Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry
Abstract
:1. Introduction
2. Effects of Climate Change on Plant Pests
2.1. Methodology to Investigate the Effects of Climate Change on Plant Pests
2.2. Future Pest Risk
2.3. Case Studies
2.3.1. Insects
2.3.2. Plant Pathogens
2.4. Main Pathways Used by Pests, Also in Relation to Global Trade
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Garrett, K.A.; Dendy, S.P.; Frank, E.E.; Rouse, M.N.; Travers, S.E. Climate change effects on plant disease: Genomes to ecosystems. Ann. Rev. Phytopath 2006, 44, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Sutherst, R.W.; Constable, F.; Finlay, K.J.; Harrington, R.; Luck, J.; Zalucki, M.P. Adapting to crop pest and pathogen risks under a changing climate. WIREs Clim. Change 2011, 2, 220–237. [Google Scholar] [CrossRef]
- Garrett, K.A.; Bebber, D.P.; Etherton, B.A.; Gold, K.M.; Sula, A.P.; Selvaraj, M.G. Climate change effects on pathogen emergence: Artificial intelligence to translate big data for mitigation. Ann. Rev. Phytopath 2022, 60, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre-and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling climate change impacts on mycotoxin contamination. World Mycotox. J. 2016, 9, 717–726. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Müller, C.; Ruane, A.C.; Elliott, J.; Balkovic, J.; Castillo, O. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2021, 2, 873–885. [Google Scholar] [CrossRef]
- Desaint, H.; Aoun, N.; Deslandes, L.; Vailleau, F.; Roux, F.; Berthome, R. Fight hard or die trying: When plants face pathogens under heat stress. N. Phytol. 2021, 229, 712–734. [Google Scholar]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S.I. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar] [CrossRef]
- Stack, J.; Fletcher, J.; Gullino, M.L. Climate change and plant biosecurity: A new world disorder? In Global Environmental Change: New Drivers for Resistance, Crime and Terrorism; Bodo, B., Burnley, C., Comardicea, I., Maas, A., Roffey, R., Eds.; Nomos: Baden Baden, Germany, 2013; pp. 161–181. [Google Scholar]
- Juroszek, P.; Laborde, M.; Kleinhenz, B.; Mellenthin, M.; Racca, P.; Sierotzki, H. A review on the potential effects of temperature on fungicide effectiveness. Plant Pathol. 2022, 71, 775–784. [Google Scholar] [CrossRef]
- Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Gullino, M.L.; Albajes, R.; Al-Jboory, I.; Angelotti, F.; Chakraborty, S.; Garrett, K.A.; Hurley, B.P.; Juroszek, P.; Makkouk, K.; IPPC Secretariat; et al. Scientific Review of the Impact of Climate Change on Plant Pests—A Global Challenge to Prevent and Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems; FAO on behalf of the IPPC Secretariat: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Richard, B.; Qi, A.; Fitt, B.D.L. Control of crop diseases through Integrated Crop Management to deliver climate-smart farming systems for low- and high-input crop production. Plant Pathol. 2022, 71, 187–206. [Google Scholar] [CrossRef]
- Revich, B.; Tokarevich, N.; Parkinson, A.J. Climate change and zoonotic infections in the Russian Arctic. Int. J. Circum. Health 2012, 71, 18792. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J. Forest disturbances under climate change. Nature 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Grünig, M.; Mazzi, D.; Calanca, P.; Karger, D.N.; Pellissier, L. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Comm. Biol. 2020, 3, 233. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor. Appl. Genet. 2021, 134, 1771–1785. [Google Scholar] [CrossRef]
- Juroszek, P.; von Tiedemann, A. Linking plant disease models to climate change scenarios to project future risks of crop diseases: A review. J. Plant Dis. Prot. 2015, 122, 3–15. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nature 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Choudhary, J.S.; Kumari, M.; Fand, B.B. Linking insect pest models with climate change scenarios to project against future risks of agricultural insect pests. CAB Rev. 2019, 14, 055. Available online: https://www.cabi.org/cabreviews/review/20193460085 (accessed on 18 March 2021). [CrossRef]
- Clements, D.R.; Di Tommaso, A.; Hyvönen, T. Ecology and management of weeds in a changing climate. In Recent Advances in Weed Management; Chauhan, B.S., Mahajan, G., Eds.; Springer Science + Business Media: New York, NY, USA, 2014; pp. 13–37. [Google Scholar]
- Gullino, M.L.; Pugliese, M.; Gilardi, G.; Garibaldi, A. Effect of increased CO2 and temperature on plant diseases: A critical appraisal of results obtained in studies carried out under controlled environment facilities. J. Plant Pathol. 2018, 100, 371–389. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Shelton, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Nat. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef] [PubMed]
- Ghini, R.; Hamada, E.; Pedro Júnior, M.J.; Gonçalves, R.R.V. Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytop 2011, 37, 85–93. [Google Scholar] [CrossRef]
- Angelotti, F.; Hamada, E.; Magalhaes, E.E.; Ghini, R.; Garrido, L.D.R.; Junior, M.J.P. Climate change and the occurrence of downy mildew in Brazilian grapevines. Pesqui. Agropecu. Bras. 2017, 52, 426–434. [Google Scholar] [CrossRef]
- Juroszek, P.; von Tiedemann, A. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. J. Agric Sci. 2013, 151, 163–188. [Google Scholar] [CrossRef]
- Richerzhagen, D.; Racca, P.; Zeuner, T.; Kuhn, C.; Falke, K.; Kleinhenz, B.; Hau, B. Impact of climate change on the temporal and regional occurrence of Cercospora leaf spot in Lower Saxony. J. Plant Dis. Prot. 2011, 118, 168–177. [Google Scholar]
- Trebicki, P.; Finlay, K. Pests and diseases under climate change; its threat to food security. In Food Security and Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Ebert, A.W., Hunter, D., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 2019; pp. 229–249. [Google Scholar]
- Juroszek, P.; Racca, P.; Link, S.; Farhumand, J.; Kleinhenz, B. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol. 2020, 69, 179–193. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 915–919. [Google Scholar] [CrossRef]
- Fones, H.N.; Bebber, D.P.; Chaloner, T.M.; Kay, W.T.; Steinberg, G.; Gurr, S.J. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 2020, 1, 332–342. [Google Scholar] [CrossRef]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant pathogen infection risk tracks global crop yield under climate change. Nat. Clim. Change 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Trebicki, P. Climate change and plant virus epidemiology. Virus Res. 2020, 286, 198059. [Google Scholar] [CrossRef]
