Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity
Abstract
1. Introduction
2. Literature Review
2.1. Crash Severity
2.2. Freight Vehicle Safety
3. Methodology
3.1. Ordered Model
3.2. Multinomial Model
3.3. Mixed Model
3.4. Random-Effects Ordered Model
3.5. Multilevel Mixed-Effects Model
3.6. Marginal Effect
4. Data Preparation
Analysis of Data
5. Results and Discussion
5.1. Ordered Model
5.2. Multinomial Model
5.3. Mixed-Effects Model
5.4. Random-Effects Ordered Model
5.5. Multilevel Mixed-Effects Ordered Model
5.6. Model Comparison
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korea National Logistics Information Center. Available online: https://www.nlic.go.kr/nlic/front.action (accessed on 21 September 2021).
- Korea Transport DataBase (KTDB). Available online: https://www.ktdb.go.kr/www/index.do (accessed on 21 September 2021).
- Abdel-Aty, M.; Chen, C.L.; Schott, J.R. An assessment of the effect of driverage on traffic accident involvement using log linear models. Accid. Anal. Prev. 1998, 30, 851–861. [Google Scholar] [CrossRef]
- Massie, D.L.; Campbell, K.L.; Williams, A.F. Traffic accident involvement ratesby driver age and gender. Accid. Anal. Prev. 1995, 27, 73–87. [Google Scholar] [CrossRef]
- Zhang, J.; Fraser, S.; Lindsay, J.; Clarke, K.; Mao, Y. Age specific patterns offactors related to fatal motor vehicle traffic crashes: Focus on young and elderlydrivers. Public Health 1998, 112, 289–295. [Google Scholar]
- Lourens, P.F.; Vissers, J.A.; Jessurun, M. Annual mileage, driving violations, and accident involvement in relation to drivers’ sex, age, and level of education. Accid. Anal. Prev. 1999, 31, 593–597. [Google Scholar] [CrossRef]
- Kockelman, K.M.; Kweon, Y.-J. Driver injury severity: An application of ordered probit models. Accid. Anal. Prev. 2002, 34, 313–321. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.; Ulfarsson, G.F.; Porrello, L.A. Bicyclist injury severities in bicycle motor vehicle crashes. Accid. Anal. Prev. 2007, 39, 238–251. [Google Scholar] [CrossRef]
- Won, M.S.; Lee, G.R.; Gang, G.U. A Study on the Application of Accident Severity Prediction Model. J. Korea N Soc. Transp. 2009, 27, 167–173. [Google Scholar]
- Kim, K.H.; Park, B.H. Developing the Traffic Accident Severity Models by Accident Type. J. Korean Soc. Saf. 2011, 26, 118–123. [Google Scholar]
- Lee, H.-R.; Kum, K.-J.; Son, S.-N. A study on the factor analysis by grade for highway traffic accident. Int. J. Highw. Eng. 2011, 13, 157–165. [Google Scholar] [CrossRef]
- Lu, M.; Yan, X. Examining the nonparametric effect of drivers’s age in rear end crashes through an additive logistic regression model. Accid. Anal. Prev. 2014, 67, 129–136. [Google Scholar]
- Choi, J.W.; Kum, K.J. Analysis of Factors influencing Severity of Motorcycle Crashes using Ordered Probit Model. Int. J. Highw. Eng. 2014, 16, 143–154. [Google Scholar] [CrossRef]
- Dionne, G.; Desjardins, D.; Laberge-Nadeau, C.; Maag, U. Medical conditions, risk exposure, and truck drivers’ accidents: An analysis with count data regression models. Accid. Anal. Prev. 1995, 27, 295–305. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Mannering, F. Analysis of injury severity and vehicle occupancy in truck- and non-truck-involved accidents. Accid. Anal. Prev. 1999, 31, 579–592. [Google Scholar] [CrossRef]
- Rosenbloom, T.; Eldror, E.; Shahar, A. Approaches of truck drivers and non-truck drivers toward reckless on-road behavior. Accid. Anal. Prev. 2009, 41, 723–728. [Google Scholar] [CrossRef]
