Ind. Control. Comput. 2021, 34, 105–107. [Google Scholar]
- Zhao, S.; Luo, Z.; Wang, M.; Guo, B. Design and research of tunnel construction positioning system. Transp. World 2021, 41–43. [Google Scholar] [CrossRef]
- Lee, J.S.; Su, Y.W.; Shen, C.C. A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 46–51. [Google Scholar]
- Zhu, L.; Sun, S.; Menze, W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 796–798. [Google Scholar]
- Tsang, T.K.K.; El-Gamal, M.N. Ultra-wideband (UWB) communications systems: An overview. In Proceedings of the The 3rd International IEEE-NEWCAS Conference, Quebec City, QC, Canada, 19–22 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 381–386. [Google Scholar]
- Peng, X.; Liu, Y.; Luo, Y.; Tang, Y.; Ren, W. Research on UWB-based high-precision positioning system for tunnels. Highw. Mot. Transp. 2021, 137–139. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=ZNQY202101035&uniplatform=NZKPT&v=_kDhJx76LBlHjUcSsBkzhHOoIhP2KrJXZZ3iXSkLr3J5CFWAsya6Jd6834DD3bDg (accessed on 18 April 2022).
- Jin, F. Application of BIM fusion communication technology in the construction management information platform of rail area. Urban Fast Track Transp. 2017, 30, 35–38+44. [Google Scholar]
- Whelan, M.J.; Fuchs, M.P.; Gangone, M.V. Development of a wireless bridge monitoring system for condition assessment using hybrid techniques. In Proceedings of the Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring, San Diego, CA, USA, 19–21 March 2007; Volume 2007, p. 65300H. [Google Scholar]
- Jeon, D.; Lee, Y. Performance evaluation of a WiMedia based wireless bridge using relay cooperative transmission. Adv. Sci. Technol. Lett. 2014, 60, 1–5. [Google Scholar]
- Koenig, S.; Antes, J.; Lopez-Diaz, D.; Schmogrow, R.; Zwick, T.; Koos, C.; Freude, W.; Leuthold, J.; Kallfass, I. 20 Gbit/s wireless bridge at 220 GHz connecting two fiber-optic links. J. Opt. Commun. Netw. 2014, 6, 54–61. [Google Scholar] [CrossRef]
- Xu, L.; Fan, Q.; Song, S. Design of health monitoring platform for structural cluster of Anding Expressway. Highway 2016, 61, 145–148. [Google Scholar]
- Wang, Q.; Xiao, Y.; Yao, Z.; Hu, L. Wireless microseismic monitoring technology for extra-long deep buried tunnels. Lab. Res. Explor. 2021, 40, 80–84+101. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Y.; Lian, P. Design of wireless monitoring system for mountain highways. Digit. Technol. Appl. 2016, 192. [Google Scholar] [CrossRef]
- Available online: http://www.zctpt.com/safety/159467.html (accessed on 18 May 2022).
- Cui, C.; Song, M. A pseudo-satellite positioning method in tunnels using leaky cables. Internet Things Technol. 2021, 11, 26–28+31. [Google Scholar] [CrossRef]
- He, S.; Fu, J.; Wu, H. Design of automatic dimming system for LED tunnel lighting. J. Electron. Meas. Instrum. 2015, 29, 622–629. [Google Scholar] [CrossRef]
- Jia, H.; Guo, Z. Research on the technology of RS485 over Ethernet. In Proceedings of the 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, China, 7–9 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–3. [Google Scholar]
- Sastry, J.K.R.; Suresh, A.; Bhanu, S.J. Building heterogeneous distributed embedded systems through rs485 communication protocol. ARPN J. Eng. Appl. Sci. 2015, 10, 6793–6803. [Google Scholar]
- Zhou, H.; Li, Z. An intelligent parking management system based on RS485 and RFID. In Proceedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chengdu, China, 13–15 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 355–359. [Google Scholar]
- Wang, J.; Li, Y.F.; Cao, D.P. Analysis of intelligent dimming control system scheme for tunnel lighting. Inf. Technol. Informatiz. 2020, 209–212. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=SDDZ202012078&uniplatform=NZKPT&v=XnJPOyLF5ch4AQ5zqSI69P8euQ2s9173x9ZLCOmdVlsn3z6JtOm4J1iNdwiIVP0s (accessed on 7 April 2022).
- Zhao, L.; Qu, S.; Zhang, W. Design of multi-channel data collector for highway tunnel lighting based on STM32 and Modbus protocol. Opt.-Int. J. Light Electron Opt. 2020, 213, 164388. [Google Scholar] [CrossRef]
- Lai, J.; Ling, J.; Chen, J.; Wang, Y.; Haobo, F. Application of wireless intelligent control system for HPS lamps and LEDs combined illumination in road tunnel. Comput. Intell. Neurosci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Design of Intelligent Tunnel Traffic Management System; Hangzhou University of Electronic Science and Technology: Hangzhou, China, 2019. [Google Scholar]
- Zhang, J. Design and Implementation of Tunnel Monitoring System for Wankai Expressway; Southwest Jiaotong University: Chengdu, China, 2009. [Google Scholar]
- Ball, S.J. Education Plc: Understanding Private Sector Participation in Public Sector Education; Routledge: London, UK, 2007. [Google Scholar]
- Bunney, T.D.; Katan, M. PLC regulation: Emerging pictures for molecular mechanisms. Trends Biochem. Sci. 2011, 36, 88–96. [Google Scholar] [CrossRef]
- Frey, G.; Litz, L. Formal methods in PLC programming. In Proceedings of the SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics. ‘Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions’, Nashville, TN, USA, 8–11 October 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 4, pp. 2431–2436. [Google Scholar]
- Guo, L. Design and Implementation of Monitoring System for Highway Tunnel Group; Taiyuan University of Science and Technology: Taiyuan, China, 2013. [Google Scholar]
- Niu, H. Highway Tunnel Ventilation Monitoring System; Dalian Maritime University: Dalian, China, 2008. [Google Scholar]
- Yang, X.; Qi, J. Design and implementation of PLC-based highway tunnel environment monitoring system. Urban Constr. Theory Res. 2017, 73–74. [Google Scholar] [CrossRef]
- Zhou, H. Design and Implementation of Tunnel Monitoring System for Hanyu Expressway; Jilin University: Changchun, China, 2014. [Google Scholar]
- Ni, E. Application and analysis of tunnel monitoring system. Instrum. Stand. Metrol. 2006, 5, 40–43. [Google Scholar]
- Deng, W. Tunnel coverage analysis and optimization. Telecommun. Technol. 2011, 59–60. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=DXJS201102017&uniplatform=NZKPT&v=AGxZ8DBg8_u--xET9Mh5_cS7s1QJqqUXFRfCTRBwpqUTj2G6BeMUVU2aIGGSKAFy (accessed on 18 March 2022).
