Characterization of Arunachali Yak: A Roadmap for Pastoral Sustainability of Yaks in India
Abstract
:1. Introduction
2. Methodology
2.1. Study Area Description
2.2. Sampling Technique and Traits Considered
2.3. Statistical Analysis
2.4. Evaluation of Production Systems
3. Results and Discussion
3.1. Morphological Traits
3.2. Morphometric Traits
3.3. Economic Traits
3.4. Tolerance to Extreme Climate Events
3.5. Prevailing Production Systems
3.5.1. Socio-Economic Status of Pastoralists
3.5.2. Migration Pattern
3.5.3. Husbandry Practices
3.5.4. ITK of Yak Pastoralists
3.5.5. Economic Utility
4. Threats to Arunachali Yak Conservation and Potential Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coppock, D.L.; Ellis, J.E.; Swift, D.M. Livestock Feeding Ecology and Resource Utilization in a Nomadic Pastoral Ecosystem. J. Appl. Ecol. 1986, 23, 573. [Google Scholar] [CrossRef]
- Körner, C.; Ohsawa, M. Mountain systems. In Ecosystems and Human Well-Being: Current State and Trends; Hassan, R., Scholes, N.A., Eds.; Island Press: London, UK, 2005; pp. 683–716. [Google Scholar]
- Sharma, V.P.; Köhler-Rollefson, I.; Morton, J. Pastoralism in India: A Scoping Study. 2003. Available online: https://assets.publishing.service.gov.uk/media/57a08ce2e5274a31e00014fa/ZC0181b.pdf (accessed on 5 August 2022).
- Sørbø, G.M. Pastoral ecosystems and the issue of scale. AMBIO 2003, 32, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, V. Pastoralists of Himalayas. J. Biodivers. 2013, 4, 83–113. [Google Scholar] [CrossRef]
- Sharifian, A.; Fernández-Llamazares, Á.; Wario, H.T.; Molnár, Z.; Cabeza, M. Dynamics of pastoral traditional ecological knowledge: A global state-of-the-art review. Ecol. Soc. 2022, 27, 14. [Google Scholar] [CrossRef]
- Dong, S.; Wen, L.; Liu, S.; Zhang, X.; Lassoie, J.P.; Yi, S.; Li, X.; Li, J.; Li, Y. Vulnerability of worldwide pastoralism to global changes and interdisciplinary strategies for sustainable pastoralism. Ecol. Soc. 2011, 16, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Liechti, K.; Biber, J.P. Pastoralism in Europe: Characteristics and challenges of highland-lowland transhumance. Rev. Sci. Tech. 2016, 35, 561–575. [Google Scholar] [CrossRef] [Green Version]
- Namgay, K.; Millar, J.; Black, R. The Future of Transhumants’ Sustainable Resource Use in Bhutan: Pressures and Policies. Front. Sustain. Food Syst. 2021, 5, 618351. [Google Scholar] [CrossRef]
- Sharma, A.; Parkash, O.; Uniyal, S.K. Moving away from transhumance: The case of Gaddis. Trees For. People 2022, 7, 100193. [Google Scholar] [CrossRef]
- Wangchuk, K.; Wangdi, J. Mountain pastoralism in transition: Consequences of legalizing Cordyceps collection on yak farming practices in Bhutan. Pastoralism 2011, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, G.; Paul, V.; Hannah, S.S.; Bam, J.; Das, P.J. Effect of climate change on yak production at high altitude. Indian J. Anim. Sci. 2016, 86, 621–626. [Google Scholar]
- Dorji, N.; Derks, M.; Groot Koerkamp, P.W.G.; Bokkers, E.A.M. Transition towards sustainable yak farming in Bhutan: Stakeholders’ viewpoints and recommendations for future steps. Int. J. Sustain. Agric. 2021, 20, 68–87. [Google Scholar] [CrossRef]
- Dorji, N.; Derks, M.; Dorji, P.; Koerkamp, P.W.G.G.; Bokkers, E. Herders’ and livestock professionals’ experiences on past and future developments in yak farming in Bhutan. In Proceedings of the WIAS Annual Conference 2020: Frontiers in Animal Sciences, De Werelt Conference Centre, Lunteren, Netherlands, 13–14 February 2020; Available online: https://www.wur.nl/upload_mm/2/a/6/5123d603-ccbd-4649-bc5e-4d097e79c497_WIAS%20annual%20conference%20proceedings%202020.pdf (accessed on 8 August 2022).
- Rodgers, C. Community engagement in pastoralist areas: Lessons from the public dialogue process for a new refugee settlement in Turkana, Kenya. Pastoralism 2021, 11, 26. [Google Scholar] [CrossRef]
- Biscarini, F.; Nicolazzi, E.; Alessandra, S.; Boettcher, P.; Gandini, G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet. 2015, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, D.S. Populations, Species, and Conservation Genetics. Encycl. Biodivers. 2001, 811–829. [Google Scholar] [CrossRef]
- Kour, A.; Niranjan, S.K.; Malayaperumal, M.; Surati, U.; Pukhrambam, M.; Sivalingam, J.; Kumar, A.; Sarkar, M. Genomic Diversity Profiling and Breed-Specific Evolutionary Signatures of Selection in Arunachali Yak. Genes 2022, 13, 254. [Google Scholar] [CrossRef]
- 20th Livestock Census, 2019: All India Report [WWW Document], n.d. Available online: https://ruralindiaonline.org/en/library/resource/20th-livestock-census-2019-all-india-report/ (accessed on 16 February 2022).
