Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Route
2.2. Data Description
2.3. Static Ensemble Classification Models
2.3.1. Adaptive Boosting (AdaBoost)
Algorithm 1: Adaptive Boosting (AdaBoost) | ||
1 | Input: Training data:, weak learner | |
2 | The weight distribution is initialized | |
3 | fordo | |
4 | Using the weight distribution , train the weak learner | |
5 | Compute the weight of | |
6 | The weight distribution is updated over the training data set Here, is the normalization factor, which is selected such that will be a distribution. | |
7 | End for | |
8 | Return |
2.3.2. Random Forest (RF)
2.3.3. Classification and Regression Tree (CART)
2.4. Dynamic Ensemble Selection (DES) Algorithms
2.4.1. META-DES
2.4.2. KNORA
2.4.3. DES-P
2.5. Hyperparameter Tuning
2.6. Performance Evaluation
2.7. Model Interpretation by SHAP
3. Results and Discussion
3.1. Model Comparison and Performance Assessment
3.2. META-DES-RF Framework Interpretation by SHAP
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety 2015; World Health Organization: Geneva, Switzerland, 2015.
- World Health Organization. Global Status Report on Road Safety (2018); World Health Organization: Geneva, Switzerland, 2019.
- Umair, M.; Rana, I.A.; Lodhi, R.H. The impact of urban design and the built environment on road traffic crashes: A case study of Rawalpindi, Pakistan. Case Stud. Transp. Policy 2022, 10, 417–426. [Google Scholar] [CrossRef]
- Hussain, M.; Shi, J. Modelling and examining the influence of predictor variables on the road crashes in functionally classified vehicles in Pakistan. Int. J. Crashworthiness 2021, 27, 1118–1127. [Google Scholar] [CrossRef]
- Almoshaogeh, M.; Abdulrehman, R.; Haider, H.; Alharbi, F.; Jamal, A.; Alarifi, S.; Shafiquzzaman, M. Traffic accident risk assessment framework for qassim, saudi arabia: Evaluating the impact of speed cameras. Appl. Sci. 2021, 11, 6682. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.K.; Al-Shayeb, A.; Arifuzzaman, M. Towards sustainable road safety in Saudi Arabia: Exploring traffic accident causes associated with driving behavior using a Bayesian belief network. Sustainability 2022, 14, 6315. [Google Scholar] [CrossRef]
- Al-Garawi, N.; Dalhat, M.A.; Aga, O. Assessing the Road Traffic Crashes among Novice Female Drivers in Saudi Arabia. Sustainability 2021, 13, 8613. [Google Scholar] [CrossRef]
- Rahman, M.H.; Zafri, N.M.; Akter, T.; Pervaz, S. Identification of factors influencing severity of motorcycle crashes in Dhaka, Bangladesh using binary logistic regression model. Int. J. Inj. Control Saf. Promot. 2021, 28, 141–152. [Google Scholar] [CrossRef]
- Zafri, N.M.; Prithul, A.A.; Baral, I.; Rahman, M. Exploring the factors influencing pedestrian-vehicle crash severity in Dhaka, Bangladesh. Int. J. Inj. Control Saf. Promot. 2020, 27, 300–307. [Google Scholar] [CrossRef]
- SIP. Social Indicator of Pakistan; Government Pakistan, Statistics Division, Pakistan Bureau of Statistics: Islamabad, Pakistan, 2016.
- SIP. Social Indicator of Pakistan; Government of Pakistan, Statistics Division, Pakistan Bureau of Statistics: Islamabad, Pakistan, 2020. Available online: http://www.pbs.gov.pk/content/population-census (accessed on 27 January 2022).
- Shoaib, M. Pakistan Economic Survey 2012–2013; Ministry of Finance, Government of Pakistan: Islamabad, Pakistan, 2013.
