Vacancy Dwellings Spatial Distribution—The Determinants and Policy Implications in the City of Sapporo, Japan
Abstract
:1. Introduction
2. Literature Review
2.1. Housing Allocation and Housing Market Equilibrium
2.2. Demographic Features
2.3. Neighborhood Characteristics
2.4. Housing Characteristics
3. Data and Methodology
3.1. Research Area
3.2. Data
3.3. Local Spatial Autocorrelation
3.4. Partial Least Squares Regression
4. Results
4.1. Vacant Dwellings Spatial Distribution
4.2. PLSR Models
4.3. The Determinants of Vacant Dwellings
5. Discussion
5.1. Spatial Distribution of the Vacant Houses
5.2. Demographic Factors
5.3. Neighborhood Characteristics
5.4. Housing Characteristics
5.5. Policy Implications
6. Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Summary of Cluster Data Sets
Variable | Hot-Spot | Cold-Spot | Random | |||||||||
Min | Median | Mean | Max | Min | Median | Mean | Max | Min | Median | Mean | Max | |
Dependent variable | ||||||||||||
zenVCrooms | 0 | 379 | 407.70 | 1457 | 0 | 5 | 15.41 | 231 | 0 | 61 | 89.41 | 678 |
Explanatory variables | ||||||||||||
Neighborhood characteristics | ||||||||||||
Geographic conditions | ||||||||||||
ElevAv | 6.14 | 21.54 | 24.36 | 75.73 | 2.30 | 45.08 | 67.65 | 375.51 | 2.37 | 14.71 | 29.15 | 217.14 |
SlopeAv | 0.01 | 0.50 | 0.66 | 10.39 | 0.00 | 1.90 | 3.28 | 27.54 | 0.00 | 0.55 | 1.37 | 19.74 |
FloodArea | 0.00 | 0.00 | 11.98 | 559.04 | 0.00 | 0.00 | 49.92 | 625.06 | 0.00 | 0.00 | 40.25 | 625.06 |
Public facilities in 500 m radius area | ||||||||||||
R5ParkingA | 9.08 | 31.22 | 31.76 | 73.00 | 0.00 | 4.92 | 7.47 | 51.40 | 0.00 | 18.72 | 19.58 | 62.58 |
R5Hosp | 0 | 1 | 1.14 | 6 | 0 | 0 | 0.20 | 4 | 0 | 0 | 0.61 | 4 |
R5Clinic | 2 | 15 | 17.15 | 116 | 0 | 2 | 2.59 | 16 | 0 | 5 | 6.96 | 182 |
R5Welf | 0 | 4 | 4.52 | 16 | 0 | 1 | 1.78 | 11 | 0 | 3 | 3.40 | 16 |
R5Cult | 0 | 2 | 2.39 | 13 | 0 | 0 | 0.89 | 11 | 0 | 1 | 1.48 | 10 |
R5RailS | 0 | 1 | 0.95 | 11 | 0 | 0 | 0.03 | 1 | 0 | 0 | 0.25 | 13 |
R5BusS | 0 | 5 | 5.76 | 34 | 0 | 3 | 3.51 | 10 | 0 | 5 | 4.73 | 37 |
R5Fuel | 0 | 1 | 1.27 | 6 | 0 | 0 | 0.35 | 3 | 0 | 1 | 0.74 | 6 |
R5Univ | 0 | 0 | 0.20 | 11 | 0 | 0 | 0.02 | 2 | 0 | 0 | 0.07 | 3 |
R5HighS | 0 | 0 | 0.25 | 3 | 0 | 0 | 0.12 | 2 | 0 | 0 | 0.10 | 2 |
R5Junior | 0 | 0 | 0.39 | 3 | 0 | 0 | 0.26 | 3 | 0 | 0 | 0.27 | 2 |
R5Ele | 0 | 1 | 0.71 | 3 | 0 | 0 | 0.44 | 2 | 0 | 1 | 0.60 | 3 |
R5Kind | 0 | 1 | 0.62 | 3 | 0 | 0 | 0.26 | 2 | 0 | 0 | 0.42 | 3 |
Nearest facilities distance | ||||||||||||
HubPark | 0.07 | 1.61 | 1.90 | 7.69 | 0.06 | 1.38 | 1.60 | 10.06 | 0.02 | 1.43 | 1.57 | 6.58 |
HubCultura | 0.16 | 3.33 | 3.41 | 8.77 | 0.15 | 5.07 | 5.65 | 20.29 | 0.11 | 3.96 | 4.26 | 16.18 |
HubHospita | 0.10 | 3.94 | 4.17 | 12.64 | 0.17 | 9.07 | 9.70 | 35.96 | 0.07 | 5.57 | 6.28 | 36.11 |
HubClinic | 0.01 | 1.25 | 1.35 | 3.81 | 0.06 | 3.28 | 3.75 | 17.04 | 0.03 | 2.02 | 2.24 | 14.05 |
HubWelfare | 0.08 | 2.08 | 2.31 | 6.90 | 0.08 | 3.87 | 4.32 | 16.69 | 0.00 | 2.58 | 2.80 | 11.76 |
HubRailS | 0.34 | 4.13 | 4.26 | 10.00 | 0.62 | 22.51 | 29.26 | 167.32 | 0.25 | 9.47 | 12.09 | 57.46 |
HubBusS | 0.11 | 1.67 | 1.84 | 6.79 | 0.02 | 2.06 | 2.31 | 10.23 | 0.06 | 1.82 | 1.95 | 7.21 |
HubPking | 0.02 | 0.50 | 0.56 | 2.54 | 0.05 | 1.49 | 1.83 | 8.97 | 0.01 | 0.80 | 1.00 | 6.64 |
HubFuelS | 0.14 | 3.64 | 4.06 | 13.42 | 0.17 | 7.29 | 8.53 | 42.93 | 0.31 | 4.91 | 5.33 | 20.26 |
HubUniv | 0.60 | 13.40 | 14.70 | 45.35 | 1.17 | 28.47 | 31.30 | 136.02 | 0.36 | 22.80 | 23.53 | 59.92 |
HubHighs | 0.24 | 8.53 | 9.34 | 25.86 | 0.50 | 11.41 | 13.55 | 103.82 | 0.27 | 12.55 | 13.12 | 33.82 |
HubJunior | 0.28 | 5.90 | 6.08 | 14.79 | 0.46 | 7.58 | 8.02 | 23.53 | 0.10 | 7.21 | 7.37 | 22.40 |
HubEle | 0.14 | 4.33 | 4.33 | 9.46 | 0.19 | 5.60 | 6.14 | 20.72 | 0.14 | 4.81 | 5.01 | 16.19 |
HubKind | 0.21 | 4.79 | 4.99 | 14.01 | 0.15 | 7.48 | 9.64 | 88.34 | 0.31 | 6.03 | 6.26 | 35.51 |
Infrastructure index | ||||||||||||
RoadDen | 0.86 | 24.76 | 24.71 | 46.27 | 0.00 | 22.48 | 21.16 | 43.47 | 0.00 | 23.54 | 22.20 | 44.51 |
BusDen | 0.00 | 5.67 | 20.25 | 276.85 | 0.00 | 3.04 | 8.95 | 152.73 | 0.00 | 6.21 | 15.83 | 377.75 |