- Zhu, X.; Srinivasan, S. A comprehensive analysis of factors influencing the injury severity of large-truck crashes. Accid. Anal. Prev. 2011, 43, 49–57. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Chen, J.-T. Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Saf. Sci. 2013, 51, 17–22. [Google Scholar] [CrossRef]
- Choi, S.; Kim, M.; Oh, C.; Lee, K. Effects of Weather and Traffic Conditions on Truck Accident Severity on Freeways. J. Korean Soc. Civ. Eng. 2013, 33, 1105–1113. [Google Scholar] [CrossRef]
- Han, S.; Jo, W.; Chang, S. Analysis on Truck Accidents using Classification and Regression Trees. J. Transp. Res. 2014, 21, 87–103. [Google Scholar]
- Hong, J.; Park, J.; Lee, G.; Park, D. Endogenous commercial driver’s traffic violations and freight truck-involved crashes on mainlines of expressway. Accid. Anal. Prev. 2019, 131, 327–335. [Google Scholar] [CrossRef]
- Park, J.; Abdel-Aty, M.; Wang, L.; Lee, G.; Hong, J. Influence of Multiple Freeway Design Features on Freight Traffic Safety. J. Adv. Transp. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Christoforou, Z.; Cohen, S.; Karlaftis, M.G. Vehicle occupant injury severity on highways: An empirical investigation. Accid. Anal. Prev. 2010, 42, 1606–1620. [Google Scholar] [CrossRef]
- Jalayer, M.; Shabanpour, R.; Pour-Rouholamin, M.; Golshani, N.; Zhou, H. Wrong-way driving crashes: A random-parameters ordered probit analysis of injury severity. Accid. Anal. Prev. 2018, 117, 128–135. [Google Scholar] [CrossRef]
- Park, J.H.; Yun, D.G.; Sung, J.G. Analysis on Factors Affecting Traffic Accident Severity Case Study: Arterial Incl uded Curve Section. J. Korean Soc. Saf. 2013, 28, 84–89. [Google Scholar] [CrossRef]
- Sarwar, T.; Anastasopoulos, P.C.; Golshani, N.; Hulme, K.F. Grouped random parameters bivariate probit analysis of perceived and observed aggressive driving behavior: A driving simulation study. Anal. Methods Accid. Res. 2017, 13, 52–64. [Google Scholar] [CrossRef]
- Shao, X.; Ma, X.; Chen, F.; Song, M.; Pan, X.; You, K. A random parameters ordered probit analysis of injury severity in truck involved rear-end collisions. Int. J. Environ. Res. Public Health 2020, 17, 395. [Google Scholar] [CrossRef]
- Washington, S.P.; Karlaftis, M.G.; Mannering, F.L. Statistical and Econometric Methods for Transportation Data Analysis; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Chen, Z.; Fan, W. A multinomial logit model of pedestrian-vehicle crash severity in North Carolina. Int. J. Transp. Sci. Technol. 2019, 8, 43–52. [Google Scholar] [CrossRef]
- Hensher, D.A.; Greene, W.H. Specification and estimation of the nested logit model: Alternative normalisations. Transp. Res. Part B Methodol. 2002, 36, 1–17. [Google Scholar] [CrossRef]
- Tay, R.; Choi, J.; Kattan, L.; Khan, A. A multinomial logit model of pedestrian–vehicle crash severity. Int. J. Sustain. Transp. 2011, 5, 233–249. [Google Scholar] [CrossRef]
- Vajari, M.A.; Aghabayk, K.; Sadeghian, M.; Shiwakoti, N. A multinomial logit model of motorcycle crash severity at Australian intersections. J. Saf. Res. 2020, 73, 17–24. [Google Scholar] [CrossRef]
- Wahab, L.; Jiang, H. A multinomial logit analysis of factors associated with severity of motorcycle crashes in Ghana. Traffic Inj. Prev. 2019, 20, 521–527. [Google Scholar] [CrossRef]