- Racca, P.; Kakau, J.; Kleinhenz, B.; Kuhn, C. Impact of climate change on the phenological development of winter wheat, sugar beet and winter oilseed rape in Lower Saxony, Germany. J. Plant Dis. Prot. 2015, 122, 16–27. [Google Scholar]
- Tresson, P.; Brun, L.; de Cortazar-Atauri, I.G.; Audergon, J.M.; Buléon, S.; Chenevotot, H.; Combe, F. Future development of apricot blossom blight under climate change in Southern France. Eur. J. Agron. 2020, 112, 125960. [Google Scholar] [CrossRef]
- Madgwick, J.W.; West, J.S.; White, R.P.; Semenov, M.A.; Townsend, J.A.; Turner, J.A.; Fitt, B.D.L. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur. J. Plant Pathol. 2011, 130, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Skelsey, P.; Newton, A.C. Future environmental and geographic risks of Fusarium head blight of wheat in Scotland. Eur. J. Plant Pathol. 2015, 142, 133–147. [Google Scholar] [CrossRef]
- Bregaglio, S.; Donatelli, M.; Confalonieri, R. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agro. Sust. Dev. 2013, 33, 767–776. [Google Scholar] [CrossRef]
- Evans, N.; Baierl, A.; Semenov, M.A.; Gladders, P.; Fitt, B.D.L. Range and severity of a plant disease increased by global warming. J. Roy Soc. Interf. 2008, 5, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Launay, M.; Caubel, J.; Bourgeois, G.; Huard, F.; de Cortazar-Atauri, I.G.; Bancal, M.O.; Brisson, N. Climatic indicators for crop infection risk: Application to climate impacts on five major foliar fungal diseases in Northern France. Agri. Ecosyst. Environ. 2014, 197, 147–158. [Google Scholar] [CrossRef]
- Luck, I.; Spackman, M.; Freeman, A.; Trebicki, P.; Griffiths, W.; Finlay, K.; Chakraborty, S. Climate change and diseases of food crops. Plant Pathol. 2011, 60, 113–121. [Google Scholar] [CrossRef]
- Mikkelsen, B.L.; Jørgensen, R.B.; Lyngkjær, M.F. Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathol. 2014, 64, 319–327. [Google Scholar] [CrossRef]
- Koo, T.H.; Hong, S.J.; Yun, S.C. Changes in the aggressiveness and fecundity of hot pepper anthracnose pathogen (Colletotrichum acutatum) under elevated CO2 and temperature over 100 infection cycles. Plant Pathol. J. 2016, 32, 260–265. [Google Scholar] [CrossRef]
- Battisti, A. Forests and climate change; lessons from insects. Iforest Biogeosci. 2008, 1, 1–5. [Google Scholar] [CrossRef]
- Jactel, H.; Koricheva, J.; Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Op. Insect Sci. 2019, 35, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J. Climate change and forest diseases. Plant Pathol. 2011, 60, 133–149. [Google Scholar] [CrossRef]
- Dudney, J.; Willing, C.E.; Das, A.J.; Latimer, A.M.; Nesmith, J.C.B.; Battles, J.J. Nonlinear shifts in infectious rust disease due to climate change. Nat. Comm. 2021, 12, 5102. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malezieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Vialatte, A.; Tibi, A.; Alignier, A.; Angeon, V.; Bedoussac, L.; Bochan, D.A. Promoting crop pest control by plant diversification in agricultural landscapes: A conceptual framework for analysing feedback loops between agro-ecological and socio-economic effects. Adv. Ecosyst. Res. 2022, 65, 133–165. [Google Scholar]
- Bebber, D.P.; Castillo, A.D.; Gurr, S.J. Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Phil. Trans. Roy Soc. B 2016, 371, 20150458. [Google Scholar] [CrossRef]
- Cabaleiro, C.; Pesqueira, A.M.; Segura, A. Planococcus ficus and the spread of grapevine leafroll disease in vineyards: A 30-year-long case study in north-west Spain. Eur. J. Plant Pathol. 2022. Available online: https://link.springer.com/article/10.1007/s10658-022-02513-x (accessed on 18 March 2021).
- Raderschall, C.A.; Vico, G.; Lundin, O.; Taylor, A.R.; Bommarco, R. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Glob Change Biol. 2021, 27, 71–83. [Google Scholar] [CrossRef]
- Torresen, K.S.; Fykse, H.; Rafoss, T.; Gerowitt, B. Autumn growth of three perennial weeds at high latitude benefits from climate change. Glob Change Biol. 2020, 26, 2561–2572. [Google Scholar] [CrossRef]
- Betz, O.; Srisuka, W.; Puthz, V. Elevational gradients of species richness, community structure, and niche occupation of tropical roove beetles (Coleoptera: Staphylinidae: Steninae) across mountain slopes in Northern Thailand. Evolut. Ecol. 2020, 34, 193–216. [Google Scholar] [CrossRef]
- Scalone, R.; Lemke, A.; Stefanic, E.; Kolseth, A.K.; Rasic, S.; Andersson, L. Phenological variation in Ambrosia artemisiifolia L. facilitates near future establishment at northern latitudes. PLoS ONE 2016, 11, e0166510. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hao, H. Effects of climate change and crop planting on the abundance of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Ecol. Evol. 2020, 10, 1324–1338. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.; Platts, P.J.; Brereton, T.; Chapman, J.W.; Dytham, C.; Fox, R.; Pearce-Higgins, J.W.; Roy, D.B.; Hill, J.K.; Thomas, C.D. Climate change, climatic variation and extreme biological responses. Phil. Trans. Roy Soc. B 2017, 372, 20160144. [Google Scholar] [CrossRef] [PubMed]
- Karkanis, A.; Ntatsi, G.; Alemardan, A.; Petropoulos, S.; Bilalis, D. Interference of weeds in vegetable crop cultivation, in the changing climate of Southern Europe with emphasis on drought and elevated temperatures: A review. J. Agri. Sci. 2018, 156, 1175–1185. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Maywald, G.F.; Russell, B.L. Estimating vulnerability under global change: Modular modelling of pests. Agri. Ecos. Environ. 2000, 82, 303–319. [Google Scholar] [CrossRef]
- Biber-Freudenberger, L.; Ziemacki, J.; Tonnang, H.E.Z.; Borgemeister, C. Future risks of pest species under changing climatic conditions. PLoS ONE 2016, 11, e0153237. [Google Scholar] [CrossRef]
- Launay, M.; Zurfluh, O.; Huard, F.; Buis, F.; Bourgeois, G.; Caubel, J.; Huber, L.; Bancal, M.O. Robustness of crop disease response to climate change signal under modelling uncertainties. Agr. Syst. 2020, 178, 102733. [Google Scholar] [CrossRef]
- Loustau, D.; Ogee, J.; Dufrene, E.; Deque, M.; Duponey, J.I.; Badeau, V.; Viovy, N. Impacts of climate change on temperate forests and interaction with management. In Forestry and Climate Change; Freer-Smith, P.H., Broadmeadow, M.S.J., Lynch, J.M., Eds.; CABI: Wallingford, UK, 2007; pp. 243–250. [Google Scholar]