RailDen | 0.00 | 0.00 | 1.03 | 9.75 | 0.00 | 0.00 | 0.08 | 5.11 | 0.00 | 0.00 | 0.43 | 16.68 |
Building characteristics | ||||||||||||
ParkingA | 0.00 | 23.38 | 31.87 | 557.59 | 0.00 | 3.96 | 5.06 | 269.61 | 0.00 | 7.19 | 11.31 | 1276.94 |
woodA | 0.00 | 12.41 | 13.00 | 68.10 | 0.00 | 10.86 | 10.69 | 27.91 | 0.00 | 11.98 | 12.00 | 44.47 |
semifireA | 0.00 | 2.27 | 2.80 | 21.72 | 0.00 | 0.56 | 0.95 | 21.35 | 0.00 | 1.04 | 1.52 | 23.29 |
fireproofA | 0.00 | 28.36 | 37.11 | 339.60 | 0.00 | 0.00 | 1.89 | 276.62 | 0.00 | 3.07 | 10.59 | 391.03 |
AgeFloorAv | 1.82 | 24.33 | 24.18 | 57.27 | 1.96 | 27.13 | 26.04 | 62.07 | 1.06 | 27.00 | 26.61 | 90.00 |
zenPriRoom | 0 | 169 | 175.60 | 758 | 0 | 101 | 101.70 | 460 | 0 | 133 | 130.60 | 652 |
zenOffRoom | 0 | 18 | 29.07 | 404 | 0 | 3 | 4.17 | 47 | 0 | 6 | 8.71 | 544 |
Demographic characteristics | ||||||||||||
Children | 1 | 74 | 76.40 | 267 | 0 | 35 | 37.52 | 216 | 0 | 51 | 53.35 | 209 |
Elderly | 3 | 189 | 191.67 | 680 | 0 | 79 | 83.98 | 411 | 0 | 130 | 127.17 | 390 |
HHowner | 0 | 142 | 151.45 | 528 | 0 | 88 | 85.28 | 331 | 0 | 103 | 102.85 | 523 |
HHsingle | 5 | 257 | 290.96 | 1363 | 0 | 18 | 20.71 | 97 | 0 | 53 | 64.58 | 530 |
Appendix B. Variable Influence on Projection (VIP) and Coefficients Values of the Four Models
No | Variable | Hot-Spot | Cold-Spot | Random | |||
VIP | Coef | VIP | Coef | VIP | Coef | ||
1 | ElevAv | 0.40 | 3.02 | 0.92 | 0.42 | 0.47 | 0.77 |
2 | SlopeAv | 0.60 | 4.39 | 0.87 | −0.43 | 0.61 | −0.10 |
3 | FloodArea | 0.23 | −3.94 | 0.30 | 0.56 | 0.38 | 1.19 |
4 | R5ParkingA | 0.74 | 4.26 | 1.44 | 1.50 | 1.17 | 1.18 |
5 | R5Hosp | 0.82 | 8.51 | 0.54 | −0.44 | 0.79 | 0.76 |
6 | R5Clinic | 1.14 | −9.74 | 1.06 | 0.54 | 0.93 | −1.61 |
7 | R5Welf | 0.33 | 4.92 | 0.71 | 0.76 | 0.51 | −1.28 |
8 | R5Cult | 0.52 | 3.39 | 0.40 | −1.42 | 0.51 | −0.83 |
9 | R5RailS | 0.79 | 10.42 | 0.49 | 0.47 | 0.86 | 1.04 |
10 | R5BusS | 0.82 | 5.16 | 0.85 | 0.41 | 0.92 | −0.10 |
11 | R5Fuel | 0.42 | −0.65 | 0.83 | −0.86 | 0.55 | 1.82 |
12 | R5Univ | 0.39 | −2.55 | 0.25 | 0.22 | 0.47 | −1.44 |
13 | R5HighS | 0.27 | 1.29 | 0.54 | −0.37 | 0.30 | −0.45 |
14 | R5Junior | 0.21 | −2.68 | 0.34 | 0.54 | 0.50 | −0.85 |
15 | R5Ele | 0.31 | 6.83 | 0.65 | 0.76 | 0.70 | −1.29 |
16 | R5Kind | 0.39 | 3.61 | 0.67 | 1.21 | 0.55 | −2.89 |
17 | HubPark | 0.63 | −3.22 | 0.84 | −0.08 | 0.75 | −1.98 |
18 | HubCultura | 0.60 | 0.45 | 0.53 | 0.95 | 0.64 | −3.30 |
19 | HubHospita | 0.66 | 7.91 | 0.53 | −0.76 | 0.87 | −1.73 |
20 | HubClinic | 1.06 | 0.49 | 1.09 | −0.54 | 1.05 | 0.02 |
21 | HubWelfare | 0.58 | 11.38 | 0.82 | −0.41 | 0.61 | −1.50 |
22 | HubRailS | 1.18 | −11.18 | 1.01 | −1.57 | 1.02 | −2.47 |
23 | HubBusS | 0.62 | −1.60 | 0.78 | −1.30 | 0.48 | −0.71 |
24 | HubPking | 1.11 | −3.73 | 1.24 | −0.95 | 1.03 | −2.42 |
25 | HubFuelS | 0.52 | −0.58 | 0.81 | −0.72 | 0.73 | 3.03 |
26 | HubUniv | 0.40 | 3.41 | 0.90 | −0.51 | 0.56 | 0.22 |
27 | HubHighs | 0.27 | 0.15 | 0.98 | −1.62 | 0.42 | 0.06 |
28 | HubJunior | 0.29 | −2.79 | 0.52 | −0.61 | 0.72 | 3.03 |
29 | HubEle | 0.33 | 1.95 | 0.79 | 0.70 | 0.81 | 0.56 |
30 | HubKind | 0.32 | 1.24 | 0.97 | −0.18 | 0.82 | −3.19 |
31 | ParkingA | 1.00 | −12.68 | 1.40 | 0.13 | 1.00 | −9.29 |
32 | woodA | 1.16 | 45.50 | 1.31 | 1.03 | 1.07 | 12.51 |
33 | semifireA | 1.87 | 19.38 | 0.83 | 2.26 | 1.01 | 8.54 |
34 | fireproofA | 1.44 | 46.08 | 1.72 | 4.11 | 1.64 | 27.88 |
35 | AgeFloorAv | 0.55 | −1.79 | 0.58 | −1.82 | 0.58 | 3.43 |
36 | zenPriRoom | 1.44 | −58.99 | 1.24 | −0.41 | 1.47 | −26.87 |
37 | zenOffRoom | 1.24 | 13.05 | 1.11 | 2.16 | 0.71 | 3.44 |
38 | RoadDen | 0.80 | −5.21 | 1.38 | −4.01 | 1.22 | −9.24 |
39 | BusDen | 0.60 | −4.64 | 0.40 | 1.06 | 0.42 | 0.08 |
40 | RailDen | 0.56 | −7.05 | 0.19 | −0.34 | 0.48 | −1.91 |
41 | Children | 1.27 | 26.15 | 1.02 | 3.71 | 1.71 | 23.44 |
42 | Elderly | 1.61 | 14.42 | 1.25 | −0.18 | 1.53 | −4.00 |
43 | HHowner | 1.29 | −0.28 | 1.61 | −8.92 | 1.49 | −2.19 |
44 | HHsingle | 3.61 | 171.87 | 2.62 | 15.24 | 3.17 | 69.57 |
Appendix C. Dwelling, Population, and Commuting Indexes of Sapporo’s Districts
