Indigenous Nutrient Supplying Capacity of Young Alluvial Calcareous Soils Favours the Sustainable Productivity of Hybrid Rice and Maize Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climate
2.2. Sample Collection, Preparation, and Analysis
2.3. Observations and Calculations
2.3.1. Sustainable Yield Index
2.3.2. Rice Equivalent Yield (REY)
2.3.3. Statistical Analysis
3. Results
3.1. Impact of Nutrient Management on the Crop Yield and System Productivity
3.2. Nutrient Uptake and Content of Rice and Maize
Treatment | Grain Yield (t ha−1) | System Yield (Rice Equivalent) (t ha−1) | SYI for System | Nutrient Response (t ha−1) | Biomass Yield (t ha−1) | Harvest Index | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rice | Maize | Rice | Maize | System | Rice | Maize | Rice | Maize | |||
T1 | 6.81 | 9.66 | 16.32 | 0.89 | - | - | - | 13.83 | 19.41 | 0.49 | 0.51 |
T2 | 2.97 | 3.76 | 6.34 | 0.25 | 3.85 | 5.90 | 9.98 | 7.14 | 7.54 | 0.41 | 0.45 |
T3 | 3.47 | 4.29 | 7.50 | 0.33 | 3.35 | 5.37 | 8.82 | 7.93 | 8.71 | 0.44 | 0.47 |
T4 | 5.64 | 7.26 | 12.64 | 0.61 | 1.17 | 2.40 | 3.69 | 11.78 | 14.56 | 0.48 | 0.49 |
T5 | 5.73 | 7.76 | 13.24 | 0.66 | 1.09 | 1.90 | 3.08 | 12.07 | 15.55 | 0.47 | 0.50 |
T6 | 6.22 | 8.84 | 14.79 | 0.79 | 0.59 | 0.81 | 1.54 | 12.97 | 17.68 | 0.48 | 0.50 |
T7 | 6.22 | 8.47 | 14.44 | 0.74 | 0.59 | 1.19 | 1.88 | 13.18 | 16.87 | 0.47 | 0.50 |
T8 | 2.14 | 2.55 | 4.33 | 0.32 | 2.51 | 3.47 | 5.69 | 6.28 | 5.12 | 0.34 | 0.44 |
T9 | 4.65 | 6.02 | 10.02 | 0.88 | - | - | - | 11.85 | 12.24 | 0.39 | 0.45 |
LSD (p ≤ 0.05) | 0.47 | 0.57 | 0.73 | - | - | - | - | 0.90 | 1.01 | 0.02 | 0.03 |
(a) | ||||||||||||||||||||
Treatment | N | P | K | |||||||||||||||||
Rice | Maize | Rice | Maize | Rice | Maize | |||||||||||||||
Grain | Straw | Grain | Stover | Grain | Straw | Grain | Stover | Grain | Straw | Grain | Stover | |||||||||
T1 | 1.45 | 0.399 | 1.06 | 1.02 | 0.234 | 0.074 | 0.193 | 0.244 | 0.225 | 1.76 | 0.705 | 2.47 | ||||||||
T2 | 1.03 | 0.268 | 0.67 | 0.42 | 0.179 | 0.053 | 0.106 | 0.109 | 0.165 | 1.41 | 0.441 | 1.39 | ||||||||
T3 | 1.13 | 0.327 | 0.68 | 0.70 | 0.215 | 0.070 | 0.161 | 0.186 | 0.204 | 1.67 | 0.624 | 2.07 | ||||||||
T4 | 1.32 | 0.363 | 0.90 | 0.85 | 0.192 | 0.055 | 0.127 | 0.147 | 0.205 | 1.70 | 0.638 | 2.18 | ||||||||
T5 | 1.35 | 0.366 | 0.91 | 0.90 | 0.219 | 0.066 | 0.165 | 0.201 | 0.183 | 1.35 | 0.506 | 1.61 | ||||||||
T6 | 1.37 | 0.386 | 0.91 | 0.91 | 0.220 | 0.066 | 0.172 | 0.215 | 0.210 | 1.71 | 0.652 | 2.20 | ||||||||
T7 | 1.38 | 0.384 | 0.93 | 0.95 | 0.223 | 0.068 | 0.180 | 0.223 | 0.210 | 1.71 | 0.662 | 2.23 | ||||||||
T8 | 1.02 | 0.234 | 0.59 | 0.37 | 0.167 | 0.053 | 0.095 | 0.094 | 0.155 | 1.27 | 0.379 | 1.33 | ||||||||
T9 | 1.36 | 0.307 | 0.86 | 0.75 | 0.211 | 0.065 | 0.159 | 0.184 | 0.175 | 1.40 | 0.561 | 1.92 | ||||||||
LSD (p ≤ 0.05) | 0.05 | 0.022 | 0.05 | 0.05 | 0.010 | 0.005 | 0.012 | 0.011 | 0.006 | 0.10 | 0.011 | 0.07 | ||||||||
(b) | ||||||||||||||||||||
Treatment | S | Zn | ||||||||||||||||||
Rice | Maize | Rice | Maize | |||||||||||||||||
Grain | Straw | Grain | Stover | Grain | Straw | Grain | Stover | |||||||||||||
T1 | 0.110 | 0.118 | 0.132 | 0.193 | 33.9 | 37.7 | 43.8 | 127.0 | ||||||||||||
T2 | 0.092 | 0.101 | 0.082 | 0.101 | 28.7 | 30.7 | 25.6 | 49.8 | ||||||||||||
T3 | 0.103 | 0.109 | 0.120 | 0.177 | 32.0 | 34.6 | 38.1 | 112.2 | ||||||||||||
T4 | 0.107 | 0.113 | 0.122 | 0.184 | 32.7 | 36.4 | 38.8 | 114.9 | ||||||||||||
T5 | 0.107 | 0.114 | 0.128 | 0.186 | 33.2 | 36.4 | 40.4 | 117.1 | ||||||||||||
T6 | 0.098 | 0.101 | 0.093 | 0.136 | 33.0 | 36.2 | 41.5 | 119.6 | ||||||||||||
T7 | 0.107 | 0.113 | 0.130 | 0.188 | 29.1 | 32.3 | 29.4 | 65.6 | ||||||||||||
T8 | 0.083 | 0.097 | 0.079 | 0.096 | 27.4 | 29.1 | 21.9 | 43.8 | ||||||||||||
T9 | 0.097 | 0.112 | 0.126 | 0.173 | 32.1 | 34.8 | 38.1 | 89.0 | ||||||||||||