- Ingram, J.S.I.; Gregory, P.J.; Izac, A.-M. The role of agronomic research in climate change and food security policy. Agric. Ecosyst. Environ. 2008, 126, 4–12. [Google Scholar] [CrossRef]
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Pautasso, M.; Doring, T.F.; Garbelotto, M.; Pellis, L.; Jeger, M.J. Impacts of climate change on plant diseases—Opinions and trends. Eur. J. Plant Pathol. 2012, 133, 295–313. [Google Scholar]
- Eastburn, D.M.; McElrone, A.J.; Bilgin, D.D. Influence of atmospheric and climate change on plant-pathogen interactions. Plant Pathol. 2011, 60, 54–69. [Google Scholar] [CrossRef]
- Williams, A.L.; Wills, K.E.; Janes, J.K.; Van der Schoor, J.K.; Newton, P.C.D.; Hovenden, M.J. Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. N. Phytol. 2007, 176, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Delucia, E.H.; Nabity, P.D.; Zavala, J.A.; Berenbaum, M.R. Climate change: Resetting plant-insect interactions. Plant Phys. 2012, 160, 1677–1685. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Gullino, M.L.; Pugliese, M.; Paravicini, A.; Casulli, E.; Rettori, A.; Sanna, M.; Garibaldi, A. New phytotron for studying the effect of climate change on plant pathogens. J. Agric Eng. 2011, 1, 1–11. [Google Scholar] [CrossRef]
- Hakata, M.; Wada, H.; Masumoto-Kubo, C.; Tanaka, R.; Sato, H.; Morita, S. Development of a new heat tolerance assay system for rice spikelet sterility. Plant Meth 2017, 13, 34. [Google Scholar] [CrossRef]
- Gilardi, G.; Gisi, U.; Garibaldi, A.; Gullino, M.L. Effect of elevated atmospheric CO2 and temperature on the chemical and biological control of powdery mildew of zucchini and the Phoma leaf spot of leaf beet. Eur. J. Plant Pathol. 2017, 148, 229–236. [Google Scholar] [CrossRef]
- Gullino, M.L.; Tabone, G.; Gilardi, G.; Garibaldi, A. Effects of elevated atmospheric CO2 and temperature on the management of powdery mildew of zucchini. J. Phytopath 2020, 168, 405–415. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Kitzberger, T.; Chaneton, E.J. Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 2011, 167, 117–129. [Google Scholar] [CrossRef]
- Bairstow, K.A.; Clarke, K.L.; McGeoch, M.A.; Andrew, N.R. Leaf miner and plant galler species richness on Acacia: Relative importance of plant traits and climate. Oecologia 2010, 163, 437–448. [Google Scholar] [CrossRef]
- Koricheva, J.; Larsson, S. Insect performance on experimentally stressed woody plants: A meta-analysis. Ann. Rev. Entom. 1998, 43, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Massad, T.J.; Dyer, L.A. A meta-analysis of the effects of global environmental change on plant–herbivore interactions. Arthropod-Plant Interact 2010, 4, 181–188. [Google Scholar] [CrossRef]
- Vila, M.; Beaury, E.M.; Blumenthal, D.M.; Bradley, B.A.; Early, R.; Laginhas, B.B.; Trillo, A.; Dukes, J.S.; Sorte, C.J.B.; Ibanez, I. Understanding the combined impacts of weeds and climate change on crops. Environ. Res. Lett. 2021, 16, 034043. [Google Scholar] [CrossRef]
- Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B Biol. Sci. 2010, 277, 1281–1287. [Google Scholar] [CrossRef]
- Bebber, D.P. Climate change effects on Black Sigatoka disease of banana. Philos. Trans. Roy Soc. B 2020, 374, 20180269. [Google Scholar] [CrossRef]
- Jeger, M.J.; Pautasso, M. Plant disease and global change–the importance of long-term data sets. N. Phytol. 2008, 177, 8–11. [Google Scholar] [CrossRef]
- Van der Heyden, H.; Dutilleul, P.; Charron, J.B.; Bilodeau, G.J.; Carisse, O. Factors influencing the occurrence of onion downy mildew (Peronospora destructor) epidemics: Trends from 31 years of observational data. Agronomy 2020, 10, 738. [Google Scholar] [CrossRef]
- Radons, S.Z.; Heldwein, A.B.; Puhl, A.J.; Nied, A.H.; da Silva, J.R. Climate risk of Asian soybean rust occurrence in the state of Rio Grande do Sul, Brazil. Trop. Plant Pathol. 2021, 46, 435–442. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Jin, Z.; Müller, C.; Pugh, T.A.M.; Chen, A. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 2022, 3, 57–65. [Google Scholar] [CrossRef]
- Garrett, K.A.; Nita, M.; De Wolf, E.D.; Esker, P.D.; Gomez-Montano, L.; Sparks, A.H. Plant pathogens as indicators of climate change. In Climate Change: Observed Impacts on Planet Earth, 3rd ed.; T.M. Letcher, Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 499–513. [Google Scholar]
- Diamond, S.E. Contemporary climate-driven range shifts: Putting evolution back on the table. Fun Ecol. 2018, 32, 1652–1665. [Google Scholar] [CrossRef]
- Lehmann, P.; Ammunet, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G. Complex responses of global insect pests to climate warming. Front Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef]
- Fussmann, K.E.; Schwarzmüller, F.; Brose, U.; Jousset, A.; Rall, B.C. Ecological stability in response to warming. Nat. Clim. Change 2014, 4, 206–210. [Google Scholar] [CrossRef]
- Thomson, L.J.; MacFadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Sutherst, R.W. Pest risk analysis and the greenhouse effect. Rev. Agri. Entom. 1991, 79, 1177–1187. [Google Scholar]
- Ghini, R.; Hamada, E.; Bettiol, W. Climate change and plant diseases. Scientia Agrícola 2008, 65, 98–107. [Google Scholar] [CrossRef]
- Hill, M.P.; Thomson, L.J. Species distribution modelling in predicting response to climate change. In Climate Change and Insect pests; Björkman, C., Niemelä, P., Eds.; CABI: Wallingford, UK, 2015; pp. 16–37. [Google Scholar]
- Salinari, F.; Giosuè, S.; Rossi, V.; Tubiello, F.N.; Rosenzweig, C.; Gullino, M.L. Downy downy mildew outbreaks on grapevine under climate change: Elaboration and application of an empirical-statistical model. EPPO Bull. 2007, 37, 317–326. [Google Scholar] [CrossRef]
- Shaw, M.W.; Osborne, T.M. Geographic distribution of plant pathogens in response to climate change. Plant Pathol. 2011, 60, 31–43. [Google Scholar] [CrossRef]
- Gimenez-Romero, A.; Galvan, J.; Montesinos, M.; Bauza, J.; Godefroid, M.; Fereres, A. Global predictions for the risk of establishment of Pierce’s disease of grapevines. bioRxiv 2022. preprint. [Google Scholar]
- Godefroid, M.; Morente, M.; Schartel, T.; Cornara, D.; Purcell, A.; Gallego, D. Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa. J. Pest Sci. 2022, 95, 855–868. [Google Scholar] [CrossRef]