Index | Atsubetsu | Chuo | Higashi | Kita | Kiyota | Minami | Nishi | Shiroishi | Teine | Toyohira |
Real estate market | ||||||||||
Average rental price 2018 (1000 JPY/house) | 42.37 | 55.51 | 46.50 | 47.51 | 50.63 | 45.37 | 52.03 | 47.39 | 47.15 | 48.20 |
Average land price 2018 (10,000 JPY/m2) | 63.70 | 141.00 | 65.80 | 56.50 | 48.00 | 38.00 | 77.10 | 67.40 | 42.00 | 89.80 |
Dwelling indexes | ||||||||||
# dwellings 2018 (1000 units) | 59.81 | 157.26 | 140.42 | 150.04 | 48.19 | 68.29 | 108.9 | 120.13 | 63.65 | 129.46 |
# occupied dwellings 2018 (1000 units) | 55.63 | 128.35 | 125.12 | 134.54 | 45.58 | 58.95 | 97.34 | 105.98 | 58.62 | 110.79 |
# vacant dwellings 2018 (1000 units) | 4.18 | 28.91 | 15.3 | 15.5 | 2.61 | 9.34 | 11.56 | 14.15 | 5.03 | 18.67 |
Dwelling vacancy rate 2018 (%) | 6.99 | 18.38 | 10.9 | 10.33 | 5.42 | 13.68 | 10.62 | 11.78 | 7.90 | 14.42 |
Owned dwellings rate 2018 (%) | 53.1 | 40.77 | 42.32 | 52.79 | 72.59 | 67.72 | 58.04 | 37.09 | 69.29 | 42.03 |
Rental vacant dwelling rate 2018 (%) | 80.62 | 50.78 | 75.95 | 67.48 | 52.49 | 43.90 | 71.97 | 82.47 | 37.38 | 46.01 |
Change in dwelling 2008−2013 (dwellings) | −720 | 13,260 | 3900 | −60 | 1130 | −1530 | 4,60 | 1090 | −2040 | 4220 |
Change in dwelling 2013−2018 (dwellings) | 1120 | 8340 | 6590 | 11,470 | 3150 | −1270 | 3300 | −1680 | 5950 | 4840 |
Change in vacant dwelling 2008−2013 (dwellings) | 60 | 7410 | −460 | −510 | −990 | 1150 | 3060 | −4490 | −70 | −710 |
Change in vacant dwelling 2013−2018 (dwellings) | −1720 | −,520 | −2590 | −1470 | −220 | −320 | −2400 | −5410 | −340 | −90 |
Demographic | ||||||||||
# Households with elderly (1000 households) | 25.60 | 35.28 | 40.72 | 47.79 | 20.30 | 28.72 | 37.50 | 31.70 | 24.26 | 34.42 |
Proportion of households with elderly (%) | 45.85 | 27.41 | 32.47 | 35.43 | 44.27 | 48.47 | 38.34 | 29.83 | 41.16 | 31.01 |
# Low−income households (1000 households) | 22.59 | 52.45 | 48.72 | 57.40 | 15.79 | 23.86 | 36.90 | 42.34 | 21.70 | 47.31 |
Proportion of low−income households (%) | 40.61 | 40.86 | 38.94 | 42.66 | 34.64 | 40.47 | 37.91 | 39.95 | 37.02 | 42.70 |
# High−income households (1000 households) | 8.80 | 22.95 | 12.98 | 15.87 | 7.92 | 7.32 | 13.25 | 9.07 | 8.31 | 12.29 |
Proportion of high−income households (%) | 15.82 | 17.88 | 10.37 | 11.80 | 17.38 | 12.42 | 13.61 | 8.56 | 14.18 | 11.09 |
# High−income single/couple household (1000 households) | 3.02 | 12.53 | 4.64 | 6.24 | 2.43 | 2.92 | 4.55 | 3.95 | 2.71 | 5.16 |
Proportion of high−income single/couple household (%) | 5.43 | 9.76 | 3.71 | 4.64 | 5.33 | 4.95 | 4.67 | 3.73 | 4.62 | 4.66 |
Population 2020 (1000 persons) | 124.39 | 250.01 | 265.1 | 289.4 | 111.63 | 135.05 | 217.09 | 211.37 | 142.71 | 225.85 |
Change in population 2010−2020 (1000 persons) | −4.17 | 29.52 | 9.13 | 10.39 | −5.05 | −11.19 | 5.90 | 7.05 | 2.88 | 13.57 |
Change in population 2015−2020 (1000 persons) | −3.30 | 12.00 | 2.97 | 3.71 | −4.05 | −6.09 | 3.68 | 1.90 | 1.64 | 6.99 |
Elderly proportion 2020 (%) | 32.90 | 23.02 | 25.76 | 26.7 | 30.52 | 35.54 | 27.62 | 25.15 | 31.52 | 25.26 |
Change in elderly population 2015−2020 (%) | 14.59 | 13.87 | 11.12 | 12.06 | 16.42 | 7.00 | 9.29 | 11.03 | 16.66 | 10.88 |
Commuting time | ||||||||||
Proportion of household’s earner commuting time less than 30 min (%) | 69.11 | 58.65 | 63.8 | 63.75 | 56.71 | 59.6 | 59.79 | 51.03 | 52.62 | 54.69 |
Proportion of household’s earner commuting time less than 45 min (%) | 89.92 | 83.76 | 85.85 | 88.28 | 78.00 | 85.18 | 77.87 | 74.80 | 83.10 | 73.88 |
References
- FEANTSA and the Abbé Pierre Foundation Filling Vacancies-Vacant Real Estate: Seizing the Opportunity to Find Affordable Housing Solutions in Europe. Available online: https://ec.europa.eu/futurium/sites/futurium/files/long_version_en.pdf.pdf (accessed on 7 October 2020).
- Oversight, S.; Reform, G. Vacant Properties: Growing Number Increases Communities’ Costs and Challenges; US Government Accountability Office: Washington, DC, USA, 2012.
- Statistics of Japan Housing and Land Survey. Available online: https://www.e-stat.go.jp/en/stat-search?page=1 (accessed on 7 October 2020).