- Xin, C.; Wang, Z.; Lee, C.; Lin, P.-S. Modeling safety effects of horizontal curve design on injury severity of single-motorcycle crashes with mixed-effects logistic model. Transp. Res. Rec. J. Transp. Res. Board 2017, 2637, 38–46. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Yang, X.; Xu, C.; Zhu, X.; Wei, J. Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect. Anal. Methods Accid. Res. 2020, 26, 100114. [Google Scholar] [CrossRef]
- Abdel-Aty, M. Analysis of driver injury severity levels at multiple locations using ordered probit models. J. Saf. Res. 2003, 34, 597–603. [Google Scholar] [CrossRef]
- Duncan, C.S.; Khattak, A.; Council, F.M. Applying the ordered probit model to injury severity in truck-passenger car rear-end collisions. Transp. Res. Rec. J. Transp. Res. Board 1998, 1635, 63–71. [Google Scholar] [CrossRef]
- Lee, J.; Abdel-Aty, M.; Cai, Q.; Wang, L. Effects of emergency medical services times on traffic injury severity: A random effects ordered probit approach. Traffic Inj. Prev. 2018, 19, 577–581. [Google Scholar] [CrossRef]
- Mannering, F.L.; Shankar, V.; Bhat, C.R. Unobserved heterogeneity and the statistical analysis of highway accident data. Anal. Methods Accid. Res. 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Quddus, M. Effects of geodemographic profiles of drivers on their injury severity from traffic crashes using multilevel mixed-effects ordered logit model. Transp. Res. Rec. J. Transp. Res. Board 2015, 2514, 149–157. [Google Scholar] [CrossRef]
- Greene, W.H. NLOGIT Version 4.0 Reference Guide; Econometric Software, Inc.: New York, NY, USA, 2008. [Google Scholar]
- Obeng, K. Gender differences in injury severity risks in crashes at signalized intersections. Accid. Anal. Prev. 2011, 43, 1521–1531. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, K.; Huynh, N. Analysis of driver injury severity in rural single-vehicle crashes. Accid. Anal. Prev. 2012, 47, 36–44. [Google Scholar] [CrossRef]
- Maistros, A.; Schneider, W.H., IV; Savolainen, P.T. A comparison of contributing factors between alcohol related single vehicle motorcycle and car crashes. J. Saf. Res. 2014, 49, 129-e1. [Google Scholar] [CrossRef]
- Pei, X.; Wong, S.; Sze, N. A joint-probability approach to crash prediction models. Accid. Anal. Prev. 2011, 43, 1160–1166. [Google Scholar] [CrossRef]
- Russo, B.J.; Savolainen, P.; Schneider, W.H.; Anastasopoulos, P.C. Comparison of factors affecting injury severity in angle collisions by fault status using a random parameters bivariate ordered probit model. Anal. Methods Accid. Res. 2014, 2, 21–29. [Google Scholar] [CrossRef]
- Wong, S.; Sze, N.N.; Li, Y. Contributory factors to traffic crashes at signalized intersections in Hong Kong. Accid. Anal. Prev. 2007, 39, 1107–1113. [Google Scholar] [CrossRef]
- Zhou, M.; Chin, H.C. Factors affecting the injury severity of out-of-control single-vehicle crashes in Singapore. Accid. Anal. Prev. 2019, 124, 104–112. [Google Scholar] [CrossRef]
- Pour-Rouholamin, M.; Zhou, H. Investigating the risk factors associated with pedestrian injury severity in Illinois. J. Saf. Res. 2016, 57, 9–17. [Google Scholar] [CrossRef]
Variable | Frequency | Percentage | |
---|---|---|---|
Severity | Fatality | 808 | 3.57% |
Injury | 2379 | 10.52% | |
Damage only | 19,432 | 85.91% | |
Day/Night | Day | 14,971 | 66.19% |
Night | 7648 | 33.81% | |
Crash Location | Mainline | 13,644 | 60.32% |
Tollgate | 4523 | 20.00% | |
Ramp | 3200 | 14.15% | |
Tunnel | 886 | 3.92% | |