- Batool, Z.; Carsten, O.; Jopson, A. Road safety issues in Pakistan: A case study of Lahore. Transp. Plan. Technol. 2012, 35, 31–48. [Google Scholar] [CrossRef]
- Kayani, A.; Fleiter, J.J.; King, M.J. Underreporting of road crashes in Pakistan and the role of fate. Traffic Inj. Prev. 2014, 15, 34–39. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Liang, F. Crash injury severity analysis using Bayesian ordered probit models. J. Transp. Eng. 2009, 135, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z.; Liu, P.; Zha, L. Exploring contributing factors to crash injury severity at freeway diverge areas using ordered probit model. Procedia Eng. 2011, 21, 178–185. [Google Scholar]
- Yasmin, S.; Eluru, N.; Bhat, C.R.; Tay, R. A latent segmentation based generalized ordered logit model to examine factors influencing driver injury severity. Anal. Methods Accid. Res. 2014, 1, 23–38. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Tarefder, R.; Ma, J.; Wei, H.; Guan, H. A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes. Accid. Anal. Prev. 2015, 80, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Ulfarsson, G.F.; Shankar, V.N.; Mannering, F.L. A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. Accid. Anal. Prev. 2010, 42, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chen, F.; Zhang, G.; Liu, X.C.; Wang, H.; Bogus, S.M. Mixed logit model-based driver injury severity investigations in single-and multi-vehicle crashes on rural two-lane highways. Accid. Anal. Prev. 2014, 72, 105–115. [Google Scholar] [CrossRef]
- Alogaili, A.; Mannering, F. Unobserved heterogeneity and the effects of driver nationality on crash injury severities in Saudi Arabia. Accid. Anal. Prev. 2020, 144, 105618. [Google Scholar] [CrossRef]
- Chen, F.; Song, M.; Ma, X. Investigation on the injury severity of drivers in rear-end collisions between cars using a random parameters bivariate ordered probit model. Int. J. Environ. Res. Public Health 2019, 16, 2632. [Google Scholar] [CrossRef]
- Russo, B.J.; Savolainen, T.; Schneider, W.H., IV; Anastasopoulos, C. Comparison of factors affecting injury severity in angle collisions by fault status using a random parameters bivariate ordered probit model. Anal. Methods Accid. Res. 2014, 2, 21–29. [Google Scholar] [CrossRef]
- Clarke, B.; Fokoue, E.; Zhang, H.H. Principles and Theory for Data Mining and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2009; pp. 304–310. [Google Scholar]
- Raschka, S. Python Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Zaki, M.J.; Meira, W., Jr.; Meira, W. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ahmad, M.A.; Eckert, C.; Teredesai, A. Interpretable machine learning in healthcare. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA, 29 August–1 September 2018; pp. 559–560. [Google Scholar]
- Char, D.S.; Abràmoff, M.D.; Feudtner, C. Identifying ethical considerations for machine learning healthcare applications. Am. J. Bioeth. 2020, 20, 7–17. [Google Scholar] [CrossRef]
- Shailaja, K.; Seetharamulu, B.; Jabbar, M.A. Machine learning in healthcare: A review. In Proceedings of the 2018 Second international conference on electronics, communication and aerospace technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 910–914. [Google Scholar]
- Gogas, P.; Papadimitriou, T. Machine learning in economics and finance. Comput. Econ. 2021, 57, 1–4. [Google Scholar] [CrossRef]
- Goodell, J.W.; Kumar, S.; Lim, W.M.; Pattnaik, D. Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. J. Behav. Exp. Financ. 2021, 32, 100577. [Google Scholar] [CrossRef]