LSD (p ≤ 0.05) | 0.005 | 0.006 | 0.006 | 0.008 | 1.9 | 2.7 | 4.1 | 8.7 |
Treatment | Rice | Maize | System | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | S | Zn | N | P | K | S | Zn | N | P | K | S | Zn | |
T1 | 126.8 | 21.1 | 139.1 | 15.8 | 496.2 | 156.5 | 31.5 | 214.4 | 22.1 | 943.8 | 283.4 | 52.7 | 353.4 | 37.9 | 1440.0 |
T2 | 42.6 | 7.6 | 63.8 | 7.0 | 214.9 | 33.0 | 6.1 | 54.5 | 4.7 | 174.2 | 75.6 | 13.7 | 118.3 | 11.7 | 389.0 |
T3 | 54.5 | 10.6 | 81.9 | 8.5 | 266.7 | 46.9 | 11.3 | 84.6 | 9.0 | 360.1 | 101.4 | 21.9 | 166.4 | 17.5 | 626.8 |
T4 | 96.9 | 14.3 | 115.8 | 13.0 | 408.9 | 98.7 | 15.0 | 146.1 | 15.5 | 616.5 | 195.6 | 29.3 | 261.9 | 28.4 | 1025.3 |
T5 | 100.6 | 16.8 | 95.9 | 13.4 | 422.3 | 107.8 | 21.4 | 118.9 | 17.1 | 685.8 | 208.4 | 38.1 | 214.9 | 30.5 | 1108.1 |
T6 | 111.2 | 18.2 | 128.6 | 12.8 | 450.4 | 122.8 | 25.4 | 176.9 | 14.2 | 802.5 | 234.0 | 43.6 | 305.6 | 27.0 | 1253.0 |
T7 | 112.6 | 18.6 | 132.0 | 14.5 | 406.7 | 120.8 | 25.3 | 170.7 | 18.8 | 497.0 | 233.4 | 44.0 | 302.8 | 33.3 | 903.7 |
T8 | 31.7 | 5.8 | 55.6 | 5.7 | 179.2 | 18.7 | 3.4 | 33.9 | 2.9 | 99.3 | 50.4 | 9.2 | 89.5 | 8.7 | 278.6 |
T9 | 85.2 | 14.4 | 107.9 | 12.5 | 399.8 | 74.3 | 14.4 | 113.7 | 12.6 | 469.5 | 159.5 | 28.8 | 221.6 | 25.1 | 869.3 |
LSD (p ≤ 0.05) | 8.8 | 1.4 | 10.0 | 1.0 | 43.6 | 7.6 | 1.8 | 11.5 | 1.4 | 55.3 | 10.4 | 2.4 | 15.5 | 1.8 | 69.1 |
3.3. Nutrient Use Efficiencies
3.4. Contribution of Available Soil Nutrient toward Hybrid Rice and Maize Yield
3.5. Economics of Nutrient Management
3.6. Nutrient Status in Post-Harvest Soil
4. Discussion
4.1. Yield and Associated Parameters
4.2. Nutrient Uptake and Recovery Efficiency
4.3. Nutrient Contribution towards Total Uptake by Crops
4.4. Economic Loss Due to Nutrient Omission
4.5. Impact on Nutrient Status in Postharvest Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timsina, J.; Connor, D.J. Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crops Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Zeigler, R.S. Bringing hope, improving lives: A new strategic vision for rice research. In Science, Technology, and Trade for Peace and Prosperity; Aggarwal, P.K., Ladha, J.K., Singh, R.K., Devakumar, C., Hardy, B., Eds.; Macmillan India: New Delhi, India, 2007. [Google Scholar]
- McCann, J.C. Maize and Grace: Africa’s Encounter with a New World Crop, 1500–2000; Harvard University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Hooda, K.S.; Chikkappa, G.K.; Singh, D.K.; Saikumar, R. Maize Production Technologies; Technical Bulletin 2011/3; Directorate of Maize Research: New Delhi, India, 2011; p. 36. [Google Scholar]
- Tollenaar, M.; Lee, E.A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 2002, 51, 399–408. [Google Scholar]
- Ghosh, D.; Brahmachari, K.; Brestic, M.; Ondrisik, P.; Hossain, A.; Skalicky, M.; Sarkar, S.; Moulick, D.; Dinda, N.K.; Das, A.; et al. Integrated Weed and Nutrient Management Improve Yield, Nutrient Uptake and Economics of Maize in the Rice-Maize Cropping System of Eastern India. Agronomy 2020, 10, 1906. [Google Scholar] [CrossRef]
- Jat, M.L.; Das, S.; Yadav, V.K.; Sekhar, J.C.; Singh, D.K. Quality Protein Maize for Food and Nutritional Security in India; Technical Bulletin 2009/4; Directorate of Maize Research: New Delhi, India, 2009; p. 23. [Google Scholar]
- Tiwari, K.N. Site-specific nutrient management for increasing crop productivity in India: Results with rice-wheat and rice-rice system. Proj. Dir. Cropping Syst. Res. 2006, 92. Available online: https://www.researchgate.net/publication/288921099_Site-specific_nutrient_management_for_increasing_crop_productivity_in_India_Results_with_rice-wheat_and_rice-rice_system (accessed on 7 August 2022).
- Muhammad, I.; Yang, L.; Ahmad, S.; Farooq, S.; Al-Ghamdi, A.A.; Khan, A.; Zeeshan, M.; Elshikh, M.S.; Abbasi, A.M.; Zhou, X.-B. Nitrogen Fertilizer Modulates Plant Growth, Chlorophyll Pigments and Enzymatic Activities under Different Irrigation Regimes. Agronomy 2022, 12, 845. [Google Scholar] [CrossRef]