- Touchberry, R.W.; Lush, J.L. The Accuracy of Linear Body Measurements of Dairy Cattle. J. Dairy Sci. 1950, 33, 72–80. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 28; IBM Corp: Armonk, NY, USA, 2013.
- Chen, S.Y.; Huang, Y.; Zhu, Q.; Fontanesi, L.; Yao, Y.G.; Liu, Y.P. Sequence characterization of the MC1R gene in yak (Poephagus grunniens) breeds with different coat colors. J. Biotechnol. Biomed. 2009, 2009, 861046. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.Q.; Xu, X.; Luo, S.J. The genetics of brown coat color and white spotting in domestic yaks (Bos grunniens). Anim. Genet. 2014, 45, 652–659. [Google Scholar] [CrossRef]
- Ali, S. Yak. The cryophilic species of Baltistan; Ferozsons (Pvt.) Ltd.: Lahore, Pakistan, 2015. [Google Scholar]
- Simon, R.; Drögemüller, C.; Lühken, G. The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep. Genes 2022, 13, 832. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene 2002, 287, 3–10. [Google Scholar] [CrossRef]
- Vanvanhossou, S.F.U.; Scheper, C.; Dossa, L.H.; Yin, T.; Brügemann, K.; König, S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020, 21, 783. [Google Scholar] [CrossRef]
- De Melo, B.A.; de Gusmão Couto, A.; de Lima Silva, F.; Hongyu, K.; Teodózio de Araújo, F.C.; Mesquita da Silva, S.G.; Santos Rios, R.R.; dos Santos, M.T.; Bossi Fraga, A. Multivariate analysis of body morphometric traits in conjunction with performance of reproduction and milk traits in crossbred progeny of Murrah × Jafarabadi buffalo (Bubalus bubalis) in North-Eastern Brazil. PLoS ONE 2020, 15, e0231407. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, X.; Peng, W.; Zhong, J.; Jiang, M. Genome-Wide Association Study of Body Weight Trait in Yaks. Animals 2022, 12, 1855. [Google Scholar] [CrossRef]
- Peng, X.W.; Ou, Y.X. The ecological adaptability of wild yak (Bos mutus). Ecol. Domest. Anim. 1999, 20, 20–23. [Google Scholar]
- Liang, C.N.; Yao, J.; Yang, B.H. The resources value and protectionstrategy of wild yak. Chin. Wildl. 2005, 25, 6–7. [Google Scholar]
- Singh, T.P.; Deshwal, G.K.; Bam, J.; Paul, V. A Comparative Appraisal of Traditional “Ghee” Derived From the Three Genotypes (Arunachali Yak, Yak–Cow Hybrid, and Cow) Reared Under Semi-Intensive Conditions. Eur. J. Lipid Sci. Technol. 2021, 124, 210010. [Google Scholar] [CrossRef]
- Zhang, R.C. Yak of China; Gansu Science and Technology Publshing House: Lanzhou, China, 1989; pp. 1–98. [Google Scholar]
- Dong, Q.M.; Zhao, X.Q.; Wu, G.L.; Chang, X.F. Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China. Environ Earth Sci. 2015, 73, 2497–2503. [Google Scholar] [CrossRef]
- Pal, R. YAK (Poephagus grunniens L.) of India. Anim. Genet. Resour. Inf. 1993, 12, 59–67. [Google Scholar] [CrossRef]
- Pandey, N.K.; Somvanshi, S.P.S.; Kumar, S.; Prakash, B.; Singh, C.K. Yak rearing practices by (Brokpa) pastoralist of Tawang Arunachal Pradesh. J. Entomol. Zool. Stud. 2020, 8, 1067–1071. [Google Scholar]
- Das, P.J.; Bam, J.; Paul, V.; Medhi, D.; Roy, A.N.; Deb, S.M. The Yak Wool; ICAR-National Research Centre on Yak Publication: Dirang, India, 2018; pp. 1–108. [Google Scholar]
- Radclyffe-Thomas, N. Profit and purpose: The case for sustainable luxury fashion. In Proceedings of the 20th Annual Conference IFFTI Fashion Futures Conference Proceedings; Donghua University: Shanghai, China, 2018; pp. 263–270. [Google Scholar]
- Braddock-Clarke, S. Lofty Ambition: Fibre from the Roof of the World; Selvedge: London, UK, 2017; pp. 74–79. [Google Scholar]
- Albarran-Portillo, B.; Pollott, G.E. The relationship between fertility and lactation characteristics in Holstein cows on United Kingdom commercial dairy farms. J. Dairy Sci. 2013, 96, 635–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.; Yi, S.; Joshi, S.; Bisht, N. (Eds.) Yak on the Move: Transboundary Challenges and Opportunities for Yak Raising in a Changing Hindu Kush Himalayan Region; ICIMOD: Kathmandu, Nepal, 2016. [Google Scholar]
- Available online: https://www.firstpost.com/india/nearly-300-yaks-died-of-starvation-since-dec-2018-due-to-heavy-snowfall-in-north-sikkim-district-says-official-6619381.html (accessed on 24 August 2022).