- Rundo, F.; Trenta, F.; di Stallo, A.L.; Battiato, S. Machine learning for quantitative finance applications: A survey. Appl. Sci. 2019, 9, 5574. [Google Scholar] [CrossRef]
- Halde, R.R. Application of Machine Learning algorithms for betterment in education system. In Proceedings of the 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 9–10 September 2016; pp. 1110–1114. [Google Scholar]
- Luan, H.; Tsai, C.C. A review of using machine learning approaches for precision education. Educ. Technol. Soc. 2021, 24, 250–266. [Google Scholar]
- Labib, M.F.; Rifat, A.S.; Hossain, M.M.; Das, A.K.; Nawrine, F. Road accident analysis and prediction of accident severity by using machine learning in Bangladesh. In Proceedings of the 2019 7th International Conference on Smart Computing & Communications (ICSCC), Sarawak, Malaysia, 28–30 August 2019; pp. 1–5. [Google Scholar]
- Wen, X.; Xie, Y.; Jiang, L.; Pu, Z.; Ge, T. Applications of machine learning methods in traffic crash severity modelling: Current status and future directions. Transp. Rev. 2021, 41, 855–879. [Google Scholar] [CrossRef]
- Kuşkapan, E.; Çodur, M.Y.; Atalay, A. Speed violation analysis of heavy vehicles on highways using spatial analysis and machine learning algorithms. Accid. Anal. Prev. 2021, 155, 106098. [Google Scholar] [CrossRef]
- Nasrollahzadeh, A.A.; Sofi, A.R.; Ravani, B. Identifying factors associated with roadside work zone collisions using machine learning techniques. Accid. Anal. Prev. 2021, 158, 106203. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Peng, J.; Liu, X.; Luo, Q. Crash prediction on expressway incorporating traffic flow continuity parameters based on machine learning approach. J. Adv. Transp. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Zhou, R.; Liu, Z.; Sun, X. Exploring the mechanism of crashes with autonomous vehicles using machine learning. Math. Probl. Eng. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Khattak, A.; Matara, C.M.; Hussain, A.; Farooq, A. Hybrid feature selection-based machine learning Classification system for the prediction of injury severity in single and multiple-vehicle accidents. PLoS ONE 2022, 17, e0262941. [Google Scholar] [CrossRef]
- Dong, S.; Khattak, A.; Ullah, I.; Zhou, J.; Hussain, A. Predicting and analyzing road traffic injury severity using boosting-based ensemble learning models with SHAPley Additive exPlanations. Int. J. Environ. Res. Public Health 2022, 19, 2925. [Google Scholar] [CrossRef]
- Cui, S.; Yin, Y.; Wang, D.; Li, Z.; Wang, Y. A stacking-based ensemble learning method for earthquake casualty prediction. Appl. Soft Comput. 2021, 101, 107038. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, L.; Xie, C.; Wang, G.J.; Nguyen, T.V. Forecasting SMEs’ credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. Int. J. Prod. Econ. 2019, 211, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R.M.; Sabourin, R.; Cavalcanti, G.D. Dynamic classifier selection: Recent advances and perspectives. Inf. Fusion 2018, 41, 195–216. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Chen, Y.Y.; Li, J.; Luo, X.G. A distance-based weighting framework for boosting the performance of dynamic ensemble selection. Inf. Process. Manag. 2019, 56, 1300–1316. [Google Scholar] [CrossRef]
- Cruz, R.M.; Sabourin, R.; Cavalcanti, G.D.; Ren, T.I. META-DES: A dynamic ensemble selection framework using meta-learning. Pattern Recognit. 2015, 48, 1925–1935. [Google Scholar] [CrossRef]
- Ko, A.H.; Sabourin, R.; Britto, A.S., Jr. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 2008, 41, 1718–1731. [Google Scholar] [CrossRef]