- Zacarias, D.A. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim. Change 2020, 161, 555–566. [Google Scholar] [CrossRef]
- Litkas, V.D.; Migeon, A.; Navajas, M.; Tixier, M.S.; Stavrinides, M.C. Impacts of climate change on tomato, a notorious pest and its natural enemy: Small scale agriculture at higher risk. Environ. Res. Lett. 2019, 14, 084041. [Google Scholar] [CrossRef]
- Wang, C.; Hawthorne, D.; Qin, Y.; Pan, X.; Li, Z.; Zhu, S. Impact of climate and host availability on future distribution of Colorado potato beetle. Sci. Rep. 2017, 7, 4489. [Google Scholar] [CrossRef] [PubMed]
- Junk, J.; Jonas, M.; Eickermann, M. Assessing meteorological key factors influencing crop invasion by pollen beetle (Meligethes aeneus F.)—Past observations and future perspectives. Met. Zeit. 2016, 25, 357–364. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Harding, S.; Krokene, P.; Lange, H.; Lindelöw, Ǻ.; Økland, B.; Ravn, H.P. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Clim. Change 2011, 109, 606–718. [Google Scholar] [CrossRef]
- Stoeckli, S.; Felber, R.; Haye, T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. Int. J. Biom. 2020, 64, 2019–2032. [Google Scholar] [CrossRef]
- Taylor, R.A.J.; Herms, D.A.; Cardina, J.; Moore, R.H. Climate change and pest management: Unanticipated consequences of trophic dislocation. Agro 2018, 8, 7. [Google Scholar] [CrossRef]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change. Theor. Appl. Clim. 2019, 135, 409–424. [Google Scholar] [CrossRef]
- St-Marseille, A.F.G.; Bourgeois, G.; Brodeur, J.; Mimee, B. Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agri For Meteo 2019, 264, 178–187. [Google Scholar] [CrossRef]
- Wang, R.; Li, Q.; He, S.; Liu, Y.; Wang, M.; Jiang, G. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 2018, 13, e0192153. [Google Scholar]
- Ikegami, M.; Jenkins, T.A.R. Estimate global risks of a forest disease under current and future climates using distribution model and simple thermal model – pine wilt disease as a model case. For Ecosyst. Man 2018, 409, 343–352. [Google Scholar] [CrossRef]
- Kremer, P.; Schlüter, J.; Racca, P.; Fuchs, H.J.; Lang, C. Possible impact of climate change on the occurrence and the epidemic development of Cercospora leaf spot disease (Cercospora beticola sacc.) in sugar beets for Rhineland-Palatinate and the southern part of Hesse. Clim Change 2016, 137, 481–494. [Google Scholar] [CrossRef]
- Viswanath, K.; Sinha, P.; Kumar, S.N.; Sharma, T.; Saxena, S.; Panjwani, S.; Pathak, H.; Shukla, S.M. Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Clim. Change 2017, 142, 155–167. [Google Scholar] [CrossRef]
- Salinari, F.; Giosuè, S.; Rettori, A.; Rossi, V.; Tubiello, F.N.; Spanna, F.; Rosenzweig, C.; Gullino, M.L. Downy downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob. Change Biol. 2006, 12, 1299–1307. [Google Scholar]
- Salvacion, A.R.; Cumagun, C.J.R.; Pangga, I.B.; Magcale-Macandog, D.B.; Cruz, P.C.S.; Saludes, R.B.; Solpot, T.C.; Aguilar, E.A. Banana suitability and Fusarium wilt distribution in the Philippines under climate change. Spat. Inf. Res. 2019, 27, 339–349. [Google Scholar] [CrossRef]
- Gouache, D.; Bensadoun, A.; Brun, F.; Page, C.; Makowski, D.; Wallach, D. Modelling climate change impact on Septoria tritici blotch (STB) in France: Accounting for climate model and disease uncertainty. Agr. For. Met 2013, 170, 242–252. [Google Scholar] [CrossRef]
- Juroszek, P.; von Tiedemann, A. Climate change and potential future risks through wheat diseases. Eur. J. Plant Pathol. 2013, 136, 21–33. [Google Scholar] [CrossRef]
- Sidorova, I.; Voronina, E. Terrestrial fungi and global climate change. In Climate Change and Microbial Ecology: Current Research and Future Trends, 2nd ed.; Marxsen, J., Ed.; Caister Academic Press: Poole, UK, 2020; Chapter 5; pp. 132–192. [Google Scholar] [CrossRef]
- EPPO (European and Mediterranean Plant Protection Organization). Agrilus planipennis. EPPO Datasheet as Updated January 2021. 2021. Available online: https://gd.eppo.int/taxon/AGRLPL/datasheet (accessed on 18 March 2021).
- Haack, R.A.; Jendek, E.; Liu, H.P.; Marchant, K.R.; Petrice, T.R.; Poland, T.M.; Ye, H. The emerald ash borer: A new exotic pest in North America. N. Mich. Ent. Soc. 2002, 47, 1–5. [Google Scholar]
- CABI. Agrilus planipennis (emerald ash borer) datasheet. In Invasive Species Compendium; [online]; CABI: Wallingford, UK, 2021; Available online: https://www.cabi.org/isc/datasheet/3780#todistribution (accessed on 18 March 2021).
- Ramsfield, T.D.; Bentz, B.J.; Faccoli, M.; Jactel, H.; Brockerhoff, E.G. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 2016, 89, 245–252. [Google Scholar] [CrossRef]
- Aukema, J.E.; Leung, B.; Kovacs, K.; Chivers, C.; Britton, K.O.; Englin, J.; Frankel, S.J. Economic impacts of non-native forest insects in the continental United States. PLoS ONE 2011, 6, e24587. [Google Scholar] [CrossRef] [Green Version]
- Donovan, G.H.; Butry, D.T.; Michael, Y.L.; Prestemon, J.P.; Liebhold, A.M.; Demetrios Gatziolis, D.; Mao, M.Y. The relationship between trees and human health: Evidence from the spread of the emerald ash borer. Am. J. Prev. Med. 2013, 44, 139–145. [Google Scholar] [CrossRef]
- Liang, L.; Fei, S. Divergence of the potential invasion range of emerald ash borer and its host distribution in North America under climate change. Clim. Change 2014, 122, 735–746. [Google Scholar] [CrossRef]
- Duan, J.J.; Bauer, L.S.; Van Driesche, R.; Schmude, J.M.; Petrice, T.; Chandler, J.L.; Elkinton, J. Effects of extreme low winter temperatures on the overwintering survival of the introduced larval parasitoids Spathius galinae and Tetrastichus planipennisi: Implications for biological control of emerald ash borer in North America. J Ecosyst. Entomol. 2020, 113, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- CABI. Bactrocera oleae (Olive Fruit Fly) Datasheet. In Invasive Species Compendiuml; [online]; CAB International: Wallingford, UK, 2021; Available online: https://www.cabi.org/isc/datasheet/17689#todistribution (accessed on 14 May 2022).
- EPPO (European and Mediterranean Plant Protection Organization). Current Global Distribution of Bactrocera dorsalis (DACUDO) as Registered on January 2021 and Reporting Service Articles. In EPPO Global Database. 2021. Available online: https://gd.eppo.int/taxon/DACUDO/distribution and https://gd.eppo.int/taxon/DACUDO/reporting (accessed on 14 May 2022).