Service area | 366 | 1.62% | |
Crash Factor | Driver | 16,549 | 73.16% |
Vehicle | 3180 | 14.06% | |
Other | 2890 | 12.78% | |
Traffic Condition | Normal | 21,630 | 95.63% |
Congestion | 471 | 2.08% | |
Forward car stopped | 518 | 2.29% | |
Road Environment | Normal | 19,444 | 85.96% |
Abnormal | 3175 | 14.04% | |
Main Crash Factor | Speeding | 4237 | 18.73% |
Drowsy | 3798 | 16.79% | |
Lack of safety distance | 552 | 2.44% | |
Negligence | 5827 | 25.76% | |
Driver other | 2239 | 9.90% | |
Vehicle fault | 4008 | 17.72% | |
Road fault | 1301 | 5.75% | |
Other factors | 4237 | 18.73% | |
Crash Type | Car–Car | 4412 | 19.51% |
Car–Facility | 13,989 | 61.85% | |
Car–Person | 161 | 0.71% | |
Other types | 4057 | 17.94% | |
Weather Condition | Sunny | 14,722 | 65.09% |
Cloudy | 2999 | 13.26% | |
Rainy | 4107 | 18.16% | |
Snowy | 674 | 2.98% | |
Foggy | 103 | 0.46% | |
Other weather | 14 | 0.06% | |
Surface Condition | Dry | 17,466 | 77.22% |
Wet | 5025 | 22.22% | |
Snow | 128 | 0.57% | |
Other surface conditions | 27 | 0.12% | |
Horizontal Alignment | Straight | 19,739 | 87.27% |
Right curve | 161 | 0.71% | |
Left curve | 2719 | 12.02% | |
Longitudinal Slope | Flatness | 17,512 | 77.42% |
Uphill | 2719 | 12.02% | |
Downhill | 2388 | 10.56% | |
Pavement Condition | Normal | 22,570 | 99.78% |
Abnormal | 49 | 0.22% | |
Median Type | Wall (127 cm) | 7554 | 33.40% |
Wall (81 cm) | 3665 | 16.20% | |
Green wall | 447 | 1.98% | |
Guardrail | 2011 | 8.89% | |
Other median types | 8942 | 39.53% | |
Guardrail Type | Guardrail | 8827 | 39.02% |
Guard cable | 250 | 1.11% | |
Guard pipe | 47 | 0.21% | |
Guard fence | 302 | 1.34% | |
Concrete wall | 2035 | 9.00% | |
Other guardrails | 11,158 | 49.33% | |
Truck Vehicle Size | Small | 2666 | 11.79% |
Medium | 5910 | 26.13% | |
Large | 3850 | 17.02% | |
Trailer | 4193 | 18.54% | |
Age | Less than 20s | 5919 | 26.17% |
The 30s | 2704 | 11.95% | |
The 40s | 5541 | 24.50% | |
The 50s | 5892 | 26.05% | |
Over 60 | 2563 | 11.33% | |
Sex | Male | 22,243 | 98.34% |
Female | 376 | 1.66% | |
Vehicle Speed | Average | 91.1 km/h | |
Standard deviation | 19.62 |
Variable | Ordered Logit | Ordered Probit | Variable | Ordered Logit | Ordered Probit |
---|---|---|---|---|---|
Year | −0.0473 | −0.0251 | Congestion | 0.9239 | 0.5166 |
Day/Night | 0.1679 | 0.0803 | Forward Car Stopped | 0.7457 | 0.434 |
Tollgate | −1.7974 | −0.8306 | Saturday | N/S | −0.0765 |
Ramp | −0.5392 | −0.2777 | Snowy | −1.0312 | −0.573 |
Crash Factor-Vehicle | 0.565 | 0.3057 | Car–Car | 2.1355 | 1.1666 |
Speeding | 1.216 | 0.6427 | Car–Facility | 0.2342 | 0.1067 |
Drowsy | 1.4684 | 0.7889 | Car–Person | 4.4338 | 2.4407 |
Lack of Safety Distance | 1.1501 | 0.5937 | Right curve | 0.1382 | 0.0831 |
Negligence | 1.0731 | 0.5471 | Downhill | 0.2223 | 0.1328 |
Main Crash Factor-Driver Other | 0.9019 | 0.4704 | Construction Area | −0.3396 | −0.1643 |
The 40s | 0.143 | 0.0817 | |||
Cut 1 | 3.0998 | 1.7211 | The 50s | 0.2049 | 0.1197 |
Cut 2 | 4.9245 | 2.6932 | Over 60 | 0.3795 | 0.2092 |
Variable | Ordered Logit | Ordered Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Year | 0.003 | −0.003 | 0.000 | 0.004 | −0.003 | −0.001 |
Day/Night | −0.013 | 0.001 | 0.012 | −0.013 | 0.011 | 0.002 |
Tollgate | 0.009 | −0.074 | 0.065 | 0.095 | −0.081 | −0.014 |
Ramp | 0.034 | −0.028 | −0.006 | 0.038 | −0.032 | −0.006 |
Crash Factor-Vehicle | −0.049 | 0.040 | 0.009 | −0.056 | 0.045 | 0.011 |