- Assessing the Contribution of Nutrients to Yield of Hybrid Rice and Maize through Omission Plot Techniques in Bihar. Available online: http://research.ipni.net/page/RSAP-2787 (accessed on 7 August 2022).
- Kumar, A.; Thakur, K.S.; Manuja, S. Effect of fertility levels on promising hybrid maize (Zea mays) under rainfed conditions of Himachal Pradesh. Ind. J. Agron. 2002, 47, 526–530. [Google Scholar]
- Singh, S.P.; Dutta, S.; Jha, S.; Prasad, S.S.; Chaudhary, S.K.; Sahi, V.; Majumdar, K. Nutrient management in calcareous soil improves rice–maize sustainable yield index, performance indicators. J. Plant Nutr. 2021, 44, 1571–1586. [Google Scholar] [CrossRef]
- Dutta, S.; Majumdar, K.; Satyanarayana, T.; Singh, A.K. 4R Nutrient Stewardship–A way forward towards sustainable agriculture. SATSA Mukhapatra–Annu. Tech. 2015, 19, 19–35. [Google Scholar]
- de Grazia, J.; Tittonell, P.A.; Germinara, D.; Chiesa, A. Phosphorus and nitrogen fertilization in sweet corn (Zea mays L.) var. Saccharata Baily. Span. J. Agric. Res. 2003, 1, 103–107. [Google Scholar] [CrossRef]
- Dutta, S.; Majumdar, K.; Jat, M.L.; Satyanarayana, T.; Kumar, A.; Shahi, V.; Gupta, N. Economics of fertilizer application in rice growth on the Indo-Gangetic plains. Better Crops South Asia 2012, 6, 11–14. [Google Scholar]
- Dobermann, A.; Fairhurst, T. Rice: Nutrient Disorders & Nutrient Management; Handbook Series; Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute: Los Baños, Philippines, 2000; p. 191. [Google Scholar]
- Pal, D.K.; Bhattacharya, T.; Velayutham, M. Genesis and Classification of Calcareous Soils of India. In Balanced Nutrition of Groundnut and Other Field Crops Grown in Calcareous Soils of India, Proceedings of National Symposium, Junagadh, Gujarat, 19–22 September 2000; Pasricha, N.S., Bansal, S.K., Golakiya, B.A., Eds.; Institute of India: Gurgaon, India, 2000; pp. 19–32. [Google Scholar]
- Singh, R.N.; Prasad, R. Distribution and Land Use Pattern of Calcareous Soils in Bihar. In Balanced Nutrition of Groundnut and Other Field Crops Grown in Calcareous Soils of India, Proceedings of National Symposium, Junagadh, Gujarat, 19–22 September 2000; Pasricha, N.S., Bansal, S.K., Golakiya, B.A., Eds.; Institute of India: Gurgaon, India, 2000; pp. 51–58. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 13th ed.; Pearson Education: Singapore, 2002. [Google Scholar]
- Laik, R.; Singh, S.K.; Kumar, V.; Singh, S.P.; Shukla, A.; Nidhi; Yadav, R.C. Zinc fertilization in rice-wheat cropping system under upland calcareous soil. J. Plant Nutr. 2019, 42, 296–306. [Google Scholar] [CrossRef]
- Ladha, J.K.; Fischer, K.S.; Hossain, M.; Hobbs, P.R.; Hardy, B. Improving the Productivity and Sustainability of Rice-Wheat Systems of the Indo-Gangetic Plains: A Synthesis of NARS-IRRl Partnership Research; Paper Series No. 40; IRRl Discussion; IRRl: Los BaIios, Philippines, 2000. [Google Scholar]
- Singh, V.K.; Majumdar, K.; Singh, M.P.; Kumar, R.; Gangwar, B. Maximizing productivity and profit through site-specific nutrient management in rice based cropping system. Better Crops. 2011, 95, 28–30. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Inter-Science Publication Corp, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Emerson, P. Soil Characteristics–A Field and Laboratory Guide; McGrew Hill Book Co.: New York, NY, USA, 1925. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.J.; Black, I.A. An experimentation of the method for determination of soil organic matter and a proposed modification of chromic acid titration method. Soil Sci. 1934, 37, 29–39. [Google Scholar] [CrossRef]