- Hsueh, L.; Tseng, H.; Hsieh, C. Relationship Between the Housing Vacancy Rate, Housing Price, and the Moving Rate at the Township Level in Taiwan, in 1990 and 2000. Int. Real Estate Rev. 2007, 10, 119–150. [Google Scholar] [CrossRef]
- Gentili, M.; Hoekstra, J. Houses without people and people without houses: A cultural and institutional exploration of an Italian paradox. Hous. Stud. 2019, 34, 425–447. [Google Scholar] [CrossRef]
- Glock, B.; Häussermann, H. New trends in urban development and public policy in eastern Germany: Dealing with the vacant housing problem at the local level. Int. J. Urban Reg. Res. 2004, 28, 919–929. [Google Scholar] [CrossRef]
- Couch, C.; Cocks, M. Housing Vacancy and the Shrinking City: Trends and Policies in the UK and the City of Liverpool. Hous. Stud. 2013, 28, 499–519. [Google Scholar] [CrossRef]
- Hoekstra, J.; Vakili-Zad, C. High vacancy rates and rising house prices: The spanish paradox. Tijdschr. Voor Econ. Soc. Geogr. 2011, 102, 55–71. [Google Scholar] [CrossRef]
- McDonald, J. Rent, Vacancy and Equilibrium in Real Estate Markets. J. Real Estate Pract. Educ. 2000, 3, 55–69. [Google Scholar] [CrossRef]
- Thalmann, P. Housing market equilibrium (almost) without vacancies. Urban Stud. 2012, 49, 1643–1658. [Google Scholar] [CrossRef]
- Immergluck, D. Examining Changes in Long-Term Neighborhood Housing Vacancy during the 2011 to 2014 U.S. National Recovery. J. Urban Aff. 2016, 38, 607–622. [Google Scholar] [CrossRef]
- Han, H.S. The Impact of Abandoned Properties on Nearby Property Values. Hous. Policy Debate 2014, 24, 311–334. [Google Scholar] [CrossRef]
- Han, H.S. Exploring Threshold Effects in the Impact of Housing Abandonment on Nearby Property Values. Urban Aff. Rev. 2019, 55, 772–799. [Google Scholar] [CrossRef]
- Deng, C.; Ma, J. Viewing urban decay from the sky: A multi-scale analysis of residential vacancy in a shrinking U.S. city. Landsc. Urban Plan. 2015, 141, 88–99. [Google Scholar] [CrossRef]
- Yamada, H.; Uosaki, K. National Report of Japan. In Proceedings of the Third United Nations Conference on Housing and Sustainable Urban Development, Quito, Ecuador, 17–20 October 2007; pp. 1–15. [Google Scholar]
- Martinez-Fernandez, C.; Audirac, I.; Fol, S.; Cunningham-Sabot, E. Shrinking Cities: Urban Challenges of Globalization. Int. J. Urban Reg. Res. 2012, 36, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Keenan, P.; Lowe, S.; Spencer, S. Housing abandonment in inner cities-the politics of low demand for housing. Hous. Stud. 1999, 14, 703–716. [Google Scholar] [CrossRef]
- Gu, D.; Newman, G.; Kim, J.H.; Park, Y.; Lee, J. Neighborhood decline and mixed land uses: Mitigating housing abandonment in shrinking cities. Land Use Policy 2019, 83, 505–511. [Google Scholar] [CrossRef]
- Wilson, W.; Cromarty, H.; Barton, C. Empty Housing; House of Commons Library: London, UK, 2018; 34p. [Google Scholar]
- The U.S. Census Bureau. Quarterly Residential Vacancies And Homeownership, First Quarter 2020. Available online: http://www.census.gov/housing/hvs/files/currenthvspress.pdf (accessed on 7 June 2020).
- The Government of the Hong Kong. Rating and Valuation Department (RVD), Hong Kong Property Review 2019. Available online: https://www.rvd.gov.hk/doc/en/PR_fullbook/PR2019.pdf (accessed on 10 June 2020).
- Muramatsu, N.; Akiyama, H. Japan: Super-aging society preparing for the future. Gerontologist 2011, 51, 425–432. [Google Scholar] [CrossRef]
- Arimura, M.; Ha, T.V.; Kimura, N.; Asada, T. Evacuation awareness and behavior in the event of a tsunami in an aging society: An experience from the 2018 Hokkaido Eastern Iburi earthquake. Saf. Sci. 2020, 131, 104906. [Google Scholar] [CrossRef]
- Kubo, T. Shrinking Suburbs in Tokyo. In Divided Tokyo; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 111–125. [Google Scholar]
- Park, J.I. A multilevel model approach for assessing the effects of house and neighborhood characteristics on housing vacancy: A case of Daegu, South Korea. Sustainability 2019, 11, 9–12. [Google Scholar] [CrossRef]
- Kobayashi, M. Housing and demographics: Experiences in Japan. Hous. Financ. Int. 2015, 32, 32–38. [Google Scholar]
- Hattori, K.; Kaido, K.; Matsuyuki, M. The development of urban shrinkage discourse and policy response in Japan. Cities 2017, 69, 124–132. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Y. Public housing provision and housing vacancies in Japan. J. Jpn. Int. Econ. 2019, 53, 101038. [Google Scholar] [CrossRef]
- Kobayashi, M. The Housing Market and Housing Policies in Japan; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 8133593557. [Google Scholar]
- Zhang, B. Why is japan’s housing vacancy rate so high a history of postwar housing policy. Soc. Sci. Jpn. J. 2020, 23, 65–77. [Google Scholar] [CrossRef]
- Nishiyama, H. A Problem of Vacant Housing in Local Cities: Utsunomiya City, Tochigi Prefecture Case Study. In The Rise in Vacant Housing in Post-Growth Japan; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 123–146. [Google Scholar]
- Yamashita, S.; Morimoto, A. Study on Occurrence Pattern of the Vacant Houses in the Local Hub City. J. City Plan. Inst. Jpn. 2015, 50, 932–937. [Google Scholar] [CrossRef]
- Ishikawa, M.; Matsuhashi, K.; Kanamori, Y.; Ariga, T. Method of grasping detailed regional distribution of vacant dwelling based on the number of dwellings and households. J. City Plan. Inst. Jap. 2017, 52, 689–695. [Google Scholar] [CrossRef]
- Ishikawa, M.; Matsuhashi, K.; Ariga, T.; Kanamori, Y.; Kurishima, H. Estimation of current and future distribution of vacant dwellings within municipalities—With a focus on the difference between the numbers of dwellings and households. J. City Plan. Inst. Jap. 2016, 51, 833–838. [Google Scholar]
- Miyazawa, H. Distribution of Vacant Homes in Tama City in the Tokyo Metropolitan Area: Estimation Using GIS and Small Area Statistics. In The Rise in Vacant Housing in Post-Growth Japan; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 87–109. [Google Scholar]
- OECD. HC3.1 Homeless population [estimates]. In Affordable Housing Database; OECD: Paris, France, 2021; pp. 1–12. [Google Scholar]
- FEANTSA and the Abbé Pierre Foundation. Sixth Overview of Housing Exclusion in Europe 2021. Available online: https://www.feantsa.org/public/user/Resources/News/6th_Overview_of_Housing_Exclusion_in_Europe_2021_EN.pdf (accessed on 8 March 2022).