- Woloszynski, T.; Kurzynski, M.; Podsiadlo, P.; Stachowiak, G.W. A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 2012, 13, 207–213. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the NIPS’17: 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Pham, B.T.; Nguyen, M.D.; Nguyen-Thoi, T.; Ho, L.S.; Koopialipoor, M.; Quoc, N.K.; Armaghani, D.J.; Van Le, H. A novel approach for classification of soils based on laboratory tests using Adaboost, Tree and ANN modeling. Transp. Geotech. 2021, 27, 100508. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, J.; Ostrowski, K.A.; Javed, M.F.; Ahmad, A.; Khan, M.I.; Aslam, F.; Kinasz, R. Prediction of compressive strength of fly-ash-based concrete using ensemble and non-ensemble supervised machine-learning approaches. Appl. Sci. 2021, 12, 361. [Google Scholar] [CrossRef]
- Hayadi, B.H.; Kim, J.M.; Hulliyah, K.; Sukmana, H.T. Predicting Airline Passenger Satisfaction with Classification Algorithms. Int. J. Inform. Inf. Syst. 2021, 4, 82–94. [Google Scholar]
- Ting, C.Y.; Tan, N.Y.Z.; Hashim, H.H.; Ho, C.C.; Shabadin, A. Malaysian road accident severity: Variables and predictive models. In Computational Science and Technology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 699–708. [Google Scholar]
- Ahsan, M.M.; Mahmud, M.P.; Saha, K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lewis, R.J. An introduction to classification and regression tree (CART) analysis. In Proceedings of the Annual Meeting of the Society for Academic Emergency Medicine, San Francisco, CA, USA, 27 October–1 November 2020; Volume 14. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar]
- Siddik, M.; Bakkar, A.; Arman, M.; Hasan, A.; Jahan, M.R.; Islam, M.; Biplob, K.B.B. Predicting the Death of Road Accidents in Bangladesh Using Machine Learning Algorithms. In Proceedings of the International Conference on Advances in Computing and Data Sciences 2021, Nashik, India, 23–24 April 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 160–171. [Google Scholar]
- Rezapour, M.; Molan, A.M.; Ksaibati, K. Analyzing injury severity of motorcycle at-fault crashes using machine learning techniques, decision tree and logistic regression models. Int. J. Transp. Sci. Technol. 2020, 9, 89–99. [Google Scholar] [CrossRef]
- Wang, K.; Bhowmik, T.; Yasmin, S.; Zhao, S.; Eluru, N.; Jackson, E. Multivariate copula temporal modeling of intersection crash consequence metrics: A joint estimation of injury severity, crash type, vehicle damage and driver error. Accid. Anal. Prev. 2019, 125, 188–197. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, C.; Ma, C. Analysis of injury severity of rear-end crashes in work zones: A random parameters approach with heterogeneity in means and variances. Anal. Methods Accid. Res. 2020, 27, 100126. [Google Scholar] [CrossRef]
- Rahimi, E.; Shamshiripour, A.; Samimi, A.; Mohammadian, A.K. Investigating the injury severity of single-vehicle truck crashes in a developing country. Accid. Anal. Prev. 2020, 137, 105444. [Google Scholar] [CrossRef]
- Ouni, F.; Belloumi, M. Spatio-temporal pattern of vulnerable road user’s collisions hot spots and related risk factors for injury severity in Tunisia. Transp. Res. Part F Traffic Psychol. Behav. 2018, 56, 477–495. [Google Scholar] [CrossRef]