Speeding | −0.124 | 0.099 | 0.025 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.163 | 0.129 | 0.034 | −0.173 | 0.133 | 0.040 |
Lack of Safety Distance | −0.132 | 0.104 | 0.028 | −0.133 | 0.102 | 0.031 |
Negligence | −0.099 | 0.080 | 0.019 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver Other | −0.009 | 0.072 | −0.063 | −0.095 | 0.075 | 0.020 |
Congestion | −0.098 | 0.078 | 0.020 | −0.111 | 0.087 | 0.024 |
Forward Car stopped | −0.074 | 0.059 | 0.015 | −0.089 | 0.071 | 0.018 |
Saturday | N/S | N/S | 0.000 | 0.012 | −0.001 | −0.011 |
Snowy | 0.051 | −0.042 | −0.009 | 0.062 | −0.054 | −0.008 |
Car–Car | −0.271 | 0.208 | 0.063 | −0.281 | 0.204 | 0.077 |
Car–Facility | −0.017 | 0.014 | 0.003 | −0.017 | 0.014 | 0.003 |
Car–Person | −0.799 | 0.280 | 0.519 | −0.772 | 0.245 | 0.527 |
Right Curve | −0.011 | 0.009 | 0.002 | −0.014 | 0.011 | 0.003 |
Downhill | −0.017 | 0.014 | 0.003 | −0.022 | 0.019 | 0.003 |
Construction Area | 0.022 | −0.018 | −0.004 | 0.023 | −0.002 | −0.021 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.002 | 0.016 | −0.014 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.037 | 0.003 | 0.034 |
Variable | Multinomial Logit | Multinomial Probit | ||
---|---|---|---|---|
Y = 1 | Y = 2 | Y = 1 | Y = 2 | |
Year | −0.0711 | N/S | −0.0523 | N/S |
Day/Night | N/S | 0.4611 | N/S | 0.2701 |
Tollgate | −1.7136 | −2.8522 | −1.1129 | −1.5016 |
Ramp | −0.6953 | N/S | −0.5073 | N/S |
Speed | −0.0001 | 0.0023 | 0.0000 | 0.0015 |
Crash Factor-Vehicle | 0.4632 | N/S | 0.2921 | N/S |
Speeding | N/S | 1.6604 | N/S | 1.0902 |
Drowsy | 1.2371 | 2.0368 | 0.8695 | 1.3184 |
Lack of Safety Distance | 1.2421 | 1.1572 | 0.8703 | 0.7351 |
Negligence | 1.0455 | 1.3409 | 0.6955 | 0.8298 |
Main Crash Factor-Driver Other | 0.8607 | 1.1642 | 0.5674 | 0.7360 |
Road Fault | −0.6612 | N/S | −0.4136 | N/S |
Congestion | 0.7553 | 1.3675 | 0.6236 | 0.9545 |
Forward Car stopped | 0.3511 | 1.1955 | 0.3048 | 0.8553 |
Saturday | −0.1868 | N/S | −0.1431 | N/S |
Snowy | −0.7604 | −1.8752 | −0.5963 | −1.1893 |
Foggy | N/S | 0.9696 | N/S | 0.6259 |
Car–Car | 1.8494 | 3.0437 | 1.4573 | 1.9456 |
Car–Facility | 0.1865 | 0.5447 | 0.1263 | 0.2599 |
Car–Person | 3.4476 | 6.0974 | 2.6096 | 4.1560 |
Right curve | 0.1465 | 0.1383 | 0.1201 | 0.1060 |
Downhill | 0.2506 | 0.2310 | 0.1969 | 0.1819 |
Surface-wet | −0.2353 | −0.4007 | −0.1767 | −0.2773 |
Construction Area | N/S | −0.5281 | N/S | −0.2888 |
Guardrail–Guard fence | N/S | 0.5709 | N/S | 0.4080 |
The 30s | N/S | 0.6797 | N/S | 0.3915 |
The 40s | N/S | 0.7845 | N/S | 0.4883 |
The 50s | N/S | 1.0031 | N/S | 0.6191 |
Over 60 | N/S | 1.3041 | N/S | 0.8061 |
Constant | −2.4682 | −7.1413 | −1.9326 | −4.6713 |
Variable | Multinomial Logit | Multinomial Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Year | 0.004 | −0.004 | 0.000 | 0.005 | −0.005 | 0.000 |
Day/Night | −0.005 | 0.001 | 0.004 | −0.006 | 0.000 | 0.006 |
Tollgate | 0.087 | −0.073 | −0.014 | 0.091 | −0.077 | −0.015 |
Ramp | 0.036 | −0.035 | −0.001 | 0.042 | −0.041 | −0.001 |
Speed | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Crash Factor-Vehicle | −0.042 | 0.032 | 0.009 | −0.043 | 0.029 | 0.014 |
Speeding | −0.130 | 0.107 | 0.023 | −0.134 | 0.104 | 0.030 |
Drowsy | −0.141 | 0.106 | 0.035 | −0.146 | 0.102 | 0.045 |
Lack of Safety Distance | −0.140 | 0.126 | 0.014 | −0.137 | 0.121 | 0.016 |
Negligence | −0.096 | 0.081 | 0.015 | −0.095 | 0.077 | 0.018 |
Main Crash Factor-Driver Other | −0.086 | 0.071 | 0.015 | −0.084 | 0.065 | 0.019 |