- Haase, A.; Rink, D.; Grossmann, K.; Bernt, M.; Mykhnenko, V. Conceptualizing urban shrinkage. Environ. Plan. A 2014, 46, 1519–1534. [Google Scholar] [CrossRef]
- Haase, A.; Bernt, M.; Großmann, K.; Mykhnenko, V.; Rink, D. Varieties of shrinkage in European cities. Eur. Urban Reg. Stud. 2016, 23, 86–102. [Google Scholar] [CrossRef]
- Newman, G.; Gu, D.; Kim, J.H.; Bowman, A.O.M.; Li, W. Elasticity and urban vacancy: A longitudinal comparison of U.S. cities. Cities 2016, 58, 143–151. [Google Scholar] [CrossRef]
- Radzimski, A. Changing policy responses to shrinkage: The case of dealing with housing vacancies in Eastern Germany. Cities 2016, 50, 197–205. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, H.; Lan, H.; Zeng, S. Examining shrinking city of Detroit in the context of socio-spatial inequalities. Landsc. Urban Plan. 2018, 177, 350–361. [Google Scholar] [CrossRef]
- Morckel, V. Spatial characteristics of housing abandonment. Appl. Geogr. 2014, 48, 8–16. [Google Scholar] [CrossRef]
- Cohen, J.R. Abandoned housing: Exploring lessons from Baltimore. Hous. Policy Debate 2001, 12, 415–448. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use; Harvard University Press: Cambridge, MA, USA, 1964; ISBN 9780674729568. [Google Scholar]
- Muth, R.F. Cities and Housing: The Spatial Pattern of Urban Residential Land Use; University of Chicago Press: Chicago, IL, USA, 1969; ISBN 0226554139. [Google Scholar]
- Mills, E.S. Studies in the Structure of the Urban Economy; The Johns Hopkins Press: Baltimore, MD, USA, 1972. [Google Scholar]
- McCann, P. Modern Urban and Regional Economics, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Wheaton, W.C. Vacancy, Search, and Prices in a Housing Market Matching Model. J. Polit. Econ. 1990, 98, 1270–1292. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Gyourko, J. Urban decline and durable housing. J. Polit. Econ. 2005, 113, 345–375. [Google Scholar] [CrossRef]
- Morckel, V. Predicting abandoned housing: Does the operational definition of abandonment matter? Community Dev. 2014, 45, 122–134. [Google Scholar] [CrossRef]
- Newman, G.; Lee, R.J.; Gu, D.; Park, Y.; Saginor, J.; Van Zandt, S.; Li, W. Evaluating drivers of housing vacancy: A longitudinal analysis of large U.S. cities from 1960 to 2010. J. Hous. Built Environ. 2019, 34, 807–827. [Google Scholar] [CrossRef]
- Huuhka, S. Vacant residential buildings as potential reserves: A geographical and statistical study. Build. Res. Inf. 2016, 44, 816–839. [Google Scholar] [CrossRef]
- Jensen, J.O. Vacant Houses in Denmark: Problems, Localization and Initiatives. In Proceedings of the ENHR Conference 2017 Tirana, Tirana, Albania, 4–6 September 2016; pp. 1–13. [Google Scholar]
- Wilhelmsson, M.; Andersson, R.; Klingborg, K. Rent control and vacancies in Sweden. Int. J. Hous. Mark. Anal. 2011, 4, 105–129. [Google Scholar] [CrossRef]
- van den Berg, L.; Drewett, R.; Klaassen, L.H.; Rossi, A.; Vijverberg, C.H.T. Urban Europe a Study of Growth and Decline, 1st ed.; Pergamon Press: Oxford, UK, 1982; ISBN 0-08-023156-X. [Google Scholar]
- Weaver, R.; Bagchi-Sen, S.; Knight, J.; Frazier, A.E. Shrinking Cities; Routledge: Abingdon, UK, 2017; ISBN 9781315757582. [Google Scholar]
- Jeon, Y.; Kim, S. Housing abandonment in shrinking cities of East Asia: Case study in Incheon, South Korea. Urban Stud. 2020, 57, 1749–1767. [Google Scholar] [CrossRef]
- Mayumi, K.T. Aging Population, Vacant Dwellings and the Compatibility Problem Between Human and Exosomatic Populations. In Sustainable Energy and Economics in an Aging Population Lessons from Japan; Springer: Cham, Switzerland, 2020; pp. 123–141. [Google Scholar]
- Kubo, T.; Mashita, M. Why the Rise in Urban Housing Vacancies Occurred and Matters in Japan. In The Rise in Vacant Housing in Post-Growth Japan; Springer: Singapore, 2020; pp. 3–22. [Google Scholar]
- Seirin-Lee, S.; Nomata, M.; Mukunoki, M. Mathematical modeling and regionality-based optimal policy to reduce empty houses, Akiya, in Japan. Jpn. J. Ind. Appl. Math. 2020, 37, 365–382. [Google Scholar] [CrossRef]
- Buhnik, S. From Shrinking Cities to Toshi no Shukushō: Identifying Patterns of Urban Shrinkage in the Osaka Metropolitan Area. Berkeley Plan. J. 2011, 23, 132–155. [Google Scholar] [CrossRef]
- Appel, S.U.; Botti, D.; Jamison, J.; Plant, L.; Shyr, J.Y.; Varshney, L.R. Predictive analytics can facilitate proactive property vacancy policies for cities. Technol. Forecast. Soc. Change 2014, 89, 161–173. [Google Scholar] [CrossRef]
- Baba, H.; Asami, Y. Regional Differences in the Socio-economic and Built-environment Factors of Vacant House Ratio as a Key Indicator for Spatial Urban Shrinkage. Urban Reg. Plan. Rev. 2017, 4, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.; Han, J.; Lee, C. Factors contributing to residential vacancy and some approaches to management in Gyeonggi Province, Korea. Sustainability 2016, 8, 367. [Google Scholar] [CrossRef]
- OECD. Unemployment Rate. Available online: https://data.oecd.org/unemp/unemployment-rate.htm (accessed on 10 December 2021).
- Wuyts, W.; Sedlitzky, R.; Morita, M.; Tanikawa, H. Understanding and managing vacant houses in support of a material stock-type society-The case of Kitakyushu, Japan. Sustainability 2020, 12, 5363. [Google Scholar] [CrossRef]
- Kanayama, Y.; Sadayuki, T. What types of houses remain vacant? Evidence from a municipality in Tokyo, Japan. J. Jpn. Int. Econ. 2021, 62, 101167. [Google Scholar] [CrossRef]
- Fernandez, R.; Hofman, A.; Aalbers, M.B. London and New York as a safe deposit box for the transnational wealth elite. Environ. Plan. A 2016, 48, 2443–2461. [Google Scholar] [CrossRef]
- Baba, H.; Hino, K. Factors and tendencies of housing abandonment: An analysis of a survey of vacant houses in Kawaguchi City, Saitama. Japan Archit. Rev. 2019, 2, 367–375. [Google Scholar] [CrossRef]
- City of Sapporo Sapporo City General Transportation Plan Revised Edition—Part I: Basic Approach. Available online: https://www.city.sapporo.jp/sogokotsu/shisaku/sogokotsukeikaku/documents/01-01.pdf?fbclid=IwAR2RZvf8AA-Q6H2wvg8IHrUMwFlLi4gnKo8KC2qhukRmTCYCmL4iUi3cCsU (accessed on 20 November 2021).