- Cheng, K.L.; Bray, R.H. Determination of calcium and magnesium in soil and plant material. Soil Sci. 1951, 72, 449–458. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid method for the estimation of nitrogen in soil. Curr. Sci. 1956, 26, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture (USDA): El Segundo, CA, USA, 1954; p. 939. [Google Scholar]
- Williams, C.H.; Steinbergs, A. Soil sulfur fractions as chemical indices of available sulfur in some Australian soils. Aus. J. Agric. Res. 1959, 10, 340–352. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Agronomy monograph No. 9; Page, A.L., Ed.; American Society of Agronomy Inc.: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Koenig, R.A.; Johnson, C.R. 1942. Colorimetric determination of P in biological materials. Ind. Eng. Chem. Anal. 1942, 14, 155–156. [Google Scholar] [CrossRef]
- Tandon, H.L.S. (Ed.) Methods of Analysis of Soils, Plants, Waters and Fertilizers; Fertilizer Development and Consultation Organization: New Delhi, India, 1984. [Google Scholar]
- Salam, M.A.; Solaiman, A.R.M.; Karim, A.J.M.S.; Saleque, M.A. System productivity, nutrient use efficiency and apparent nutrient balance in rice-based cropping systems. Arch. Agron. Soil Sci. 2014, 60, 747–764. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, M.P. Effect of Sulphur Fertilization on Sulphur Balance in Soil and Productivity of Wheat in a Wheat–Rice Cropping System. Agric. Res. 2014, 3, 284–292. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R.; Pal, M. Effects of nitrogen levels and coated urea on growth, yields and nitrogen use efficiency in aromatic rice. J. Plant Nutr. 2016, 39, 875–882. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, M.P.; Jha, S.; Prasad, S.S.; Chaudhary, S.K.; Dutta, S.; Majumdar, K.; Shahi, V.; Satyanarayana, T. Response to Potassium Fertilization in Hybrid Rice-Maize Cropping System in Calcareous Soil of Eastern India. In Proceedings of the Frontiers of Potassium Science an International Conference, Rome, Italy, 25–27 January 2017; Murrell, T.S., Mikkelsen, R.L., Eds.; Dr. Rajendra Prasad Central Agricultural University: Bihar, India, 2017. [Google Scholar]
- Singh, R.P.; Das, S.K.; Bhaskarrao, U.M.; Reddy, M.N. Sustainability Index under DIFFERENT Management: Annual Report; CRIDA: Hyderabad, India, 1990. [Google Scholar]
- Shri, R.; Singh, V.; Sirari, P. Effects of 41 Years of Application of Inorganic Fertilizers and Farm Yard Manure on Crop Yields, Soil Quality, and Sustainable Yield Index under a Rice-Wheat Cropping System on Mollisols of North India. Commun. Soil Sci. Plant Anal. 2016, 47, 179–193. [Google Scholar] [CrossRef]
- Ramamoorthy, B.; Velayutham, M. Soil Test-Crop Response Correlation Work in India; World Soil Resources Report No. 41; FAO: Rome, Italy, 1971; pp. 96–102. [Google Scholar]
- Prasad, J.; Muralidharudu, Y.; Mishra, G.K.; Jha, S. Soil Test Based Fertilizer Recommendations for Targetted Yields of Crops in Bihar (Technical Bulletin). In AICRP on Soil Test Crop Response Correlation, Indian Institute of Soil Science, Bhopal; Rajendra Agricultural University: Bihar, India, 2009. [Google Scholar]
- Sheoran, O.P.; Tonk, D.S.; Kaushik, L.S.; Hasija, R.C.; Pannu, R.S. Statistical Software Package for Agricultural Research Workers. In Recent Advances in Information Theory, Statistics and Computer Applications; Hooda, D.S., Hasija, R.C., Eds.; Department of Mathematics Statistics, CCS HAU: Hisar, India, 1998; pp. 139–143. [Google Scholar]
- Nziguheba, G.; Tossah, B.K.; Diels, J.; Franke, A.C.; Aihou, K.; Iwuafor, E.N.O.; Nwoke, C.; Merckx, R. Assessment of nutrient deficiencies in maize in nutrient omission trials and long-term field experiments in the West African Savanna. Plant Soil 2009, 314, 143. [Google Scholar] [CrossRef]
- Setiyonoa, T.D.; Waltersa, D.T.; Cassmana, K.G.; Witt, C.; Dobermann, A. Estimating maize nutrient uptake requirements. Field Crops Res. 2010, 118, 158–168. [Google Scholar] [CrossRef]
