Error-Tracking Iterative Learning Control for the Constrained Flexible-Joint Manipulator with Initial Errors
Abstract
:1. Introduction
2. Problem Formulation
2.1. System Description and Transformation
2.2. Construction of the Desired Error Trajectory
2.3. Fuzzy Logic Systems
3. Error-Tracking Iterative Learning Control Design
4. Convergence Analysis
5. Simulation
5.1. Numerical Simulation
5.2. Dynamic Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, D.; Dong, B.; Wang, S.; Zhao, L.; Wan, L.; Xu, Z.; Wu, Y. Research process of self-cleaning technologies on solar panels. Mater. Rev. 2015, 29, 111–115. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, T.; Liang, J.; Chen, J. Design and field test of a rover robot for antarctic based on renewable energy. J. Mech. Eng. 2013, 49, 21–30. [Google Scholar] [CrossRef]
- Wei, C.; Zhao, Y.; Zheng, Y.; Xie, L.; Smedley, K.M. Analysis and design of a nonisolated high step-down converter with coupled inductor and ZVS operation. IEEE Trans. Ind. Electron. 2022, 69, 9007–9018. [Google Scholar] [CrossRef]
- Tao, M.; Chen, Q.; He, X.; Xie, S. Fixed-time filtered adaptive parameter estimation and attitude control for quadrotor UAVs. IEEE Trans. Aerosp. Electron. Syst. 2022. ahead of print. [Google Scholar] [CrossRef]
- Feng, C.; Liang, B.; Li, Z.; Liu, W.; Wen, F. Peer-to-peer energy trading under network constraints based on generalized fast dual ascent. IEEE Trans. Smart Grid 2022. ahead of print. [Google Scholar] [CrossRef]
- Spong, M.; Vidyasagar, M. Robot Dynamics and Control; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Jin, M.; Lee, J.; Tsagarakis, N.G. Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Trans. Ind. Electron. 2017, 64, 1706–1715. [Google Scholar] [CrossRef]
- Ghodki, M.K. An infrared based dust mitigation system operated by the robotic arm for performance improvement of the solar panel. Sol. Energy 2022, 244, 343–361. [Google Scholar] [CrossRef]
- Yan, Z.; Lai, X.; Meng, Q.; Wu, M. A novel robust control method for motion control of uncertain single-link flexible-joint manipulator. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 1671–1678. [Google Scholar] [CrossRef]
- Benotsmane, R.; Dudás, L.; Kovács, G. Newly elaborated hybrid algorithm for optimization of robot arm’s trajectory in order to increase efficiency and provide sustainability in production. Sustainability 2021, 13, 8193. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Haghighi, A. Large-scale automated additive construction: Overview, robotic solutions, sustainability, and future prospect. Sustainability 2022, 14, 9782. [Google Scholar] [CrossRef]
- Lin, C.J.; Lukodono, R.P. Sustainable human–robot collaboration based on human intention classification. Sustainability 2021, 13, 5990. [Google Scholar] [CrossRef]
- Parrott, B.; Zanini, P.C.; Shehri, A.; Kotsovos, K.; Gereige, I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol. Energy 2018, 171, 526–533. [Google Scholar] [CrossRef]
- Cammarata, A. Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems. Mech. Mach. Theory 2015, 83, 175–186. [Google Scholar] [CrossRef]
- Gregorio, R.D.; Sinatra, R. Singularity curves of a parallel pointing system. Meccanica 2002, 37, 255–268. [Google Scholar] [CrossRef]
- Kim, J.; Croft, E.A. Full-state tracking control for flexible joint robots with singular perturbation techniques. IEEE Trans. Control. Syst. Technol. 2019, 27, 63–73. [Google Scholar] [CrossRef]
- Ling, S.; Wang, H.; Liu, P.X. Adaptive fuzzy tracking control of flexible-joint robots based on command filtering. IEEE Trans. Ind. Electron. 2020, 67, 4046–4055. [Google Scholar] [CrossRef]
- Wei, C.; Xu, J.; Chen, Q.; Song, C.; Qiao, W. Full-order sliding-mode current control of permanent magnet synchronous generator with disturbance rejection. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022. ahead of print. [Google Scholar] [CrossRef]
- Arimoto, S. Learning control theory for robotic motion. Int. J. Adapt. Control. Signal Process. 1990, 4, 543–564. [Google Scholar] [CrossRef]
- Chi, R.; Hui, Y.; Chien, C.J.; Huang, B.; Hou, Z. Convergence analysis of sampled-data ILC for locally lipschitz continuous nonlinear nonaffine systems with nonrepetitive uncertainties. IEEE Trans. Autom. Control 2021, 66, 3347–3354. [Google Scholar] [CrossRef]
- Shen, D.; Yu, X. Learning tracking over unknown fading channels based on iterative estimation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 48–60. [Google Scholar] [CrossRef]
- Jin, X. Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and angle constraints using iterative learning control. IEEE Trans. Cybern. 2019, 49, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yu, X.; Sun, M.; Wu, C.; Fu, Z. Adaptive repetitive learning control of PMSM servo systems with bounded nonparametric uncertainties: Theory and experiments. IEEE Trans. Ind. Electron. 2021, 68, 8626–8635. [Google Scholar] [CrossRef]
- Yu, M.; Li, C. Robust adaptive iterative learning control for discrete-time nonlinear systems with time-iteration-varying parameters. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1737–1745. [Google Scholar] [CrossRef]
- He, W.; Meng, T.; Zhang, S.; Liu, J.K.; Sun, C. Dual-loop adaptive iterative learning control for a timoshenko beam with output constraint and input backlash. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1027–1038. [Google Scholar] [CrossRef]
- Sun, M.; Zou, S. Adaptive learning control algorithms for infinite-duration tracking. IEEE Trans. Neural Netw. Learn. Syst. 2022. ahead of print. [Google Scholar] [CrossRef]
- Chien, C.J.; Hsu, C.T.; Yao, C.Y. Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors. IEEE Trans. Fuzzy Syst. 2004, 12, 724–732. [Google Scholar] [CrossRef]