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Khan, D.; Rossen, L.M.; Hamilton, B.E.; He, Y.; Wei, R.; Dienes, E. Hot spots, cluster detection and spatial outlier analysis of teen birth rates in the U.S., 2003–2012. Spat. Spatiotemporal. Epidemiol. 2017, 21, 67–75. [Google Scholar] [CrossRef]
- Peeters, A.; Zude, M.; Käthner, J.; Ünlü, M.; Kanber, R.; Hetzroni, A.; Gebbers, R.; Ben-Gal, A. Getis-Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput. Electron. Agric. 2015, 111, 140–150. [Google Scholar] [CrossRef]
- Rossi, F.; Becker, G. Creating forest management units with Hot Spot Analysis (Getis-Ord Gi*) over a forest affected by mixed-severity fires. Aust. For. 2019, 82, 166–175. [Google Scholar] [CrossRef]
- Mondal, S. Modeling the spatial pattern of household quality of living in West Bengal: An approach of hotspot and cluster analysis. Model. Earth Syst. Environ. 2020, 6, 833–851. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Boulesteix, A.-L.; Strimmer, K. Partial least squares: A versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 2006, 8, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Jia, J.; Deng, H.; Duan, J.; Zhao, J. Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method-A case study in Henan Province, China. Ecol. Econ. 2009, 68, 2818–2824. [Google Scholar] [CrossRef]
- Wold, S.; Johansson, E.; Cocchi, M. PLS: Partial Least Squares Projections to Latent Structures. 3D QSAR Drug Des. Theory Methods Appl. 1993, 1, 523–550. [Google Scholar]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Rajalahti, T.; Arneberg, R.; Berven, F.S.; Myhr, K.M.; Ulvik, R.J.; Kvalheim, O.M. Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemom. Intell. Lab. Syst. 2009, 95, 35–48. [Google Scholar] [CrossRef]
- Tran, T.N.; Afanador, N.L.; Buydens, L.M.C.; Blanchet, L. Interpretation of variable importance in Partial Least Squares with Significance Multivariate Correlation (sMC). Chemom. Intell. Lab. Syst. 2014, 138, 153–160. [Google Scholar] [CrossRef]
- Kvalheim, O.M. Variable importance: Comparison of selectivity ratio and significance multivariate correlation for interpretation of latent-variable regression models. J. Chemom. 2020, 34, e3211. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Onderka, M.; Wrede, S.; Rodný, M.; Pfister, L.; Hoffmann, L.; Krein, A. Hydrogeologic and landscape controls of dissolved inorganic nitrogen (DIN) and dissolved silica (DSi) fluxes in heterogeneous catchments. J. Hydrol. 2012, 450–451, 36–47. [Google Scholar] [CrossRef]
- Duan, L.; Xie, H.; Li, Z.; Yuan, H.; Guo, Y.; Xiao, X.; Zhou, Q. Use of partial least squares regression to identify factors controlling rice yield in Southern China. Agron. J. 2020, 112, 1502–1516. [Google Scholar] [CrossRef]
- Mukherjee, R.; Sengupta, D.; Sikdar, S.K. Selection of Sustainable Processes Using Sustainability Footprint Method: A Case Study of Methanol Production from Carbon Dioxide; Elsevier: Amsterdam, The Netherlands, 2015; Volume 36, ISBN 9780444634726. [Google Scholar]
- Nash, M.S.; Chaloud, D.J. Partial Least Square Analyses of Landscape and Surface Water Biota Associations in the Savannah River Basin. ISRN Ecol. 2011, 2011, 1–11. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, T.; Wang, Y.; Shi, Z. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environ. Impact Assess. Rev. 2015, 55, 45–53. [Google Scholar] [CrossRef]
- Vinzi, V.E.; Chin, W.W.; Henseler, J.; Wang, H. Handbook of Partial Least Squares; Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-32825-4. [Google Scholar]
- Pan, Y.; Zeng, W.; Guan, Q.; Yao, Y.; Liang, X.; Yue, H.; Zhai, Y.; Wang, J. Spatiotemporal dynamics and the contributing factors of residential vacancy at a fine scale: A perspective from municipal water consumption. Cities 2020, 103, 102745. [Google Scholar] [CrossRef]
- Nadalin, V.G. Residential Vacancy in City Center: The Case of São Paulo. Discussion Paper—Institute for Applied Economic Research (Ipea); 2014. Available online: http://repositorio.ipea.gov.br/bitstream/11058/5136/1/DiscussionPaper_201.pdf (accessed on 18 April 2020).
- Wang, K.; Immergluck, D. Housing vacancy and urban growth: Explaining changes in long-term vacancy after the US foreclosure crisis. J. Hous. Built Environ. 2019, 34, 511–532. [Google Scholar] [CrossRef]
- Accordino, J.; Johnson, G.T. Addressing the vacant and abandoned property problem. J. Urban Aff. 2000, 22, 301–315. [Google Scholar] [CrossRef]
- Wegmann, J. Residences without residents: Assessing the geography of ghost dwellings in big U.S. cities. J. Urban Aff. 2020, 42, 1103–1124. [Google Scholar] [CrossRef]
- Kubo, T. Homeownership by Single Women in Central Tokyo. In Divided Tokyo; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 67–85. [Google Scholar]
- Kubo, T.; Yui, Y. Transformation of the Housing Market in Tokyo since the Late 1990s: Housing Purchases by Single-person Households. Asian Stud. 2011, 3, 3–21. [Google Scholar] [CrossRef]
- Park, Y.; Newman, G.D.; Lee, J.E.; Lee, S. Identifying and comparing vacant housing determinants across South Korean cities. Appl. Geogr. 2021, 136, 102566. [Google Scholar] [CrossRef]
- Yoo, H.; Kwon, Y. Different Factors Affecting Vacant Housing According to Regional Characteristics in South Korea. Sustainability 2019, 11, 6913. [Google Scholar] [CrossRef]
- Filipovič Hrast, M.; Sendi, R.; Hlebec, V.; Kerbler, B. Moving House and Housing Preferences in Older Age in Slovenia. Housing, Theory Soc. 2019, 36, 76–91. [Google Scholar] [CrossRef]
- Jancz, A.; Trojanek, R. Housing Preferences of Seniors and Pre-Senior Citizens in Poland—A Case Study. Sustainability 2020, 12, 4599. [Google Scholar] [CrossRef]
- Andersson, E.K.; Abramsson, M.; Malmberg, B.O. Patterns of changing residential preferences during late adulthood. Ageing Soc. 2019, 39, 1752–1781. [Google Scholar] [CrossRef]
- Angelini, V.; Laferrère, A. Residential mobility of the European elderly. CESifo Econ. Stud. 2012, 58, 544–569. [Google Scholar] [CrossRef]
- Abramsson, M.; Andersson, E. Changing preferences with ageing—housing choices and housing plans of older people. Hous. Theory Soc. 2016, 33, 217–241. [Google Scholar] [CrossRef]
- OECD Housing Market. Available online: http://www.oecd.org/housing/data/affordable-housing-database/housing-market.htm (accessed on 20 October 2020).
- Sapporo City (b) Basic Resident Register Population. Available online: http://www.city.sapporo.jp/toukei/jinko/juuki/juuki.html#ku (accessed on 17 February 2021).
- Druta, O.; Ronald, R. Young adults’ pathways into homeownership in Tokyo: Shifting practices and meanings. Environ. Plan. A 2018, 50, 1092–1108. [Google Scholar] [CrossRef]
- Hirayama, Y. The role of home ownership in Japan’s aged society. J. Hous. Built Environ. 2010, 25, 175–191. [Google Scholar] [CrossRef]
- Andrade, K.; Nakano, H.; Sugiki, N.; Tamura, T. Influencing Factors on the Increase of Child-rearing Households. Procedia Eng. 2017, 198, 490–495. [Google Scholar] [CrossRef]
- Kuroda, Y. The effect of school quality on housing rents: Evidence from Matsue city in Japan. J. Jpn. Int. Econ. 2018, 50, 16–25. [Google Scholar] [CrossRef]
- Sapporo City (d) Sapporo City Statistics. Available online: https://www.city.sapporo.jp/toukei/tokeisyo/tokeisyo.html (accessed on 8 March 2021).