Road Fault | 0.022 | −0.033 | 0.011 | 0.024 | −0.035 | 0.011 |
Congestion | −0.083 | 0.062 | 0.022 | −0.105 | 0.074 | 0.032 |
Forward Car stopped | −0.042 | 0.024 | 0.018 | −0.058 | 0.028 | 0.030 |
Saturday | 0.011 | −0.011 | −0.001 | 0.014 | −0.013 | −0.001 |
Snowy | 0.042 | −0.035 | −0.008 | 0.052 | −0.042 | −0.009 |
Foggy | 0.009 | −0.024 | 0.014 | 0.008 | −0.031 | 0.023 |
Car–Car | −0.247 | 0.176 | 0.072 | −0.271 | 0.191 | 0.080 |
Car–Facility | −0.015 | 0.011 | 0.004 | −0.016 | 0.011 | 0.004 |
Car–Person | −0.788 | 0.241 | 0.547 | −0.772 | 0.246 | 0.526 |
Right curve | −0.011 | 0.009 | 0.001 | −0.014 | 0.012 | 0.002 |
Downhill | −0.019 | 0.017 | 0.002 | −0.023 | 0.020 | 0.003 |
Surface-wet | 0.017 | −0.014 | −0.003 | 0.020 | −0.016 | −0.004 |
Construction Area | 0.011 | −0.007 | −0.004 | 0.012 | −0.008 | −0.004 |
Guardrail–Guard fence | −0.024 | 0.018 | 0.006 | −0.030 | 0.020 | 0.010 |
The 30s | −0.001 | −0.007 | 0.008 | −0.002 | −0.008 | 0.010 |
The 40s | −0.007 | −0.002 | 0.008 | −0.008 | −0.004 | 0.012 |
The 50s | −0.008 | −0.004 | 0.011 | −0.010 | −0.006 | 0.016 |
Over 60 | −0.021 | 0.002 | 0.020 | −0.027 | 0.000 | 0.027 |
Variable | Mixed-Effects Logit | Mixed-Effects Probit | Variable | Mixed-Effects Logit | Mixed-Effects Probit |
---|---|---|---|---|---|
Year | −0.0576 | −0.0303 | Saturday | −0.1545 | −0.0891 |
Day/Night | 0.1204 | 0.0518 | Snowy | −0.9966 | −0.5471 |
Tollgate | −1.7883 | −0.7872 | Car–Car | 2.0778 | 1.1686 |
Ramp | −0.5618 | −0.2923 | Car–Facility | 0.2319 | 0.1041 |
Crash Factor-Vehicle | 0.6935 | 0.3474 | Car–Person | 4.2733 | 2.3923 |
Speeding | 1.3296 | 0.6873 | Right curve | 0.1498 | 0.0877 |
Drowsy | 1.5572 | 0.8103 | Downhill | 0.2416 | 0.1417 |
Lack of Safety Distance | 1.3428 | 0.6918 | Median–Other | N/S | −0.1132 |
Negligence | 1.2175 | 0.603 | Guardrail–Guard fence | N/S | 0.1891 |
Main Crash Factor-Driver Other | 1.0362 | 0.5149 | The 50s | 0.0926 | N/S |
Congestion | 0.8735 | 0.5245 | Over 60 | 0.2518 | 0.1155 |
Forward Car stopped | 0.6002 | 0.3736 | Constant | −2.9464 | −1.6086 |
Variable | Random-Effects Ordered Logit | Random-Effects Ordered Probit | Variable | Random-Effects Ordered Logit | Random-Effects Ordered Probit |
---|---|---|---|---|---|
Day/Night | 0.1713 | 0.0778 | Forward Car stopped | 0.7585 | 0.4353 |
Tollgate | −1.8198 | −0.7935 | Road Fault | −0.2641 | −0.5692 |
Ramp | −0.5566 | −0.2613 | Snowy | −0.9413 | −1.1628 |
Crash Factor-Vehicle | 0.5211 | 0.3059 | Car–Car | 2.1290 | 0.1028 |
Speeding | 1.2575 | 0.6448 | Car–Facility | 0.2406 | 2.4455 |
Drowsy | 1.4234 | 0.7860 | Car–Person | 4.4351 | 0.0790 |
Lack of Safety Distance | 1.1290 | 0.5995 | Right curve | 0.1388 | 0.1330 |
Negligence | 1.0359 | 0.5444 | Downhill | 0.2266 | 0.1527 |
Main Crash Factor-Driver Other | 0.8749 | 0.4720 | Construction Area | −0.3458 | −0.1259 |
Congestion | 0.9286 | 0.5106 | Guardrail–Guard fence | N/S | 0.1788 |
The 40s | 0.1438 | 0.0817 | |||
Cut 1 | 3.7306 | 2.0780 | The 50s | 0.2044 | 0.1185 |
Cut 2 | 5.5583 | 3.0515 | Over 60 | 0.3732 | 0.2062 |
Variable | Random-Effects Ordered Logit | Random-Effects Ordered Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Day/Night | −0.013 | 0.010 | 0.003 | −0.013 | 0.010 | 0.003 |
Tollgate | 0.091 | −0.075 | −0.016 | 0.092 | −0.079 | −0.013 |
Ramp | 0.035 | −0.028 | −0.007 | 0.036 | −0.031 | −0.005 |
Crash Factor-Vehicle | −0.045 | 0.036 | 0.009 | −0.056 | 0.046 | 0.010 |