- Ray, K.; Banerjee, H.; Bhattacharya, K.; Dutta, S.; Phonglosa, A.; Pari, A.; Sarkar, S. Site-specific nutrient management for maize hybrids in an inceptisol of West Bengal, India. Exp. Agric. 2017, 54, 874–887. [Google Scholar] [CrossRef]
- Kumar, A. Long-term Effect of Nutrient Management on Soil Quality and Crop Productivity. In Fundamentals and Management of Soil Quality; Chandra, R., Singh, S.K., Eds.; Westville Publishing House: New Delhi, India, 2009. [Google Scholar]
- Bhattacharyya, R.; Kundu, S.; Prakash, V.; Gupta, H.S. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas. Eur. J. Agron. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Kumari, G.; Thakur, S.K.; Kumar, N.; Mishra, B. Long term effect of fertilizer, manure and lime on yield sustainability and soil organic carbon status under maize (Zea mays)-wheat (Triticum aestivum) cropping system in Alfisols. Ind. J. Agron. 2013, 58, 152–158. [Google Scholar]
- Ponnuthurai, S.; Virmani, S.S.; Vergara, B.S. Comparative studies on the growth and grain yield of some F1 rice (Oryza sativa L.) hybrids. Philip. J. Crop Sci. 1984, 9, 183–193. [Google Scholar]
- Islam, M.; Peng, S.S.; Romeo, M.; Visperas, M.; Sultan, U.B.; Hossain, S.M.A.; Julfiquar, A.W. Comparative study on yield and yield attributes of hybrid, conventional, and NPT rice genotypes in a tropical irrigated ecosystem. Bangladesh J. Agric. Res. 2010, 35, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.C.; Yuan, L.P. Hybrid rice breeding in China. In Innovative Approaches to Rice Breeding; Selected papers from the 1979 International Rice Research Conference; International Rice Research Institute: Manila, Philippines, 1980. [Google Scholar]
- Virmani, S.S.; Kumar, I. Development and use of hybrid rice technology to increase rice productivity in the tropics. Int. Rice Res. Notes 2004, 29, 10–19. [Google Scholar]
- Ding, L.; Wang, K.J.; Jiang, G.M.; Liu, M.Z.; Niu, S.L.; Gao, L.M. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res. 2005, 93, 108–115. [Google Scholar] [CrossRef]
- Echarte, L.; Rothstein, S.; Tollenaar, M. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci. 2008, 48, 656–666. [Google Scholar] [CrossRef]
- Tollenaar, M.; Ahmadzadeh, A.; Lee, E.A. Physiological basis of heterosis for grain yield in maize. Crop Sci. 2004, 44, 2086–2094. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E.A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res. 2002, 75, 161–169. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Singh, T.A. Nitrogen. In Fundamentals of Soil Science; Shekhon, G.S., Ed.; Indian Society of Soil Science: New Delhi, India, 2002; pp. 333–352. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Panima Publishing Corporation: New Delhi, India, 1996; pp. 347–374. [Google Scholar]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency Definitions of Today and Tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Che, S.G.; Zhao, B.Q.; Li, Y.T.; Yuan, L.; Li, W.; Lin, Z.A.; Hu, S.W.; Shen, B. Review grain yield and nitrogen use efficiency in rice production regions in China. J. Integr. Agric. 2015, 14, 2456–2466. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency: Measurement and management. In Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption, and Voluntary Initiatives vs. Regulations; International Fertilizer Industry Association: Paris, France, 2007. [Google Scholar]
- Fixen, P.; Brentrup, F.; Bruulsema, T.W.; Fernando, G.; Rob, N.; Shamie, Z. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; IFA, IWMI, IPNI, and IPI: Paris, France, 2015; ISBN 979-10-92366-02-0. Available online: https://www.iwmi.cgiar.org/Publications/Books/PDF/managing_water_and_fertilizer_for_sustainable_agricultural_intensification.pdf (accessed on 7 August 2022).
