Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification
Abstract
:1. Introduction
2. Related Work
3. Proposed Methodology
3.1. Dataset Description
3.1.1. GPDS Synthetic (English)
3.1.2. BHSig260 (Hindi)
3.1.3. BHSig260 (Bengali)
3.2. Pairing of Signature Images
3.3. Pre-Processing
3.3.1. Resizing
3.3.2. Normalization
3.4. Proposed Siamese Deep Convolutional Neural Network
4. Experiments and Results
4.1. Hyper Parameters
4.2. Analysis Based on Different Parameters
4.2.1. Accuracy Analysis Based on Different Optimizers
4.2.2. Accuracy Analysis Based on Different Batch Sizes
4.2.3. Accuracy Analysis Based on Different Number of Epochs
4.3. Confusion Matrix Parameters for Best Optimized Model
5. State of the Art Comparison
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bibi, K.; Naz, S.; Rehman, A. Biometric signature authentication using machine learning techniques: Current trends, challenges and opportunities. Multimed. Tools Appl. 2020, 79, 289–340. [Google Scholar] [CrossRef]
- Hafemann, L.G.; Sabourin, R.; Oliveira, L.S. Offline handwritten signature verification—literature review. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November 2017; pp. 1–8. [Google Scholar]
- Vargas, J.F.; Ferrer, M.A.; Travieso, C.M.; Alonso, J.B. Offline signature verification based on grey level information using texture features. Pattern Recognit. 2011, 44, 375–385. [Google Scholar] [CrossRef]
- Justino, E.J.; Bortolozzi, F.; Sabourin, R. Offline signature verification using HMM for random, simple and skilled forgeries. In Proceedings of the Sixth International Conference on Document Analysis and Recognition, Seattle, WA, USA, 3–13 September 2001; pp. 1031–1034. [Google Scholar]
- Hafemann, L.G.; Sabourin, R.; Oliveira, L.S. Learning features for offline handwritten signature verification using deep convolutional neural networks. Pattern Recognit. 2017, 70, 163–176. [Google Scholar] [CrossRef]
- Dey, S.; Dutta, A.; Toledo, J.I.; Ghosh, S.K.; Lladós, J.; Pal, U. Signet: Convolutional siamese network for writer independent offline signature verification. arXiv 2017, arXiv:1707.02131. [Google Scholar]
- Kalera, M.K.; Srihari, S.; Xu, A. Offline signature verification and identification using distance statistics. Int. J. Pattern Recognit. Artif. Intell. 2004, 18, 1339–1360. [Google Scholar] [CrossRef]
- Munich, M.E.; Perona, P. Visual identification by signature tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 200–217. [Google Scholar] [CrossRef]
- Dimauro, G.; Impedovo, S.; Pirlo, G.; Salzo, A. A multi-expert signature verification system for bankcheck processing. Int. J. Pattern Recognit. Artif. Intell. 1997, 11, 827–844. [Google Scholar] [CrossRef]
- Ferrer, M.A.; Alonso, J.B.; Travieso, C.M. Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, J.D.; Chanda, B. Writer-independent offline signature verification using surroundedness feature. Pattern Recognit. Lett. 2012, 33, 301–308. [Google Scholar] [CrossRef]
- Huang, K.; Yan, H. Offline signature verification based on geometric feature extraction and neural network classification. Pattern Recognit. 1997, 30, 9–17. [Google Scholar] [CrossRef]
- Ramesh, V.E.; Murty, M.N. Offline signature verification using genetically optimized weighted features. Pattern Recognit. 1999, 32, 217–233. [Google Scholar] [CrossRef]