- Haq, M.T.; Zlatkovic, M.; Ksaibati, K. Assessment of tire failure related crashes and injury severity on a mountainous freeway: Bayesian binary logit approach. Accid. Anal. Prev. 2020, 145, 105693. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Paleti, R.; Mishra, S. Analysis of passenger-car crash injury severity in different work zone configurations. Accid. Anal. Prev. 2018, 111, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Lu, P.; Lantz, B. Commercial truck crash injury severity analysis using gradient boosting data mining model. J. Saf. Res. 2018, 65, 115–124. [Google Scholar] [CrossRef] [PubMed]
Type of Factor | Risk Factor | Description | Marginal Frequency (%) |
---|---|---|---|
Injury Severity | Injury Severity Level | Non-Fatal/Fatal | 61.91/38.09 |
Vehicle Specific | Vehicle_Age (Years) | 0–10/11–20/21–30/31–40/41+ | 32.01/36.49/15.30/9.30/6.90 |
Number_of_Vehicles | Multiple/Single | 66.54/33.46 | |
Type_of_Vehicle | Truck/Dumper/Trailer/Tractor/Car/Pickup/Minibus/Bus/Rickshaw/Motorcycle/Bicycle | 20.08/4.43/16.44/2.30/12.69/3.50/9.19/8.48/5.34/6.78/10.77 | |
Driver Specific | Driver_Age (Years) | 18–25/26–30/31–35/36–40/41–45/46–50/51–55/55+ | 18.18/16.83/14.90/14.58/ 13.62/10.92/5.84/5.14 |
Driver_Gender | Male/Female | 99.99/0.001 | |
Driving_License | No/Yes | 46.52/53.48 | |
Temporal Specific | Month_of_Year | January/February/March/April/May/June/July/August/September/October/November/December | 5.65/6.29/10.08/8.73/5.27/ 6.87/14.96/10.08/13.17/ 6.10/7.32/5.46 |
Type_of_Day | Weekday/Weekend | 68.22/31.78 | |
Time_of_Day | 12:00:00 a.m.–3:59:59 a.m. | 8.97 | |
4:00:00 a.m.–7:59:59 a.m. | 14.41 | ||
8:00:00 a.m.–11:59:59 a.m. | 23.09 | ||
12:00:00 p.m.–3:59:59 p.m. | 21.13 | ||
4:00:00 p.m.–7:59:59 p.m. | 21.02 | ||
8:00:00 p.m.–11:59:59 p.m. | 11.38 | ||
Day_of_Week | Monday/Tuesday/Wednesday/Thursday/Friday/Saturday/Sunday | 10.76/12.67/14.52/13.51/16.87/16.82/14.85 | |
Environment Specific | Lighting_Condition | Night with road lights/Night without road lights/Daylight | 5.33/25.56/69.11 |
Weather_Condition | Sunny/Rainy/Cloudy | 89.85/6.56/3.59 | |
Visibility_Condition | Clear/Smog/Fog | 96.41/0.50/3.08 | |
Roadway Specific | Alignment | Horizontal curve/Grade/Combined horizontal and grade/Straight segment | 5.66/4.43/5.55/84.36 |
Road_Type | Urban/Rural | 52.86/47.14 | |
Presence_of_Median | No/Yes | 3.64/96.36 | |
Surface_Condition | Wet/Dry | 7.51/92.49 | |
Work_Zone | No/Yes | 98.64/1.35 | |
Pavement_Roughness | Smooth/Potholes/Rough | 94.23/3.25/2.52 | |
Presence_of_Shoulder | No/Yes | 2.63/97.37 | |
Crash Specific | Collision_Type | Run off the highway/Nearby trees hitting/Fell off bridge/Head-on collision/Rear-end collision/Side-collision/Rolling over/Skidding/Hitting obstacle on road/Hitting pedestrian/Hitting animal on road | 0.78/0.11/0.17/5.21/43.55/19.17/12.44/3.08/4.88/10.31/0.28 |
Cause_of_Accident | Driver at-fault/Dozing at-wheel/Over speeding/Motorcycle rider at-fault/Low visibility/Vehicle at-fault (mechanical failure)/Sight obstruction/Slippery road/Vehicle out of control/Bicycle rider at-fault/Overtaking-wrong side/Pedestrian at-fault/Pavement distress/Others | 56.33/1.40/3.87/3.14/0.39/7.74/ 1.79/2.35/0.90/2.35/0.56/1.46/7.29/1.51/8.91 |
Algorithm Used | Purpose of Modeling | Best Algorithm | Best Score | Reference |
---|---|---|---|---|
AdaBoost, Tree, ANN | Prediction and classification of soils based on laboratory test | AdaBoost | 0.87 (Accuracy) | [52] |
DT, ANN, RF, GB | Predicting fly-ash-based concrete compressive strength | RF | 0.89 (R-square) | [53] |
KNN, LR, NB, DT, RF | Predicting airline passenger satisfaction | RF | 0.99 (Accuracy) | [54] |
RF, XGBoost, CART, NN, NB and SVM | Predicting road traffic accident fatality | RF | 0.95 (Accuracy) | [55] |
LR, LDA, KNN, ANN, CART, NB, SVM, XGBoost, RF, AdaBoost, ET | Heart disease prediction | CART | 1.00 (F1-score) | [56] |