- Liu, X.; Ping, H.; Jiyun, J.; Wei, Z.; Gavin, S.; Steve, P. Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China. Agron. J. 2011, 103, 1452–1463. [Google Scholar] [CrossRef]
- Pathak, H.; Singh, Y.; Singh, B. Site-specific nutrient management for improving the productivity of rice-wheat cropping system. In Nutrient Management for Sustainable Rice-Wheat Cropping System; Singh, Y., Singh, B., Nayyar, V.K., Singh, J., Eds.; National Agricultural Technology Project; Indian Council of Agricultural Research: New Delhi, India; Punjab Agricultural University: Ludhiana, India, 2003; pp. 79–98. [Google Scholar]
- Cassman, K.G.; Dobermann, A.; Walters, D. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Rakshit, A.; Singh, H.B.; Sen, A. Nutrient Use Efficiencies: From Basic to Advances; Springer (India) Pvt. Ltd.: New Delhi, India, 2015; ISBN 978-81-322-2168-5. [Google Scholar]
- Ghosh, B.N.; Singh, R.J.; Mishra, P.K. Soil and input management options for increasing nutrient use efficiency. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Singh, H.B., Sen, A., Eds.; Springer: New Delhi, India, 2015; pp. 17–27. [Google Scholar] [CrossRef]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; van Kessel, C.; Richter, D.B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef] [Green Version]
- Craswell, E.T.; Vlek, P.L.G. Fate of fertilizer nitrogen applied to wetland rice. In Nitrogen and Rice; IRRI: Los Banos, Philippines, 1979; pp. 175–192. [Google Scholar]
- Majumdar, K.; Kumar, A.; Shahi, V.; Satyanarayana, T.; Jat, M.L.; Kumar, D.; Pampolino, M.; Gupta, N.; Singh, V.; Dwivedi, B.S.; et al. Economics of Potassium Fertiliser Application in Rice, Wheat and Maize Grown in the Indo-Gangetic Plains. Indian J. Fertil. 2012, 8, 44–53. [Google Scholar]
- Chuan, L.H.P.; Pampolino, M.F.; Johnston, A.M.; Jin, J.X.X.; Zhao, S.; Qiu, S.; Zhou, W. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crops Res. 2013, 140, 1–8. [Google Scholar] [CrossRef]
Variables | Status | Reference/Method |
---|---|---|
Sand (%) | 25.80 | International Pipette Method [23] |
Silt (%) | 52.53 | |
Clay (%) | 20.58 | |
Textural class | Silty loam | |
Bulk density (Mg m−3) | 1.26 | Core Method [24] |
pH (1:2, soil:water) | 8.28 | Glass Electrode pH meter [25] |
EC (dSm−1) at 25 °C | 0.47 | Conductivity Bridge [25] |
Organic carbon (%) | 0.33 | [26] |
CaCO3 (%) | 21.5 | [27] |
Potassium permanganate extractable N (kg ha−1) | 212.80 | Alkaline Permanganate Method [28] |
Sodium bicarbonate extractable P (kg ha−1) | 16.99 | Olsen Method [29] |
Ammonium acetate extractable K (kg ha−1) | 86.24 | Flame Photometer [25] |
Calcium chloride extractable S (mg kg−1) | 52.81 | 0.15% Calcium Chloride Method [30] |
DTPA extractable Zn (mg kg−1) | 0.72 | [31] |
Treatments | Crop/Variety | Code | |