- Pal, S.; Alaei, A.; Pal, U.; Blumenstein, M. Performance of an offline signature verification method based on texture features on a large indic-script signature dataset. In Proceedings of the 2016 12th IAPR Workshop on Document Analysis Systems (DAS), Santorini, Greece, 11–14 April 2016; pp. 72–77. [Google Scholar]
- Chen, S.; Srihari, S. A new offline signature verification method based on graph. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 2, pp. 869–872. [Google Scholar]
- Dutta, A.; Pal, U.; Lladós, J. Compact correlated features for writer independent signature verification. In Proceedings of the 2016 23rd international conference on pattern recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 3422–3427. [Google Scholar]
- Bromley, J.; Bentz, J.W.; Bottou, L.; Guyon, I.; LeCun, Y.; Moore, C.; Shah, R. Signature verification using a “siamese” time delay neural network. Int. J. Pattern Recognit. Artif. Intell. 1993, 7, 669–688. [Google Scholar] [CrossRef]
- Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 539–546. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille Grande Palais, France, 10–11 July 2015; Volume 2. [Google Scholar]
- Qi, Y.; Song, Y.Z.; Zhang, H.; Liu, J. Sketch-based image retrieval via siamese convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2460–2464. [Google Scholar]
- Jagtap, A.B.; Sawat, D.D.; Hegadi, R.S.; Hegadi, R.S. Siamese Network for Learning Genuine and Forged Offline Signature Verification. In International Conference on Recent Trends in Image Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2018; pp. 131–139. [Google Scholar]
- Yapici, M.M.; Tekerek, A.; Topaloglu, N. Convolutional neural network-based offline signature verification application. In Proceedings of the 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 3–4 December 2018; pp. 30–34. [Google Scholar]
- Sam, S.M.; Kamardin, K.; Sjarif, N.N.A.; Mohamed, N. Offline signature verification using deep learning convolutional neural network (CNN) architectures GoogLeNet inception-v1 and inception-v3. Procedia Comput. Sci. 2019, 161, 475–483. [Google Scholar]
- Jagtap, A.B.; Sawat, D.D.; Hegadi, R.S.; Hegadi, R.S. Verification of genuine and forged offline signatures using Siamese Neural Network (SNN). Multimed. Tools Appl. 2020, 79, 35109–35123. [Google Scholar] [CrossRef]
- Ferrer, M.A.; Diaz-Cabrera, M.; Morales, A. Synthetic offline signature image generation. In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain, 4–7 June 2013; pp. 1–7. [Google Scholar]
- Alaei, A.; Pal, S.; Pal, U.; Blumenstein, M. An efficient signature verification method based on an interval symbolic representation and a fuzzy similarity measure. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2360–2372. [Google Scholar] [CrossRef] [Green Version]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- CUI, G.X.; Li, D.K. Research on Handwritten Digit Recognition Based on Adam Optimizer Self-encoding. J. Jiamusi Univ. Nat. Sci. Ed. 2018, 154, 3–11. [Google Scholar]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [Google Scholar]
- Keskar, N.S.; Socher, R. Improving generalization performance by switching from adam to sgd. arXiv 2017, arXiv:1712.07628. [Google Scholar]
Block | Layers | Input Size | Filter Size | Activation Function | Output Size | No. of Parameters |
---|---|---|---|---|---|---|
Conv Block 1 | Input image | 155 × 220 × 1 | ----- | ----- | ----- | |
Conv1 | 155 × 220 × 1 | 3 × 3 | ReLu | 77 × 109 × 32 | 320 | |
Batch_normalization_1 | 77 × 109 × 32 | ----- | ----- | 77 × 109 × 32 | 128 | |
Max_pooling2d_1 | 77 × 109 × 32 | 3 × 3 | ----- | 38 × 54 × 32 | 0 | |