Speeding | −0.130 | 0.103 | 0.027 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.157 | 0.124 | 0.033 | −0.172 | 0.132 | 0.040 |
Lack of Safety Distance | −0.129 | 0.102 | 0.027 | −0.135 | 0.104 | 0.031 |
Negligence | −0.095 | 0.077 | 0.018 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver Other | −0.086 | 0.069 | 0.017 | −0.095 | 0.076 | 0.019 |
Congestion | −0.099 | 0.079 | 0.020 | −0.110 | 0.086 | 0.024 |
Forward Car stopped | −0.075 | 0.060 | 0.015 | −0.090 | 0.071 | 0.019 |
Snowy | 0.018 | −0.015 | −0.003 | 0.062 | −0.053 | −0.009 |
Car–Car | 0.048 | −0.040 | −0.008 | −0.280 | 0.203 | 0.077 |
Car–Facility | −0.270 | 0.207 | 0.063 | −0.016 | 0.013 | 0.003 |
Car–Person | −0.017 | 0.014 | 0.003 | −0.772 | 0.244 | 0.528 |
Right Curve | −0.798 | 0.280 | 0.518 | −0.013 | 0.011 | 0.002 |
Downhill | −0.011 | 0.009 | 0.002 | −0.023 | 0.019 | 0.004 |
Construction Area | −0.018 | 0.015 | 0.003 | 0.022 | −0.018 | −0.004 |
Guardrail–Guard fence | 0.022 | −0.018 | −0.004 | −0.032 | 0.026 | 0.006 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.020 | 0.016 | 0.004 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.036 | 0.030 | 0.006 |
Day/Night | −0.013 | 0.010 | 0.003 | −0.013 | 0.010 | 0.003 |
Tollgate | 0.091 | −0.075 | −0.016 | 0.092 | −0.079 | −0.013 |
Ramp | 0.035 | −0.028 | −0.007 | 0.036 | −0.031 | −0.005 |
Crash Factor-Vehicle | −0.045 | 0.036 | 0.009 | −0.056 | 0.046 | 0.010 |
Speeding | −0.130 | 0.103 | 0.027 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.157 | 0.124 | 0.033 | −0.172 | 0.132 | 0.040 |
Lack of Safety Distance | −0.129 | 0.102 | 0.027 | −0.135 | 0.104 | 0.031 |
Negligence | −0.095 | 0.077 | 0.018 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver Other | −0.086 | 0.069 | 0.017 | −0.095 | 0.076 | 0.019 |
Congestion | −0.099 | 0.079 | 0.020 | −0.110 | 0.086 | 0.024 |
Forward Car stopped | −0.075 | 0.060 | 0.015 | −0.090 | 0.071 | 0.019 |
Snowy | 0.018 | −0.015 | −0.003 | 0.062 | −0.053 | −0.009 |
Car–Car | 0.048 | −0.040 | −0.008 | −0.280 | 0.203 | 0.077 |
Car–Facility | −0.270 | 0.207 | 0.063 | −0.016 | 0.013 | 0.003 |
Car–Person | −0.017 | 0.014 | 0.003 | −0.772 | 0.244 | 0.528 |
Right curve | −0.798 | 0.280 | 0.518 | −0.013 | 0.011 | 0.002 |
Downhill | −0.011 | 0.009 | 0.002 | −0.023 | 0.019 | 0.004 |
Construction Area | −0.018 | 0.015 | 0.003 | 0.022 | −0.018 | −0.004 |
Guardrail–Guard fence | 0.022 | −0.018 | −0.004 | −0.032 | 0.026 | 0.006 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.020 | 0.016 | 0.004 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.036 | 0.030 | 0.006 |
Variable | Multilevel Mixed-Effects Ordered Logit | Multilevel Mixed-Effects Ordered Probit | Variable | Multilevel Mixed-Effects Ordered Logit | Multilevel Mixed-Effects Ordered Probit |
---|---|---|---|---|---|
Year | −0.0492 | −0.0251 | Congestion | 0.9269 | 0.5166 |
Day/Night | 0.1692 | 0.0803 | Forward Car stopped | 0.7425 | 0.4340 |
Tollgate | −1.7999 | −0.8306 | Saturday | −0.1436 | −0.0765 |
Ramp | −0.5396 | −0.2777 | Snowy | −1.0418 | −0.5730 |
Crash Factor-Vehicle | 0.5655 | 0.3057 | Car–Car | 2.1341 | 1.1666 |
Speeding | 1.2172 | 0.6427 | Car–Facility | 0.2355 | 0.1067 |
Drowsy | 1.4718 | 0.7889 | Car–Person | 4.4308 | 2.4407 |
Lack of Safety Distance | 1.1591 | 0.5937 | Right Curve | 0.1388 | 0.0831 |
Negligence | 1.0766 | 0.5471 | Downhill | 0.2230 | 0.1328 |
Main Crash Factor-Driver Other | 0.9057 | 0.4704 | Construction Area | −0.3503 | −0.1643 |