---|---|---|---|
Kharif Rice | Rabi Maize | ||
N + P + K + S + Zn | Hybrid (Arize-6444) | Hybrid (DKC-9081) | T1 |
Hybrid rice under unfertilized check | Hybrid (Arize-6444) | Hybrid (DKC-9081) | T2 |
P + K + S + Zn (-N) | Hybrid (Arize-6444) | Hybrid (DKC-9081) | T3 |
N + K + S + Zn (-P) | Hybrid (Arize-6444) | Hybrid (DKC-9081) | T4 |
N + P + S + Zn (-K) | Hybrid (Arize-6444) | Hybrid (DKC-9081) | T5 |
N + P + K + Zn (-S) | Hybrid (Arize-6444) | Hybrid (DKC-9081) | T6 |
N + P + K + S (-Zn). | Hybrid (Arize-6444) | Hybrid (DKC-9081) | T7 |
Conventional variety under unfertilized check | Conventional (Rajshree) | Conventional (Laxmi) | T8 |
Conventional variety under ample fertilization | Conventional (Rajshree) | Conventional (Laxmi) | T9 |
Yield Target (t/ha) | N (kg/ha): 3 Splits | Total P2O5 (kg/ha) Basal | K2O (kg/ha): 2 Splits | Total S (Basal) | Total Zn (Basal) | |||||
Total N | Basal N | AT | PI | Total K2O | Basal | PI | ||||
Rice | ||||||||||
5 (conventional rice) | 125 | 55 | 35 | 35 | 50 | 60 | 30 | 30 | 30 | 3 |
7 (hybrid rice) | 175 | 75 | 50 | 50 | 70 | 80 | 40 | 40 | 30 | 3 |
Maize | ||||||||||
Yield target (t/ha) | Total N | Basal N | At V6 | At V10 | Total P2O5 (kg/ha) basal | Total K2O | Basal | At V10 | Total S (basal) | Total Zn (basal) |
6 (conventional maize) | 150 | 50 | 50 | 50 | 70 | 120 | 60 | 60 | 30 | 3 |
10 (hybrid maize) | 210 | 70 | 70 | 70 | 140 | 200 | 100 | 100 | 30 | 3 |
Nutrients | Agronomic Efficiency (kg kg−1) | Physiological Efficiency (kg kg−1) | Apparent Recovery (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rice | Maize | Rice | Maize | Rice | Maize | |||||||||||||
Yr 1 | Yr 2 | Yr 3 | Yr 1 | Yr 2 | Yr 3 | Yr 1 | Yr 2 | Yr 3 | Yr 1 | Yr 2 | Yr 3 | Yr 1 | Yr 2 | Yr 3 | Yr 1 | Yr 2 | Yr 3 | |
N | 16.1 | 19.0 | 22.3 | 20.3 | 28.4 | 32.5 | 49.0 | 45.6 | 45.1 | 50.6 | 52.7 | 52.0 | 32.9 | 41.6 | 49.5 | 40.2 | 54.0 | 62.5 |
P | 8.7 | 13.1 | 28.3 | 9.0 | 19.3 | 27.9 | 139.8 | 153.4 | 196.8 | 112.2 | 166.8 | 177.7 | 6.2 | 8.6 | 14.4 | 8.1 | 11.6 | 15.7 |
K | 6.2 | 14.8 | 19.8 | 4.6 | 11.0 | 15.7 | 15.2 | 26.4 | 30.5 | 16.3 | 20.9 | 25.2 | 40.6 | 56.0 | 65.1 | 28.3 | 52.7 | 62.2 |
S | 8.6 | 16.4 | 34.0 | 19.0 | 31.2 | 48.8 | 148.5 | 173.6 | 241.1 | 90.8 | 117.5 | 151.3 | 5.8 | 9.5 | 14.1 | 20.9 | 26.5 | 32.3 |
Zn | 95.2 | 146.5 | 351.0 | 178.2 | 466.4 | 704.1 | 5898.5 | 5980.8 | 7168.6 | 1700.6 | 3091.8 | 3683.0 | 1.6 | 2.5 | 4.9 | 10.5 | 15.1 | 19.1 |
Nutrient | Rice | Maize | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hybrid | Conventional | Hybrid | Conventional | |||||||||||||
Yr 1 | Yr 2 | Yr 3 | Av | Yr 1 | Yr 2 | Yr 3 | Av | Yr 1 | Yr 2 | Yr 3 | Av | Yr 1 | Yr 2 | Yr 3 | Av | |
N | 18.5 | 18.7 | 18.7 | 18.6 | 18.6 | 18.2 | 17.4 | 18.1 | 15.6 | 16.0 | 16.2 | 15.9 | 12.3 | 13.7 | 14.1 | 13.4 |