Zero_padding2d_1 | 38 × 54 × 32 | ----- | ----- | 42 × 58 × 32 | 0 | |
Conv Block 2 | Conv2 | 42 × 58 × 32 | ----- | ReLu | 40 × 56 × 64 | 18,496 |
Batch_normalization_2 | 40 × 56 × 64 | ----- | ----- | 40 × 56 × 64 | 256 | |
Max_pooling2d_2 | 40 × 56 × 64 | 3 × 3 | ----- | 19 × 27 × 64 | 0 | |
Dropout_1 | 19 × 27 × 64 | 0.3 | ----- | 19 × 27 × 64 | 0 | |
Zero_padding2d_2 | 19 × 27 × 64 | ----- | ----- | 21 × 29 × 64 | 0 | |
Conv Block 3 | Conv3 | 21 × 29 × 64 | 3 × 3 | ReLu | 19 × 27 × 128 | 73,856 |
Zero_ padding2d_3 | 19 × 27 × 128 | ----- | ----- | 21 × 29 × 128 | 0 | |
Conv Block 4 | Conv4 | 21 × 29 × 128 | 3 × 3 | ReLu | 19 × 27 × 256 | 295,168 |
Max_pooling2d_4 | 19 × 27 × 256 | 3 × 3 | ----- | 9 × 13 × 256 | 0 | |
Dropout_2 | 9 × 13 × 256 | ----- | ----- | 9 × 13 × 256 | 0 | |
Flatten | ----- | ----- | ----- | 29,952 | 0 | |
Dense_1 | ----- | ----- | ----- | 1024 | 30,671,872 | |
Dense_2 | ----- | ----- | ----- | 128 | 131,200 |
Hyperparameters | Values |
---|---|
Initial Learning Rate (LR) | 0.001 |
LR Schedule | LR × 0.1 |
Weight Decay | 0.0005 |
Fuzz Factor | 0.00000001 |
Dataset Name | Optimizers | ||
---|---|---|---|
Adam | SGD | RMS | |
Hindi | 0.50 | 0.67 | 0.78 |
Bengali | 0.50 | 0.68 | 0.80 |
GPDS | 0.65 | 0.80 | 0.92 |
Dataset Name | Batch Size | ||
---|---|---|---|
32 | 64 | 128 | |
Hindi | 0.77 | 0.76 | 0.78 |
Bengali | 0.80 | 0.74 | 0.80 |
GPDS | 0.88 | 0.75 | 0.92 |
Dataset Name | Number of Epochs | ||
---|---|---|---|
5 | 10 | 15 | |
Hindi | 0.77 | 0.78 | 0.75 |
Bengali | 0.80 | 0.80 | 0.77 |
GPDS | 0.85 | 0.92 | 0.92 |
Dataset | Label | Precision | Sensitivity | Specificity | F1 Score | Accuracy |
---|---|---|---|---|---|---|
Hindi | Forge | 0.69 | 0.84 | 0.81 | 0.76 | 78% |
Genuine | 0.87 | 0.73 | 0.81 | 0.79 | ||
Bengali | Forge | 0.85 | 0.78 | 0.84 | 0.81 | 80% |
Genuine | 0.76 | 0.83 | 0.82 | 0.79 | ||
GPDS | Forge | 0.92 | 0.90 | 0.91 | 0.92 | 92% |
Genuine | 0.92 | 0.92 | 0.91 | 0.92 |
References | Technique | Dataset Used | Accuracy Achieved |
---|---|---|---|
[6] | SigNet | GPDS synthetic, GPDS 300, Bengali, Hindi, CEDAR | 77.76%, 88.79%, 86.11%, 85.90%, 100% |
[22] | Siamese | GPDS synthetic, MCYT 75 | 84.58%, 85.38% |
[23] | CNN (writer-independent and writer-dependent) | GPDS synthetic | 62.5%, 75% |
[24] | Inception v1 and v3 | GPDS synthetic | 83%, 75% |
[25] | Siamese | GPDS synthetic, MCYT 75, CEDAR | 86.47%, 88.49%, 100% |
Proposed model | Siamese Neural Network | GPDS synthetic, Hindi, Bengali | 92%, 78%, 80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, N.; Gupta, S.; Mohamed, H.G.; Anand, D.; Mazón, J.L.V.; Gupta, D.; Goyal, N. Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification. Sustainability 2022, 14, 11484. https://doi.org/10.3390/su141811484
Sharma N, Gupta S, Mohamed HG, Anand D, Mazón JLV, Gupta D, Goyal N. Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification. Sustainability. 2022; 14(18):11484. https://doi.org/10.3390/su141811484
Chicago/Turabian StyleSharma, Neha, Sheifali Gupta, Heba G. Mohamed, Divya Anand, Juan Luis Vidal Mazón, Deepali Gupta, and Nitin Goyal. 2022. "Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification" Sustainability 14, no. 18: 11484. https://doi.org/10.3390/su141811484
APA StyleSharma, N., Gupta, S., Mohamed, H. G., Anand, D., Mazón, J. L. V., Gupta, D., & Goyal, N. (2022). Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification. Sustainability, 14(18), 11484. https://doi.org/10.3390/su141811484