The 40s | 0.1429 | 0.0817 | |||
Cut 1 | 3.0603 | 1.7211 | The 50s | 0.2042 | 0.1197 |
Cut 2 | 4.8854 | 2.6932 | Over 60 | 0.3778 | 0.2092 |
Variable | Multilevel Mixed-Effects Ordered Logit | Multilevel Mixed-Effects Ordered Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Year | 0.004 | −0.003 | −0.001 | 0.004 | −0.003 | −0.001 |
Day/Night | −0.013 | 0.010 | 0.002 | −0.013 | 0.011 | 0.002 |
Tollgate | 0.090 | −0.074 | −0.016 | 0.095 | −0.081 | −0.014 |
Ramp | 0.034 | −0.028 | −0.006 | 0.038 | −0.032 | −0.006 |
Crash Factor-Vehicle | −0.049 | 0.040 | 0.009 | −0.056 | 0.045 | 0.010 |
Speeding | −0.124 | 0.099 | 0.025 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.164 | 0.129 | 0.034 | −0.173 | 0.133 | 0.040 |
Lack of Safety Distance | −0.133 | 0.106 | 0.028 | −0.133 | 0.102 | 0.030 |
Negligence | −0.100 | 0.080 | 0.020 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver other | −0.090 | 0.072 | 0.018 | −0.095 | 0.075 | 0.019 |
Congestion | −0.098 | 0.078 | 0.020 | −0.111 | 0.087 | 0.024 |
Forward Car stopped | −0.073 | 0.059 | 0.014 | −0.089 | 0.071 | 0.019 |
Saturday | 0.010 | −0.008 | −0.002 | 0.012 | −0.010 | −0.002 |
Snowy | 0.051 | −0.042 | −0.009 | 0.062 | −0.054 | −0.008 |
Car–Car | −0.271 | 0.208 | 0.063 | −0.281 | 0.204 | 0.077 |
Car–Facility | −0.017 | 0.014 | 0.003 | −0.017 | 0.014 | 0.003 |
Car–Person | −0.798 | 0.281 | 0.518 | −0.772 | 0.245 | 0.527 |
Right Curve | −0.011 | 0.009 | 0.002 | −0.014 | 0.011 | 0.002 |
Downhill | −0.017 | 0.014 | 0.003 | −0.022 | 0.019 | 0.004 |
Construction Area | 0.022 | −0.018 | −0.004 | 0.023 | −0.020 | −0.004 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.020 | 0.016 | 0.003 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.037 | 0.030 | 0.007 |
Model | AIC | BIC | ||
---|---|---|---|---|
Logit | Probit | Logit | Probit | |
Ordered Model | 17,189.76 | 17,154.63 | 17,382.39 | 17,355.30 |
Multinomial Model | 14,861.22 | 14,853.84 | 15,334.95 | 15,327.57 |
Mixed-effects Model | 17,187.68 | 17,154.53 | 17,388.44 | 17,354.75 |
Random-effects Ordered Model | 14,777.54 | 14,748.72 | 14,954.12 | 14,933.33 |
Multilevel Mixed-effects ordered Model | 13,808.41 | 13,790.86 | 13,984.99 | 13,967.44 |
Variable Type | Variables |
---|---|
Variables that increase the severity | Night, Accident factor-vehicle, Speeding, Drowsy, Lack of Safety Distance, Negligence, Main Crash Factor-Driver other, Congestion, Forward Car stopped, Foggy, Right curve, Downhill, Guardrail-guard fence |
Variables that decrease the severity (normal) | Tollgate, Ramp, Saturday |
Variables that decrease the severity (abnormal) | Road Fault, Snowy, Surface-wet, Construction Area |
Ordered Variable | Year, Car–Person > Car–Car > Car–Facility, Age |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Park, J. Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity. Sustainability 2022, 14, 11804. https://doi.org/10.3390/su141911804
Park S, Park J. Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity. Sustainability. 2022; 14(19):11804. https://doi.org/10.3390/su141911804
Chicago/Turabian StylePark, Seongmin, and Juneyoung Park. 2022. "Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity" Sustainability 14, no. 19: 11804. https://doi.org/10.3390/su141911804
APA StylePark, S., & Park, J. (2022). Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity. Sustainability, 14(19), 11804. https://doi.org/10.3390/su141911804