- Suzuki, T.; Muromachi, Y. Empirical Analysis on the Railroad Development Impact on Local Population Density in Japan. J. East. Asia Soc. Transp. Stud. 2010, 8, 1039–1052. [Google Scholar]
- Wang, Y.; Potoglou, D.; Orford, S.; Gong, Y. Bus stop, property price and land value tax: A multilevel hedonic analysis with quantile calibration. Land Use Policy 2015, 42, 381–391. [Google Scholar] [CrossRef]
- Mulliner, E.; Riley, M.; Maliene, V. Older people’s preferences for housing and environment characteristics. Sustainability 2020, 12, 5723. [Google Scholar] [CrossRef]
- Statistics Bureau of Japan Statistical Handbook of Japan 2020. Available online: http://www.stat.go.jp/data/handbook/ (accessed on 15 February 2021).
- Ohba, T.; Nakazono, M.; Ushijima, A.; Mishima, S. Detached housing utilized as shared houses: Establishment process and living style—case study in Yamaguchi Prefecture. JAPAN Archit. Rev. 2020, 3, 564–578. [Google Scholar] [CrossRef]
- JAMA. The Motor Industry of Japan. Available online: http://www.jama-english.jp/publications/The_Motor_Industry_of_Japan_2020.pdf (accessed on 7 October 2020).
- JMA Tables of Monthly Climate Statistics. Available online: http://ds.data.jma.go.jp/obd/stats/data/en/smp/index.html (accessed on 10 March 2021).
- Segú, M. The impact of taxing vacancy on housing markets: Evidence from France. J. Public Econ. 2020, 185, 104079. [Google Scholar] [CrossRef]
Year | Sapporo | Yokohama | Nagoya | Kyoto | Osaka | Kobe | Fukuoka | Kitakyushu | Kawasaki | Japan |
---|---|---|---|---|---|---|---|---|---|---|
1973 | 4.66 | 5.42 | 6.88 | 5.12 | 6.79 | 6.31 | 5.35 | 7.98 | 6.21 | 5.54 |
1978 | 6.82 | 6.46 | 10.68 | 8.36 | 10.55 | 9.37 | 8.96 | 8.45 | 7.63 | 7.56 |
1983 | 9.34 | 7.07 | 11.41 | 10.51 | 12.52 | 11.80 | 10.62 | 10.03 | 8.40 | 8.55 |
1988 | 11.21 | 6.78 | 11.65 | 11.40 | 13.91 | 11.26 | 11.57 | 12.38 | 7.33 | 9.38 |
1993 | 10.48 | 8.41 | 10.68 | 10.88 | 13.29 | 10.02 | 10.03 | 11.43 | 9.02 | 9.76 |
1998 | 11.98 | 9.96 | 12.64 | 13.59 | 15.91 | 14.40 | 9.96 | 12.07 | 10.85 | 11.47 |
2003 | 12.14 | 9.68 | 13.71 | 13.25 | 17.52 | 12.77 | 10.91 | 12.84 | 10.30 | 12.23 |
2008 | 13.76 | 9.66 | 13.18 | 14.12 | 16.67 | 13.50 | 14.65 | 15.30 | 10.13 | 13.14 |
2013 | 14.08 | 10.09 | 13.16 | 14.03 | 17.18 | 13.05 | 12.24 | 14.34 | 10.42 | 13.52 |
2018 | 11.93 | 9.71 | 12.71 | 12.91 | 17.07 | 13.32 | 10.54 | 15.80 | 9.49 | 13.60 |
VC * | 125,400 | 178,300 | 156,900 | 106,000 | 286,100 | 109,200 | 94,200 | 79,300 | 73,800 | 8,488,600 |
No | Variable | Description | Unit | Type | Min | Median | Mean | Max |
---|---|---|---|---|---|---|---|---|
Dependent variable | ||||||||
1 | zenVCrooms | Number of vacant dwellings | - | Int | 0 | 41.00 | 118.73 | 1457 |
Explanatory variable | ||||||||
Neighborhood characteristics | ||||||||
Geographic conditions | ||||||||
1 | ElevAv | Average elevation | m | Num | 2.30 | 20.01 | 41.99 | 375.51 |
2 | SlopeAv | Average slope | % | Num | 0.00 | 0.61 | 1.93 | 27.54 |
3 | FloodArea | Flood area | 100 m2 | Num | 0.00 | 0.00 | 38.75 | 625.06 |
Public facilities in 500 m radius area | ||||||||
4 | R5ParkingA | Car parking area | 1000 m2 | Num | 0.00 | 15.55 | 17.40 | 73.00 |
5 | R5Hosp | Number of hospitals | - | Int | 0 | 0 | 0.55 | 6 |
6 | R5Clinic | Number of clinics | - | Int | 0 | 5 | 7.18 | 182 |
7 | R5Welf | Number of welfares | - | Int | 0 | 2 | 3.02 | 16 |
8 | R5Cult | Number of cultural facilities | - | Int | 0 | 1 | 1.43 | 13 |
9 | R5RailS | Number of railway stations | - | Int | 0 | 0 | 0.29 | 13 |
10 | R5BusS | Number of bus stops | - | Int | 0 | 4 | 4.47 | 37 |
11 | R5Fuel | Number of fuel stations | - | Int | 0 | 0 | 0.69 | 6 |
12 | R5Univ | Number of universities | - | Int | 0 | 0 | 0.08 | 11 |
13 | R5HighS | Number of high schools | - | Int | 0 | 0 | 0.13 | 3 |
14 | R5Junior | Number of junior schools | - | Int | 0 | 0 | 0.29 | 3 |
15 | R5Ele | Number of elementary schools | - | Int | 0 | 1 | 0.56 | 3 |
16 | R5Kind | Number of kindergartens | - | Int | 0 | 0 | 0.40 | 3 |
Nearest facilities distance | ||||||||
17 | HubPark | Distance to nearest park | 100 m | Num | 0.02 | 1.45 | 1.64 | 10.06 |
18 | HubCultura | Distance to nearest cultural facility | 100 m | Num | 0.11 | 4.12 | 4.60 | 20.29 |
19 | HubHospita | Distance to nearest hospital | 100 m | Num | 0.07 | 6.10 | 7.13 | 36.11 |
20 | HubClinic | Distance to nearest clinic | 100 m | Num | 0.01 | 2.14 | 2.62 | 17.04 |
21 | HubWelfare | Distance to nearest welfare facility | 100 m | Num | 0.00 | 2.83 | 3.25 | 16.69 |
22 | HubRailS | Distance to nearest rail station | 100 m | Num | 0.25 | 10.39 | 16.82 | 167.32 |
23 | HubBusS | Distance to nearest bus stop | 100 m | Num | 0.02 | 1.87 | 2.06 | 10.23 |
24 | HubPking | Distance to nearest car parking area | 100 m | Num | 0.01 | 0.88 | 1.22 | 8.97 |
25 | HubFuelS | Distance to nearest fuel station | 100 m | Num | 0.14 | 5.28 | 6.25 | 42.93 |
26 | HubUniv | Distance to nearest university | 100 m | Num | 0.36 | 22.76 | 24.75 | 136.02 |
27 | HubHighs | Distance to nearest high school | 100 m | Num | 0.24 | 11.38 | 12.61 | 103.82 |