- Fedchock, C.; Gould, W.P.; Hennessey, M.K.; Mennig, X.; Sosa, E. Trip Report–Spanish Lemon Site Visit: 23–30 September 2006; United States Department of Agriculture, Animal and Plant Health Inspection Services: Riverdale, MD, USA, 2006. [Google Scholar]
- El-Mergawy, R.A.A.M.; Al-Ajlan, A.M. Red palm weevil, Rhynchophorus ferrugineus (Olivier): Economic importance, biology, biogeography and integrated pest management. J. Agr. Sci. Technol. 2011, 1, 1–23. [Google Scholar]
- FAO. Red Palm Weevil: Guidelines on MANAGEMENT Practices; FAO: Rome, Italy, 2020; p. ix + 86. [Google Scholar] [CrossRef]
- El-Sabea, A.M.; Faleiro, J.; Abo-El-Saa, M.M. The threat of red palm weevil Rhynchophorus ferrugineus to date plantations of the Gulf region in the Middle-East: An economic perspective. Out Pest Man 2009, 20, 131–134. [Google Scholar] [CrossRef]
- Al-Ayedh, H.Y. The current state of the art research and technologies on RPW management. Paper Presented at the Scientific Consultation and High-Level Meeting on Red Palm Weevil Management, Rome, Italy, 27–31 March 2017. [Google Scholar]
- Fiaboe, K.K.M.; Peterson, A.T.; Kairo, M.T.K.; Roda, A.L. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Flor. Entomol. 2012, 95, 559–673. [Google Scholar]
- Ge, X.; He, S.; Wang, T.; Yan, W.; Zong, S. Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS ONE 2015, 10, e0141111. [Google Scholar] [CrossRef]
- EPPO (European and Mediterranean Plant Protection Organization). A1 list of pests recommended for regulation as quarantine pests, version 2020-09. In European and Mediterranean Plant Protection Organization. 2020. Available online: https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list (accessed on 18 March 2021).
- EPPO (European and Mediterranean Plant Protection Organization). First report of Spodoptera frugiperda in Israel. EPPO Reporting Service No. 08-2020: 2020/161. In EPPO Global Database. 2020. Available online: https://gd.eppo.int/reporting/article-6839 (accessed on 14 May 2022).
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. J. Agr. Sci. 2017, 155, 1219–1238. [Google Scholar] [CrossRef]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J. 2018, 16, 5351. [Google Scholar]
- FAO. Desert Locust Upsurge—Progress Report on the Response in Southwest Asia (May–December 2020); FAO: Rome, Italy, 2021; 18 p, Available online: http://www.fao.org/3/cb2358en/cb2358en.pdf (accessed on 18 March 2021).
- Kimathi, E.; Tonnang, H.E.Z.; Subramanina, K.; Abdel-Rahman, E.M.; Tesfayohannes, M.; Niassy, S.; Torto. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Sci. Rep. 2020, 10, 11937. [Google Scholar] [CrossRef]
- Meynard, C.N.; Gay, P.E.; Lecoq, M.; Foucart, A.; Piou, C.; Chapuis, M.P. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob Change Biol. 2017, 23, 4739–4749. [Google Scholar] [CrossRef]
- Al-Jboory, I. Survey and identification of the biotic factors in the date palm environment and its application for designing IPM-Program of date palm pests in Iraq. Univ. Aden J. Nat. Appl. Sci. 2007, 11, 423–457. [Google Scholar]
- Shabani, F.; Kumar, L.; Hamdan Saif al-Shidi, R. Impact of climate change on infestations of Dubas bug (Ommatissus lybicus Bergevin) on date palms in Oman. PeerJ 2018, 6, e5545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Haidari, H.S.; Al-Hafidh, E.M.T. Palm and Date Arthropod Pests in the Near East and North Africa; Regional Project for palm and dates Research Center in the Near East and North Africa: Baghdad, Iraq, 1986; p. 126. [Google Scholar]
- Blumberg, D. Date palm arthropod pests and their management in Israel. J. Phytoparasitica 2008, 36, 411–448. [Google Scholar] [CrossRef]
- Bakry, M.M.S.; Abdrabbo, M.A.A.; Mohamed, G.H. Implementing of RCPs scenarios to estimate the population density of parlatoria date scale insect, Parlatoria blanchardii (Targioni-Tozzetti) (Hemiptera: Diaspididae) infesting date palm trees in Luxor Governorate. Egypt. J. Phytopath Pest Man 2015, 2, 34–53. [Google Scholar]
- Bentz, B.J.; Jönsson, A.M.; Schroeder, M.; Weed, A.; Wilcke, R.A.I.; Larsson, K. Ips typographus and Dendroctonus ponderosae Models Project Thermal Suitability for Intra- and Inter-Continental Establishment in a Changing Climate. Front. For. Glob. Change 2019, 2, 1. [Google Scholar] [CrossRef]
- Makkouk, K.M. Plant pathogens which threaten food security: Viruses of chickpea and other cool season legumes in West Asia and North Africa. Food Secur. 2020, 12, 495–502. [Google Scholar] [CrossRef]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef]
- Iscaro, J. The impact of climate change on coffee production in Colombia and Ethiopia. Glob. Major. E J. 2014, 5, 33–43. [Google Scholar]
- Ploetz, R.C. Panama disease, an old nemesis rears its ugly head: Part 1—The beginnings of the banana export trades. Plant Health Prog. 2005, 6. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Pegg, K.G. Fungal diseases of root, corm and pseudostem. In Diseases of Banana Abacá and Enset; Jones, D.R., Ed.; CABI: Wallingford, UK, 2000; pp. 143–172. [Google Scholar]
- Stover, R.H. Disease management strategies and the survival of the banana industry. Ann. Rev. Phytopath 1986, 24, 83–91. [Google Scholar] [CrossRef]
- Dita, M.; Barquero, M.; Heck, D.; Mizubuti, E.S.G.; Staver, C.P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018, 9, 1468. [Google Scholar] [CrossRef] [PubMed]
- Garcίa-Bastidas, F.A.; Quintero-Vargas; Ayala-Vasquez, M.; Schermer, T.; Seidl, M.F.; Santos-Paiva, M.; Noguera, A.M. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 2019. [Google Scholar] [CrossRef]
- Pegg, K.G.; Coates, L.M.; O’Neill, W.T.; Turner, D.W. The epidemiology of Fusarium wilt of banana. Front Plant Sci. 2019, 10, 1395. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.X.X.; Sivasithamparam, K.; Turner, D.W.W. Chlamydospore germination and Fusarium wilt of banana plantlets in suppressive and conducive soils are affected by physical and chemical factors. Soil. Biol. Bioch. 1999, 31, 1363–1374. [Google Scholar] [CrossRef]