Algorithm | Hyperparameters | Range | Optimal Values |
---|---|---|---|
Random Forest | n_estimators | [300, 2000] | 933 |
max_depth | [0, 10] | 6 | |
Classification and Regression Tree | max_depth | [0, 10] | 8 |
learning_rate | [0.05, 0.2] | 0.12 | |
Adaptive Boosting | max_depth | [0, 10] | 5 |
n_estimators | [300, 1500] | 740 |
Approach | Injury Severity Class | Performance Measures | |||
---|---|---|---|---|---|
Precision | Recall | Accuracy | F1-Score | ||
Random Forest | Non-Fatal | 0.73 | 0.84 | 0.69 | 0.67 |
Fatal | 0.63 | 0.49 | |||
Average | 0.68 | 0.67 | |||
Classification and Regression Tree | Non-Fatal | 0.73 | 0.79 | 0.67 | 0.65 |
Fatal | 0.59 | 0.51 | |||
Average | 0.66 | 0.65 | |||
Adaptive Boosting | Non-Fatal | 0.69 | 0.71 | 0.60 | 0.57 |
Fatal | 0.47 | 0.44 | |||
Average | 0.58 | 0.57 | |||
Binary Logistic Regression | Non-Fatal | 0.58 | 0.61 | 0.53 | 0.51 |
Fatal | 0.42 | 0.42 | |||
Average | 0.50 | 0.52 |
Approach | Injury Severity Class | Performance Measures | |||
---|---|---|---|---|---|
Precision | Recall | Accuracy | F1-Score | ||
KNORA-RF | Non-Fatal | 0.73 | 0.86 | 0.72 | 0.67 |
Fatal | 0.65 | 0.46 | |||
Average | 0.69 | 0.66 | |||
DES-P-RF | Non-Fatal | 0.73 | 0.86 | 0.71 | 0.66 |
Fatal | 0.65 | 0.46 | |||
Average | 0.69 | 0.66 | |||
META-DES-RF | Non-Fatal | 0.74 | 0.86 | 0.75 | 0.72 |
Fatal | 0.67 | 0.51 | |||
Average | 0.71 | 0.69 |
Approach | Injury Severity Class | Performance Measures | |||
---|---|---|---|---|---|
Precision | Recall | Accuracy | F1-Score | ||
KNORA-AdaBoost | Non-Fatal | 0.69 | 0.71 | 0.61 | 0.57 |
Fatal | 0.46 | 0.44 | |||
Average | 0.58 | 0.57 | |||
DES-P-AdaBoost | Non-Fatal | 0.69 | 0.70 | 0.61 | 0.57 |
Fatal | 0.46 | 0.45 | |||
Average | 0.57 | 0.57 | |||
META-DES-AdaBoost | Non-Fatal | 0.72 | 0.72 | 0.64 | 0.61 |
Fatal | 0.51 | 0.51 | |||
Average | 0.61 | 0.61 |
Approach | Injury Severity Class | Performance Measures | |||
---|---|---|---|---|---|
Precision | Recall | Accuracy | F1-Score | ||
KNORA-CART | Non-Fatal | 0.74 | 0.80 | 0.69 | 0.66 |
Fatal | 0.60 | 0.52 | |||
Average | 0.67 | 0.66 | |||
META-DES-CART | Non-Fatal | 0.72 | 0.74 | 0.65 | 0.64 |
Fatal | 0.53 | 0.51 | |||
Average | 0.63 | 0.62 | |||
DES-P-CART | Non-Fatal | 0.61 | 0.74 | 0.65 | 0.62 |
Fatal | 0.36 | 0.24 | |||
Average | 0.49 | 0.49 |
Approach | Injury Severity Class | Performance Measures | |||
---|---|---|---|---|---|
Precision | Recall | Accuracy | F1-Score | ||
KNORA-BLR | Non-Fatal | 0.62 | 0.73 | 0.64 | 0.62 |
Fatal | 0.60 | 0.51 | |||
Average | 0.61 | 0.62 | |||
META-DES-BLR | Non-Fatal | 0.63 | 0.79 | 0.65 | 0.63 |
Fatal | 0.56 | 0.54 | |||
Average | 0.60 | 0.66 | |||
DES-P-BLR | Non-Fatal | 0.57 | 0.70 | 0.51 | 0.49 |
Fatal | 0.39 | 0.31 | |||
Average | 0.48 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattak, A.; Almujibah, H.; Elamary, A.; Matara, C.M. Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5. Sustainability 2022, 14, 12340. https://doi.org/10.3390/su141912340
Khattak A, Almujibah H, Elamary A, Matara CM. Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5. Sustainability. 2022; 14(19):12340. https://doi.org/10.3390/su141912340
Chicago/Turabian StyleKhattak, Afaq, Hamad Almujibah, Ahmed Elamary, and Caroline Mongina Matara. 2022. "Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5" Sustainability 14, no. 19: 12340. https://doi.org/10.3390/su141912340
APA StyleKhattak, A., Almujibah, H., Elamary, A., & Matara, C. M. (2022). Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5. Sustainability, 14(19), 12340. https://doi.org/10.3390/su141912340