28 | HubJunior | Distance to nearest junior school | 100 m | Num | 0.10 | 7.03 | 7.38 | 23.53 |
29 | HubEle | Distance to nearest elementary school | 100 m | Num | 0.14 | 4.96 | 5.29 | 20.72 |
30 | HubKind | Distance to nearest kindergarten | 100 m | Num | 0.15 | 6.20 | 7.24 | 88.34 |
Infrastructure index | ||||||||
31 | RoadDen | Road density | km/km2 | Num | 0.00 | 23.49 | 22.27 | 46.27 |
32 | BusDen | Bus route density | km/km2 | Num | 0.00 | 4.62 | 14.16 | 377.75 |
33 | RailDen | Rail line density | km/km2 | Num | 0.00 | 0.00 | 0.41 | 16.68 |
Building characteristics | ||||||||
34 | ParkingA | Total car parking area in the buildings | 100 m2 | Num | 0.00 | 6.62 | 12.68 | 1276.94 |
35 | woodA | Total wood structure floor area | 1000 m2 | Num | 0.00 | 11.71 | 11.71 | 68.10 |
36 | semifireA | Total semi-fire structure floor area | 1000 m2 | Num | 0.00 | 1.00 | 1.54 | 23.29 |
37 | fireproofA | Total fireproof structure area | 1000 m2 | Num | 0.00 | 1.45 | 12.13 | 391.03 |
38 | AgeFloorAv | Average floor age area | year | Num | 1.06 | 26.58 | 25.98 | 90.00 |
39 | zenPriRoom | Total private apartments | - | Int | 0 | 128 | 128.17 | 758 |
40 | zenOffRoom | Total office rooms | - | Int | 0 | 5 | 10.65 | 544 |
Demographic characteristics | ||||||||
41 | Children | Total children | person | Int | 0 | 48 | 51.75 | 267 |
42 | Elderly | Total elderly | person | Int | 0 | 123 | 123.09 | 680 |
43 | HHowner | Total households that own dwelling | household | Int | 0 | 103 | 105.10 | 528 |
44 | HHsingle | Total single households | household | Int | 0 | 41 | 88.54 | 1363 |
Cluster | Min | Median | Mean | Max | Total Grids | Percentage |
---|---|---|---|---|---|---|
Hot-spot | 0 | 379 | 407.7 | 1457 | 737 | 17.5% |
Cold-spot | 0 | 5 | 15.41 | 231 | 1499 | 35.5% |
Random | 0 | 61 | 89.41 | 678 | 1983 | 47.0% |
# Components | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Hot-spot | |||||||||
VC. Exp | 56.32 | 72.61 | 78.30 | 81.15 | 82.47 | 82.71 | 82.87 | 82.96 | |
RMSE (CV) | 153.14 | 125.56 | 114.18 | 107.35 | 103.80 | 102.85 | 102.56 | 102.40 | |
R2 (CV) | 0.54 | 0.69 | 0.74 | 0.78 | 0.79 | 0.79 | 0.80 | 0.80 | |
RMSE (Test) | 89.15 | ||||||||
R2 (Test) | 0.89 | ||||||||
Cold-spot | |||||||||
VC. Exp | 22.03 | 33.52 | 38.99 | 42.89 | 44.09 | 45.06 | |||
RMSE (CV) | 21.33 | 20.39 | 20.04 | 19.42 | 19.11 | 19.00 | |||
R2 (CV) | 0.22 | 0.31 | 0.35 | 0.38 | 0.39 | 0.40 | |||
RMSE (Test) | 16.42 | ||||||||
R2 (Test) | 0.46 | ||||||||
Random | |||||||||
VC. Exp | 47.34 | 64.61 | 72.54 | 75.43 | 76.81 | 77.29 | 77.54 | 77.74 | 77.78 |
RMSE (CV) | 70.48 | 62.90 | 54.84 | 51.64 | 49.85 | 49.00 | 48.63 | 48.42 | 48.35 |
R2 (CV) | 0.45 | 0.59 | 0.68 | 0.71 | 0.73 | 0.74 | 0.74 | 0.74 | 0.74 |
RMSE (Test) | 45.24 | ||||||||
R2 (Test) | 0.72 |
No | Variable | Hot-Spot | Cold-Spot | Random | ||||||
---|---|---|---|---|---|---|---|---|---|---|
VIP | Sign | Rank | VIP | Sign | Rank | VIP | Sign | Rank | ||
1 | HHsingle | 3.61 | + | 1 | 2.62 | + | 1 | 3.17 | + | 1 |
2 | semifireA | 1.87 | + | 2 | 1.01 | + | 13 | |||
3 | Elderly | 1.61 | + | 3 | 1.25 | − | 8 | 1.53 | − | 4 |
4 | fireproofA | 1.44 | + | 4 | 1.72 | + | 2 | 1.64 | + | 3 |
5 | zenPriRoom | 1.44 | − | 5 | 1.24 | − | 9 | 1.47 | − | 6 |
6 | HHowner | 1.29 | − | 6 | 1.61 | − | 3 | 1.49 | − | 5 |
7 | Children | 1.27 | + | 7 | 1.02 | + | 14 | 1.71 | + | 2 |
8 | zenOffRoom | 1.24 | + | 8 | 1.11 | + | 11 | |||
9 | HubRailS | 1.18 | − | 9 | 1.01 | − | 15 | 1.02 | − | 12 |
10 | woodA | 1.16 | + | 10 | 1.31 | + | 7 | 1.07 | + | 9 |
11 | R5Clinic | 1.14 | − | 11 | 1.06 | + | 13 | 0.93 | − | 15 |
12 | HubPking | 1.11 | − | 12 | 1.24 | − | 10 | 1.03 | − | 11 |
13 | HubClinics | 1.06 | + | 13 | 1.09 | − | 12 | 1.05 | + | 10 |
14 | ParkingA | 1.00 | − | 14 | 1.40 | + | 5 | 1.00 | − | 14 |
15 | R5ParkingA | 1.44 | + | 4 | 1.17 | + | 8 | |||
16 | RoadDen | 1.38 | − | 6 | 1.22 | − | 7 | |||
17 | HubHighs | 0.98 | − | 16 | ||||||
18 | HubKind | 0.97 | − | 17 | ||||||
19 | ElevAv | 0.92 | + | 18 | ||||||
20 | HubUniv | 0.90 | − | 19 | ||||||
21 | R5BusS | 0.92 | − | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van, H.T.K.; Ha, T.V.; Asada, T.; Arimura, M. Vacancy Dwellings Spatial Distribution—The Determinants and Policy Implications in the City of Sapporo, Japan. Sustainability 2022, 14, 12427. https://doi.org/10.3390/su141912427
Van HTK, Ha TV, Asada T, Arimura M. Vacancy Dwellings Spatial Distribution—The Determinants and Policy Implications in the City of Sapporo, Japan. Sustainability. 2022; 14(19):12427. https://doi.org/10.3390/su141912427
Chicago/Turabian StyleVan, Ha Thi Khanh, Tran Vinh Ha, Takumi Asada, and Mikiharu Arimura. 2022. "Vacancy Dwellings Spatial Distribution—The Determinants and Policy Implications in the City of Sapporo, Japan" Sustainability 14, no. 19: 12427. https://doi.org/10.3390/su141912427
APA StyleVan, H. T. K., Ha, T. V., Asada, T., & Arimura, M. (2022). Vacancy Dwellings Spatial Distribution—The Determinants and Policy Implications in the City of Sapporo, Japan. Sustainability, 14(19), 12427. https://doi.org/10.3390/su141912427