- Janse, J.D.; Obradovic, A. Xylella fastidiosa: Its biology, diagnosis, control and risks. J. Plant Pathol. 2010, 92, 35–48. [Google Scholar]
- Wells, J.M.; Raju, B.C.; Hung, H.Y.; Weisburg, W.G.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa gen. nov., sp. nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bact. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- Cornara, D.; Morente, M.; Markheiser, A.; Bodino, N.; Tsai, C.-W.; Fereres, A.; Redak, R.A.; Perring, T.M.; Lopes, J.R.S. An overview on the worldwide vectors of Xylella fastidiosa. Entom. Gen. 2019, 39, 157–181. [Google Scholar]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 2019, 95, 668. [Google Scholar]
- Almeida, R.P.P.; Blua, M.J.; Lopes, J.R.S.; Purcell, A.H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 2005, 98, 775–786. [Google Scholar] [CrossRef]
- Bosso, L.; Russo, D.; Febbraro, M.D.; Cristinzio, G.; Zoina, A. Potential distribution of Xylella fastidiosa in Italy: A maximum entropy model. Phytopath Med. 2016, 55, 62–72. [Google Scholar]
- Godefroid, M.; Cruaud, A.; Streito, J.C.; Rasplus, J.Y.; Rossi, J.P. Climate change and the potential distribution of Xylella fastidiosa in Europe. bioRxiv 2018, hal-02791548f. [Google Scholar]
- Godefroid, M.; Cruaud, A.; Streito, J.-C.; Rasplus, J.-Y.; Rossi, J.-P. Xylella fastidiosa: Climate suitability of European continent. Sci. Rep. 2019, 9, 8844. [Google Scholar] [CrossRef] [PubMed]
- Frem, M.; Chapman, D.; Fucilli, V.; Choueiri, E.; Moujabber, M.E.; Notte, P.L.; Nigro, F. Xylella fastidiosa invasion of new countries in Europe, the Middle East and North Africa: Ranking the potential exposure scenarios. NeoBiota 2020, 59, 77–97. [Google Scholar] [CrossRef]
- Amanifar, N.; Taghavi, M.; Izadpanah, K.; Babaei, G. Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopath Med. 2014, 53, 318–327. [Google Scholar]
- Godefroid, M.; Morente, M.; Schartel, T.; Cornara, D.; Purcell, A.; Gallego, D.; Moreno, A.; Pereira, J.A.; Fereres, A. The risk of Xylella fastidiosa outbreaks will decrease in the Mediterranean olive-producing regions. bioRxiv 2020. [Google Scholar] [CrossRef]
- Hannukkala, A.O.; Kaukoranta, T.; Lehtinen, A.; Rahkonen, A. Late-blight epidemics on potato in Finland, 1933–2002: Increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathol. 2007, 56, 167–176. [Google Scholar] [CrossRef]
- Perez, C.; Nicklin, C.; Dangles, O.; Vanek, S.; Sherwood, S.; Halloy, S.; Garrett, K.A.; Forbes, G. Climate change in the high Andes: Implications and adaptation strategies for small-scale farmers. Int J En Cult Econ Soc Sust 2010, 6, 71–88. [Google Scholar] [CrossRef]
- Skelsey, P.; Cooke, D.E.L.; Lynott, J.S.; Lees, A.K. Crop connectivity under climate change: Future environmental and geographic risks of potato late blight in Scotland. Glob Change Biol. 2016, 22, 3724–3738. [Google Scholar] [CrossRef]
- Sparks, A.H.; Forbes, G.A.; Hijmans, R.J.; Garrett, K.A. Climate change may have limited effect on global risk of potato late blight. Glob Change Biol. 2014, 20, 3621–3631. [Google Scholar] [CrossRef]
- Fahim, M.A.; Hassanein, M.K.; Mostafa, M.H. Relationships between climatic conditions and potato late blight epidemic in Egypt during winter seasons 1999–2001. Appl. Ecol. Environ. Res. 2003, 1, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Fahim, M.A.; Hassanein, M.K.; Abou Hadid, A.F.; Kadah, M.S. Impacts of climate change on the widespread and epidemics of some tomato diseases during the last decade in Egypt. Acta Hort 2011, 914, 317–320. [Google Scholar] [CrossRef]
- Pugliese, M.; Gullino, M.L.; Garibaldi, A. Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: First results under phytotron conditions. J. Plant Dis. Prot. 2010, 117, 9–14. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Managan, N. Climate change, food security and mycotoxins. Do we know enough? Fung Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef]
- Siciliano, I.; Berta, F.; Bosio, P.; Gullino, M.L.; Garibaldi, A. Effect of different temperatures and CO2 levels on Alternaria toxins produced on cultivated rocket, cabbage and cauliflower. W Mycotox J. 2017, 10, 63–71. [Google Scholar] [CrossRef]
- Siciliano, I.; Bosio, P.; Gilardi, G.; Gullino, M.L.; Garibaldi, A. Verrucarin A and roridin E produced on spinach by Myrothecium verrucaria under different temperatures and CO2 levels. Mycotox Res. 2017, 33, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Juroszek, P. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe. Plant Pathol. 2021, 70, 1032–1046. [Google Scholar] [CrossRef]
- Mumford, J.D. Model frameworks for strategic economic management of invasive species. In New Approaches to the Economics of Plant Health; Lansink, A.G.J.M.O., Ed.; Springer: Wageningen, The Netherlands, 2007; pp. 181–190. [Google Scholar]
- Levine, J.M.; D’Antonio, C.M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 2003, 17, 322–326. [Google Scholar] [CrossRef]
- McCullough, D.G.; Work, T.T.; Cavey, J.F.; Liebhold, A.M.; Marshall, D. Interceptions of non-indigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol. Invest. 2006, 8, 611–630. [Google Scholar] [CrossRef]
- Chapman, D.; Purse, B.V.; Roy, H.E.; Bullock, J.M. Global trade networks determine the distribution of invasive non-native species. Glob Ecol. Biogeogr. 2017, 26, 907–917. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Webster, J.P.; Domingo, E.; Charlesworth, B.; Levin, B.R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Gen. 2002, 32, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef]
- Meurisse, N.; Rassati, D.; Hurley, B.P.; Brockerhoff, E.G.; Haack, R.A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 2019, 92, 13–27. [Google Scholar] [CrossRef]
- EPPO (European and Mediterranean Plant Protection Organization). Anoplophora glabripennis. In EPPO Datasheets on Pests Recommended for Regulation [online]. 2021. Available online: https://gd.eppo.int/taxon/ANOLGL/datasheet (accessed on 18 March 2021).