- Sun, M.; Wang, D. Iterative learning control with initial rectifying action. Automatica 2002, 38, 1177–1182. [Google Scholar] [CrossRef]
- Xu, J.; Xu, J. On iterative learning from different tracking tasks in the presence of time-varying uncertainties. IEEE Trans. Syst. Man Cybern. Syst. 2004, 34, 589–597. [Google Scholar] [CrossRef]
- Sun, M.; Yan, Q. Error tracking of iterative learning control systems. Acta Autom. Sin. 2013, 39, 251–262. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, H.; Sun, M. Echo state network-based backstepping adaptive iterative learning control for strict-feedback systems: An error-tracking approach. IEEE Trans. Cybern. 2020, 50, 3009–3022. [Google Scholar] [CrossRef]
- Sun, M.; Wu, T.; Chen, L.; Zhang, G. Neural AILC for error tracking against arbitrary initial shifts. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2705–2716. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Zhang, J. Robust tracking of nonrepetitive learning control systems with iteration-dependent references. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 842–852. [Google Scholar] [CrossRef]
- Shen, M.; Wu, X.; Park, J.; Yi, Y.; Sun, Y. Iterative learning control of constrained systems with varying trial lengths under alignment condition. IEEE Trans. Neural Netw. Learn. Syst. 2021. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, D.; Xu, J. Adaptive iterative learning control for MIMO nonlinear systems performing iteration-varying tasks. J. Frankl. Inst. 2019, 356, 9206–9231. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Su, X. Adaptive iterative learning control of multiple autonomous vehicles with a time-varying reference under actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5512–5525. [Google Scholar] [CrossRef]
- Wang, S. Approximation-free control for nonlinear helicopters with unknown dynamics. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3254–3258. [Google Scholar] [CrossRef]
- Chen, M.; Ge, S.S.; How, B. Robust adaptive neural network control for a class of uncertain mimo nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 2010, 21, 796. [Google Scholar] [CrossRef]
- Xie, S.; Chen, Q.; He, X. Predefined-time approximation-free attitude constraint control of rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 2022. ahead of print. [Google Scholar] [CrossRef]
- El-Sapa, S.; Lotfy, K.; El-Bary, A. A novel magneto-electron-hole model for optical-thermo-diffusion processes in semiconducting material with variable thermal conductivity. Silicon 2022. ahead of print. [Google Scholar] [CrossRef]
- Zhang, C.; Na, J.; Wu, J.; Chen, Q.; Huang, Y. Proportional-integral approximation-free control of robotic systems with unknown dynamics. IEEE/ASME Trans. Mechatronics 2022, 26, 2226–2236. [Google Scholar] [CrossRef]
- Wang, S.; Yu, H.; Yu, J.; Na, J.; Ren, X. Neural-network-based adaptive funnel control for servo mechanisms with unknown dead-zone. IEEE Trans. Cybern. 2020, 50, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tong, S. Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 2017, 47, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Tee, K.P.; Ge, S.S.; Tay, E.H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 2009, 45, 918–927. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Tong, S.; Chen, X.; Li, D. Adaptive control-based barrier Lyapunov Functions for a class of stochastic nonlinear systems with full state constraints. Automatica 2018, 87, 83–93. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Li, D.; Tong, S.; Wang, Z. Barrier Lyapunov function-based adaptive fuzzy FTC for switched systems and its applications to resistance-inductance-capacitance circuit system. IEEE Trans. Cybern. 2020, 50, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- Jin, X. Adaptive fixed-time control for MIMO Nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 2019, 64, 3046–3053. [Google Scholar] [CrossRef]
- He, W.; Yan, Z.; Sun, Y.; Ou, Y.; Sun, C. Neural-learning-based control for a constrained robotic manipulator with flexible joints. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5993–6003. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Su, S.; Xia, J.; Nguyen, V.T. Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2201–2209. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, Q.; Li, H.; Lu, R. Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties. IEEE Trans. Cybern. 2021. ahead of print. [Google Scholar] [CrossRef]
- Wang, L.X. A Course in Fuzzy Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1997. [Google Scholar]
- Sun, M. A Barbalat-like lemma with its application to learning control. IEEE Trans. Autom. Control 2009, 54, 2222–2225. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Chen, Q. Error-Tracking Iterative Learning Control for the Constrained Flexible-Joint Manipulator with Initial Errors. Sustainability 2022, 14, 12453. https://doi.org/10.3390/su141912453
Shi H, Chen Q. Error-Tracking Iterative Learning Control for the Constrained Flexible-Joint Manipulator with Initial Errors. Sustainability. 2022; 14(19):12453. https://doi.org/10.3390/su141912453
Chicago/Turabian StyleShi, Huihui, and Qiang Chen. 2022. "Error-Tracking Iterative Learning Control for the Constrained Flexible-Joint Manipulator with Initial Errors" Sustainability 14, no. 19: 12453. https://doi.org/10.3390/su141912453
APA StyleShi, H., & Chen, Q. (2022). Error-Tracking Iterative Learning Control for the Constrained Flexible-Joint Manipulator with Initial Errors. Sustainability, 14(19), 12453. https://doi.org/10.3390/su141912453