- Li, C.; Liu, H. Standby power self-injection solution based on fiber optic communication-based highway tunnel power supply. Electr. Technol. 2017, 88–90. [Google Scholar]
- Zhang, X.; Wu, L. A brief discussion on the application of leakage cables in highway tunnels. North. Transp. 2010, 8, 65–67. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, Y.; Xie, H.; Du, R.; Wang, Y. RFID-based method for automatic identification of abnormal tunnel traffic events. Highw. Mot. Transp. 2012, 5, 68–70. [Google Scholar]
- Available online: https://m.thepaper.cn/newsDetail_forward_15442788 (accessed on 28 April 2022).
- Available online: http://static.nfapp.southcn.com/content/201902/27/c1956953.html (accessed on 7 May 2022).
- Wang, H.; Yan, L.; Ye, J.; Pan, W.; Zou, X.; Luo, B.; Li, P. Full-duplex optical carrier wireless tunneling communication system. Infrared Laser Eng. 2018, 47, 246–250. [Google Scholar]
- Yang, L. On signal coverage in large-length, multi-curved tunnels. Proceedings of the Ninth National Youth Communication Conference, 2004; pp. 477–481. Available online: http://static.nfapp.southcn.com/content/201902/27/c1956953.html (accessed on 7 June 2022).
- Ye, J. Solution for police wireless communication coverage in highway tunnels. Digit. Technol. Appl. 2016, 8, 31–32. [Google Scholar] [CrossRef]
- Fu, H.; Lin, Y.; Zhang, W.; Yu, L. Performance study of TD-SCDMA networks with tunnel coverage scenarios. Telecommun. Sci. 2008, 5, 74–77. [Google Scholar]
- Wang, S. The current situation and development trend of highway emergency telephone application in China. J. Hebei Transp. Vocat. Technol. Coll. 2007, 4, 4. [Google Scholar]
- Wang, Z. Distributed computer monitoring system for Leigongshan and Diffuoshan tunnel groups. Guangdong Autom. Inf. Eng. 2003, 1, 16–18. [Google Scholar]
Traditional Antenna | Leaky Cables | |
---|---|---|
Distance covered | Short | Long |
Coverage density | Uneven | Uniformity |
Applicable conditions | Low traffic density | No restrictions |
Construction conditions | Small restrictions | Leakage cable to be laid |
Construction cycle | Short | Long |
Construction costs | Low | High |
Wired Transmission Method | Communication Methods | Communication Distance | Transmission Method | Transmission Rate |
---|---|---|---|---|
RS485 | Half-duplex communication | Up to eight trunks can be added, which means that theoretically a maximum transmission distance of 10.8 km can be achieved with RS485 | Asynchronous transfer | 10 Mbps |
PLC (Power Carrier) | Full duplex communication | Unstable | Synchronous transmission | Varies considerably depending on the programme |
Tunnel Form | Signal Coverage Method | Limitation |
---|---|---|
Short tunnels | Extend the macro base station or build a micro base station at the tunnel entrance | Incomplete signal coverage, occasionally causing disconnection |
Medium-length tunnels | Leaky cable coverage, adopt RRU remote method | The signal is easily blocked, fading quickly, and the level fluctuates greatly |
Extra long tunnels | Distributed source method | High price, large power loss |
Continuous tunnel complex | Build a base station in the middle of the tunnel group or at the entrance of the tunnel, and align the tunnel with a panel antenna for coverage | Great coverage, but low accuracy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Dong, Y.; Zhang, J.; Guo, F.; Lu, Q.; Lv, B.; Wu, J. Review on Tunnel Communication Technology. Sustainability 2022, 14, 11451. https://doi.org/10.3390/su141811451
Zhu J, Dong Y, Zhang J, Guo F, Lu Q, Lv B, Wu J. Review on Tunnel Communication Technology. Sustainability. 2022; 14(18):11451. https://doi.org/10.3390/su141811451
Chicago/Turabian StyleZhu, Jianguo, Yanyan Dong, Jiancheng Zhang, Feng Guo, Quanli Lu, Bin Lv, and Jianqing Wu. 2022. "Review on Tunnel Communication Technology" Sustainability 14, no. 18: 11451. https://doi.org/10.3390/su141811451
APA StyleZhu, J., Dong, Y., Zhang, J., Guo, F., Lu, Q., Lv, B., & Wu, J. (2022). Review on Tunnel Communication Technology. Sustainability, 14(18), 11451. https://doi.org/10.3390/su141811451