- Hu, J.; Angeli, S.; Schuetz, S.; Luo, Y.; Hajek, A.E. Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agr. For. Entomol. 2009, 11, 359–375. [Google Scholar] [CrossRef]
- Sousa, E.; Naves, P.; Bonifácio, L.; Henriques, J.; Inácio, M.L.; Evans, H. Survival of Bursaphelenchus xylophilus and Monochamus galloprovincialis in pine branches and wood packaging material. EPPO Bull. 2011, 41, 203–207. [Google Scholar] [CrossRef]
- Gullino, M.L.; Gilardi, G.; Garibaldi, A. Ready-to-eat salad crops: A plant pathogen’s heaven. Plant Dis. 2019, 103, 2153–2170. [Google Scholar] [CrossRef]
- Gitaitis, R.; Walcott, R. The epidemiology and management of seedborne bacterial diseases. Ann. Rev. Phytopath 2007, 45, 371–397. [Google Scholar] [CrossRef]
- Gullino, M.L.; Gilardi, G.; Garibaldi, A. Seed-borne pathogens of leafy vegetable crops. In Global Perspectives on the Health of Seeds and Plant Propagation Material; Gullino, M.L., Munkvold, G., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 47–53. [Google Scholar]
- Munkvold, G.P. Seed pathology progress in the academia and industry. Ann. Rev. Phytopath 2009, 47, 285–311. [Google Scholar] [CrossRef]
- Daughtrey, M.; Buitenhuis, R. Integrated pest and disease management in greenhouse ornamentals. In Integrated Pest and Disease Management in Greenhouse Crops; Gullino, M.L., Albajes, R., Nicot, P.C., Eds.; Springer Nature: Dordrecht, The Netherlands, 2020; pp. 625–679. [Google Scholar]
- Pautasso, M.; Dehnen-Schmutz, K.; Holdenrieder, O.; Pietravalle, S.; Salama, N.; Jeger, M.J.; Lange, E.; Hehl-Lange, S. Plant health and global change-some implications for landscape management. Biol. Rev. 2010, 85, 729–755. [Google Scholar] [CrossRef]
- Chen, J.; Henny, R.J. Somaclonal variation: An important source for cultivar development of floriculture crops. In Floriculture, Ornamental and Plant Biotechnology; Teixeira da Silva, J.A., Ed.; Global Science Books: London, UK, 2006; Volume II, pp. 244–253. [Google Scholar]
- Guarnaccia, V.; Peduto Hand, F.; Garibaldi, A.; Gullino, M.L. Bedding plant production and the challenge of fungal diseases. Plant Dis. 2021, 105, 1241–1258. [Google Scholar] [CrossRef]
- Albajes, R.; Gullino, M.L.; van Lenteren, J.C.; Elad, Y. Integrated Pest and Disease Management in Greenhouse Crops; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Wang, C.; Zhang, X.; Pan, X.; Li, Z.; Zhu, S. Greenhouses: Hotspots in the invasive network for alien species. Biodiv. Cons. 2015, 24, 1825–1829. [Google Scholar] [CrossRef]
- Bergsma-Viami, M.; van de Bilt, J.L.J.; Tjou-Tam-Sin, N.N.A.; van de Vossenberg, B.T.L.H.; Westenberg, M. Xylella fastidiosa in Coffea arabica ornamental plants imported from Costa Rica and Honduras in The Netherlands. J. Plant Pathol. 2015, 97, 395. [Google Scholar]
- Garibaldi, A.; Gullino, M.L. Focus on critical issues in soil and substrate disinfestation towards the year 2000. Acta Hort. 1995, 382, 21–36. [Google Scholar] [CrossRef]
- Paini, D.R.; Mwebaze, P.; Kuhnert, P.M.; Kriticos, D.J. Global establishment threat from a major forest pest via international shipping: Lymantria dispar. Sci. Rep. 2018, 8, 13723. [Google Scholar] [CrossRef] [PubMed]
- Burne, A.R. Pest Risk Assessment: Halyomorpha halys (Brown Marmorated Stink Bug), Version 1; Ministry for Primary Industries: Wellington, New Zealand, 2019. [Google Scholar]
- Battisti, A.; Stastny, M.; Buffo, E.; Larsson, S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob Change Biol. 2006, 12, 662–667. [Google Scholar] [CrossRef]
- Prank, M.; Kenaley, S.C.; Bergstrom, G.C.; Acevedo, M.; Mahowald, N.M. Climate change impacts the spread of wheat stem rust, a significant crop disease. Environ. Res. Lett. 2019, 14, 124053. [Google Scholar] [CrossRef]
- Pegg, G.; Taylor, T.; Entwistle, P.; Guymer, G.; Giblin, F.; Carnegie, A. Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS ONE 2017, 12, e0188058. [Google Scholar] [CrossRef]
- Flitters, N.E. Observations on the effect of hurricane “Carla” on insect activity. Int. J. Biomet. 1963, 6, 85–92. [Google Scholar] [CrossRef]
- Björkman, C.; Niemelä, P. Climate Change and Insect Pests; CABI: Wallingford, UK, 2015. [Google Scholar]
- Peterson, A.T.; Menon, S.; Li, X. Recent advances in the climate change biology literature: Describing the whole elephant. WIREs Clim Change 2010, 1, 548–555. [Google Scholar] [CrossRef]
- Edmonds, R.L. General strategies of forest disease management. In Infectuous Forest Diseases; Gonthier, P., Nicolotti, G., Eds.; CABI: Wallingford, UK; Boston, MA, USA, 2013; pp. 29–49. [Google Scholar]
- Gaudio, N.; Louarn, G.; Barillot, R.; Meunier, C.; Vezy, R.; Launay, M. Exploring complementarities between modelling approaches that enable upscaling from plant community functioning to ecosystem services as a way to support agroecological transition. Plants 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Gigot, C.; Hamerning, D.; Deytieux, V.; Diallo, I.; Deudon, O.; Gourdain, E. Developing a method to simulate and evaluate effects of adaptation strategies to climate change on wheat crop production: A challenging multi-criteria analysis. Eng. Proc. 2021, 9, 29. [Google Scholar]
- Pautasso, M. Responding to diseases caused by exotic tree pathogens. In Infectious Forest Diseases; Gonthier, P., Nicolotti, G., Eds.; CABI: Wallingford, UK; Boston, USA, USA, 2013. [Google Scholar]
- Lopian, R. Climate Change, Sanitary and Phytosanitary Measures and Agricultural Trade. The State of Agricultural Commodity Markets (SOCO) 2018: Background Paper. Rome, FAO. 2018, p. 48. Available online: http://www.fao.org/3/CA2351EN/ca2351en.pdf (accessed on 18 March 2021).