P | 3.1 | 3.1 | 3.1 | 3.1 | 3.2 | 3.1 | 2.9 | 3.1 | 3.2 | 3.2 | 3.3 | 3.2 | 2.4 | 2.6 | 2.7 | 2.6 |
K | 19.9 | 20.3 | 21.1 | 20.4 | 24.7 | 23.6 | 20.4 | 22.9 | 21.3 | 22.3 | 21.8 | 21.8 | 19.1 | 21.2 | 21.1 | 20.5 |
S | 2.2 | 2.3 | 2.4 | 2.3 | 2.5 | 2.8 | 2.7 | 2.7 | 2.2 | 2.3 | 2.3 | 2.3 | 2.0 | 2.5 | 2.4 | 2.3 |
Zn | 72.8 | 71.5 | 74.3 | 72.9 | 83.3 | 90.6 | 80.1 | 84.7 | 93.7 | 97.7 | 96.7 | 96.0 | 79.0 | 89.0 | 87.1 | 85.0 |
Treatment | pH (1:2, Soil:Water) | EC (1:2, Soil:Water) dSm−1 | OC (%) | N (kg ha−1) | P (kg ha−1) | K (kg ha−1) | S (mg kg−1) | Zn (mg kg−1) |
---|---|---|---|---|---|---|---|---|
T1 | 8.11 | 0.445 | 0.37 | 221.6 | 23.5 | 93.4 | 54.7 | 0.83 |
T2 | 8.24 | 0.463 | 0.30 | 201.2 | 13.4 | 76.3 | 45.4 | 0.54 |
T3 | 8.22 | 0.460 | 0.30 | 193.9 | 20.7 | 89.2 | 53.0 | 0.78 |
T4 | 8.24 | 0.457 | 0.29 | 216.4 | 10.9 | 91.0 | 52.7 | 0.77 |
T5 | 8.19 | 0.459 | 0.32 | 216.8 | 21.0 | 79.5 | 53.9 | 0.78 |
T6 | 8.21 | 0.448 | 0.34 | 217.4 | 21.5 | 90.1 | 47.4 | 0.77 |
T7 | 8.22 | 0.449 | 0.33 | 216.2 | 21.7 | 90.0 | 54.0 | 0.57 |
T8 | 8.27 | 0.468 | 0.30 | 203.3 | 14.7 | 78.5 | 46.5 | 0.59 |
T9 | 8.18 | 0.451 | 0.34 | 218.1 | 21.9 | 88.2 | 54.6 | 0.83 |
LSD (p ≤ 0.05) | NS | NS | 0.04 | 17.6 | 1.7 | 8.5 | 4.9 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.P.; Dutta, S.; Jha, S.; Prasad, S.S.; Chaudhary, S.K.; Manna, M.C.; Majumdar, K.; Srivastava, P.; Brahmanand, P.S.; Singh, K.M.; et al. Indigenous Nutrient Supplying Capacity of Young Alluvial Calcareous Soils Favours the Sustainable Productivity of Hybrid Rice and Maize Crops. Sustainability 2022, 14, 11585. https://doi.org/10.3390/su141811585
Singh SP, Dutta S, Jha S, Prasad SS, Chaudhary SK, Manna MC, Majumdar K, Srivastava P, Brahmanand PS, Singh KM, et al. Indigenous Nutrient Supplying Capacity of Young Alluvial Calcareous Soils Favours the Sustainable Productivity of Hybrid Rice and Maize Crops. Sustainability. 2022; 14(18):11585. https://doi.org/10.3390/su141811585
Chicago/Turabian StyleSingh, Shiveshwar Pratap, Sudarshan Dutta, Shankar Jha, Shiv Shankar Prasad, Sanjay Kumar Chaudhary, Madhab Chandra Manna, Kaushik Majumdar, Prashant Srivastava, Pothula Srinivasa Brahmanand, Krishna Murari Singh, and et al. 2022. "Indigenous Nutrient Supplying Capacity of Young Alluvial Calcareous Soils Favours the Sustainable Productivity of Hybrid Rice and Maize Crops" Sustainability 14, no. 18: 11585. https://doi.org/10.3390/su141811585
APA StyleSingh, S. P., Dutta, S., Jha, S., Prasad, S. S., Chaudhary, S. K., Manna, M. C., Majumdar, K., Srivastava, P., Brahmanand, P. S., Singh, K. M., & Kumar, K. (2022). Indigenous Nutrient Supplying Capacity of Young Alluvial Calcareous Soils Favours the Sustainable Productivity of Hybrid Rice and Maize Crops. Sustainability, 14(18), 11585. https://doi.org/10.3390/su141811585