- Prasanna, B.M.; Carvajal-Yepes, M.; Kumar, P.L.; Kawarazuka, N.; Liu, Y.; Mulema, A.A.; McCutcheon, S.; Ibabao, X. Sustainable management of transboundary pests requires holistic and inclusive solutions. Food Secur. 2022, in press. [Google Scholar] [CrossRef]
Climate Zones | Likely Effects of Climate Change on Future Pest Risk (Mainly 2050–2100) | References |
---|---|---|
Arctic | Increasing pest risk in the tundra. | [15] |
Boreal | Increasing insect pest and plant disease risk in boreal forests. | [16] |
Temperate | Increasing insect pest risk in agriculture and forestry. | [17] |
Increasing insect pest and plant disease risk in forests. | [16] | |
Increasing disease risk in agriculture and horticulture (mostly based on western European studies). | [18,19] | |
Often poleward shift of insect pest and pathogen risk in different managed and unmanaged ecosystems. | [20] | |
Often range expansion of important insect pests in agriculture and horticulture. | [21] | |
Increasing risk of weeds in different managed and unmanaged ecosystems. | [22] | |
Subtropical | Increasing saturation of insect pest risk in agriculture and forestry in southern Europe. | [17] |
Increasing disease risk in agriculture and horticulture. | [23] | |
Often range expansion of important insect pests in agriculture and horticulture. | [21] | |
Tropical | Insects will often face supra-optimal temperature conditions in the future, presumably resulting in decreasing insect pest risk. | [24] |
Conflicting information and expert opinions on disease risk in agriculture and forestry with respect to Brazil. | [19,25,26] |
Type of Research Approach | Description and Comments | Selected References |
---|---|---|
Experiments under controlled conditions | Controlled conditions are not realistic, but it is easier to study one or a few environmental parameters because of lower variability and fewer interactions. | [23] |
Experiments on-station, on-farm, and under natural conditions | Field conditions are realistic, but the environmental parameters are difficult to control because of variability and complex interactions. | [53,54] |
Studies along an elevation gradient from low to high elevation sites | Effects of changes in temperature and precipitation can be studied over a short distance, with day length the same (e.g., characteristics of a single species can be compared). | [55] |
Studies along a latitudinal gradient | Research can be implemented along a climate gradient from temperate to tropical, with long-distance changes in temperature and precipitation, although day length may also vary (e.g., characteristics of a single species, or the biodiversity of species in general, can be compared in different climates). | [56] |
Meta-analysis of published data | Involves searches for general patterns in responses of specific taxa to variations in climate factors. A sufficient number of published results should be available to draw meaningful conclusions. | [16] |
Data monitoring, long-term datasets of different parameters | Involves long-term field observations to study effects already apparent due to climate warming in recent decades. Long-term weather records are necessary and, if available, other long-term datasets to search for other possible reasons for observed changes (particularly in managed systems). | [57,58] |
Expert opinion | Long-term experiences and knowledge of experts can be used. The complete life cycle of a pest species can be considered in theory; however, this approach is somewhat subjective. | [59] |
“Climate matching” approach | A present-day climate analogue to the future climate for an area of interest is found, and the pest dynamics in that location are studied in order to gain an appreciation of the comparative dynamics (e.g., dynamic climate matching model CLIMEX). Other tools can also be used, such as MaxEnt, to compare the habitat suitability of different locations for the species of interest. | [60,61] |
A modeling approach using one or several climate-change scenarios or models, or comprehensive ensembles of climate-change scenarios or models, to simulate future pest risk | It is possible to categorize scenarios or models used from “conservative” to “worst case”, and this is also possible within a single climate-change model if different representative concentration pathway (RCP) scenarios are applied. | [26,62] |
Country or Region | Time Span or Spans | Crops Affected, Pest Species and Projection of Change | Selected Reference |
---|---|---|---|
Insects | |||
Global | 2050, 2100 | Multiple crops: Area suitable for fall armyworm (Spodoptera frugiperda) is projected to increase. | [98] |
Global | 2050 | Tomato: It is projected that several nations face a potential increase in two-spotted spider mite (Tetranychus urticae) outbreaks, while biological control by its key predator Phytoseiulus persimilis will not improve. | [99] |
Global | 2041–2060 2061–2080 | Potato: Expansion of Colorado potato beetle (Leptinotarsa decemlineata) into northern regions is projected. | [100] |
Africa | 2041–2060 | Multiple crops: Habitat suitability for oriental fruit fly (Bactrocera dorsalis), mango fruit fly (Ceratitis cosyra), and tomato leafminer (Tuta absoluta) is projected to partially increase across the continent. | [61] |
Luxembourg | 2021–2050, 2069–2098 | Oilseed rape: Pollen beetle (Meligethes aeneus) is projected to invade crops earlier in the year. | [101] |
Scandinavia and central parts of Europe | 2011–2040, 2071–2100 | Forest trees, spruce: Increased frequency and length of late-summer swarming events of the European spruce bark beetle (Ips typographus) are projected. A second generation in southern Scandinavia is possible and a third generation in the lowlands of central Europe. | [102] |
Switzerland | 2070–2099 | Multiple crops: Brown marmorated stinkbug (Halyomorpha halys), which has a wide range of potential hosts, is projected to expand into higher altitudes, produce more generations per year, and be active earlier in spring. | [103] |
United States of America, Midwest | 2001–2050, 2051–2100 | Corn and soybean: The pressure of nine different insect pests is projected to increase in general. Insect pests will move northward, because “optimal climatic conditions” will be further north. | [104] |
Pathogens (diseases) | |||
Global | 2050, 2100 | Bean: The area favorable for soybean rust (caused by Phakopsora pachyrhizi) is projected to decrease. | [105] |
Brazil | 2011–2040, 2041–2070, 2071–2100 | Grapevine: The area favorable for downy mildew (caused by Plasmopara viticola) is projected to decrease across Brazil, although there are differences across regions or states. | [26] |
Canada, Quebec | 2041–2070 | Soybean: The number of generations of soybean cyst nematode (Heterodera glycines) is projected to increase. | [106] |
China, central | 2030s, 2050s, 2070s, 2080s | Kiwi: The area favorable for bacterial canker (caused by Pseudomonas syringae) is projected to increase. | [107] |
Europe | 2070 | Pine trees: Pine wilt disease risk (caused by the pine wilt nematode, Bursaphelenchus xylophilus) is projected to increase. | [108] |
France | 2020–2049, 2070–2099 | Wheat: Risk of leaf rust (caused by Puccinia triticina) is projected to increase in spring time. | [62] |
France | 2020–2049, 2070–2099 | Apricot: Risk of blossom blight and twig blight (caused by Monilinia laxa) is projected to decrease or increase, depending on the cultivar grown (early vs late flowering). | [36] |
Germany, south-west | 2050, 2100 | Sugar beet: Risk of Cercospora leaf spot (caused by Cercospora beticola) is projected to increase. | [109] |
India | 2010–2039, 2040–2069 | Rice: Infection ability of leaf blight (caused by Magnaporthe oryzae) is projected to increase during the winter season (December to March), whereas during the monsoon season (July to October), it is projected to remain unchanged or to decrease slightly. | [110] |
Italy | 2030, 2050, 2080 | Grapevine: Increased importance of downy mildew (Plasmopara viticola), due to more spring days with favorable conditions, with earlier attacks and more treatments needed. | [111] |
Philippines | 2050 | Banana: The area favorable for Fusarium wilt (caused by Fusarium oxysporum) is projected to increase. | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gullino, M.L.; Albajes, R.; Al-Jboory, I.; Angelotti, F.; Chakraborty, S.; Garrett, K.A.; Hurley, B.P.; Juroszek, P.; Lopian, R.; Makkouk, K.; et al. Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry. Sustainability 2022, 14, 12421. https://doi.org/10.3390/su141912421
Gullino ML, Albajes R, Al-Jboory I, Angelotti F, Chakraborty S, Garrett KA, Hurley BP, Juroszek P, Lopian R, Makkouk K, et al. Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry. Sustainability. 2022; 14(19):12421. https://doi.org/10.3390/su141912421
Chicago/Turabian StyleGullino, Maria Lodovica, Ramon Albajes, Ibrahim Al-Jboory, Francislene Angelotti, Subrata Chakraborty, Karen A. Garrett, Brett Phillip Hurley, Peter Juroszek, Ralf Lopian, Khaled Makkouk, and et al. 2022. "Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry" Sustainability 14, no. 19: 12421. https://doi.org/10.3390/su141912421
APA StyleGullino, M. L., Albajes, R., Al-Jboory, I., Angelotti, F., Chakraborty, S., Garrett, K. A., Hurley, B. P., Juroszek, P., Lopian, R., Makkouk, K., Pan, X., Pugliese, M., & Stephenson, T. (2022). Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry. Sustainability, 14(19), 12421. https://doi.org/10.3390/su141912421