- Das, P.J.; Deori, S.; Deb, S.M. Arunachali Yak; ICAR-National Research Centre on Yak: Dirang, India, 2016; pp. 1–199. [Google Scholar]
- ICAR. Annual Report 2020; ICAR-National Research Centre on Yak: Dirang, Arunachal Pradesh, India, 2020; pp. 1–50. [Google Scholar]
- Wiener, G.; Ruijun, L.; Jianlin, H. The Yak. The Regional Office for Asia and the Pacific; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2011. [Google Scholar]
- Amare, A.; Simane, B.; Nyangaga, J.; Defisa, A.; Hamza, D.; Gurmessa, B. Index-based livestock insurance to manage climate risks in Borena zone of southern Oromia, Ethiopia. Clim. Risk Manag. 2019, 25, 100191. [Google Scholar] [CrossRef]
- Smith, K.; Barrett, C.B.; Box, P.W. Participatory Risk Mapping for Targeting Research and Assistance: With an Example from East African Pastoralists. World Dev. 2000, 28, 1945–1959. [Google Scholar] [CrossRef]
- Greiner, R.; Bliemer, M.; Ballweg, J. Design considerations of a choice experiment to estimate likely participation by north Australian pastoralists in contractual biodiversity conservation. J. Choice Model. 2014, 10, 34–45. [Google Scholar] [CrossRef]
Features | Male | Female | ||
---|---|---|---|---|
Categories | % Animals | Categories | % Animals | |
General body appearance | ||||
Hump | Large | 21% | Large | 1.5% |
Medium | 72% | Medium | 9% | |
Small | 10.5% | Small | 89.5% | |
Dewlap | Dewlap present | 46% | Dewlap present | 16% |
Naval flap | Large | 3.5% | NA | |
Medium | 36.5% | |||
Small | 60% | |||
Penis sheath flap | Large | 40.5% | NA | |
Medium | 54% | |||
Small | 5.5% | |||
Basic temperament | Docile | 71% | Docile | 81.5% |
Moderate | 15.5% | Moderate | 18.5% | |
Wild/aggressive | 13.5% | Wild/aggressive | 1.5% | |
Colour | ||||
Coat colour | Black | 84.5% | Black | 86% |
Dark Brown | 7.25% | Dark Brown | 6.5% | |
Light Brown | 6.25% | Light Brown | 6.75% | |
White brown | 0.75% | White brown | 0.25% | |
White | 0.75% | White | Nil | |
Grey | 0.5% | Grey | Nil | |
Coat pattern | Black hair | 86% | Black hair | 83% |
Brown hair | 7.5% | Brown hair | 9% | |
White brown hair | 2.5% | White brown hair | 6% | |
Black hair with white forehead | 1% | Black hair with white forehead | 0.75% | |
Black with white face | 0.5% | Black with white face | 0.25% | |
Black with white hump | 0.5% | Black with white hump | Nil | |
Black with white strip from hump to tail | 0.5% | Black with white strip from hump to tail | 0.5% | |
Black and white | 0.5% | Black and white | 0.5% | |
Skin colour | Black | 87% | Black | 87% |
Brown | 8.25% | Brown | 9% | |
White | 2% | White | 2% | |
Black and white | 1.50% | Black and white | 1% | |
Grey | 0.50% | Grey | Nil | |
Black and ash | 0.25% | Black and ash | 0.25% | |
White and brown | 0.50% | White and brown | 0.50% | |
Pink | 0.50% | Pink | 0.25% | |
Muzzle | Black | 86.5% | Black | 86.5% |
White | 10.25% | White | 9% | |
Brown | 1.75% | Brown | 2.75% | |
Grey | 1% | Grey | 1% | |
White brown | 0.5% | White brown | 0.75% | |
Eyelids | Black | 93% | Black | 93% |
White | 3% | White | 4% | |
Brown | 2% | Brown | 1.50% | |
Grey | 1% | Grey | 0.75% | |
Right black/left white | 0.25% | Right black/left white | 0.25% | |
Right white/left black | 0.25% | Right white/left black | 0.25% | |
Pink | 0.50% | Pink | 0.25% | |
Tail switch | Black | 77.5% | Black | 78.5% |
White | 12.5% | White | 9.5% | |
Brown | 5.5% | Brown | 6.5% | |
White brown | 0.75% | White brown | 1.75% | |
Grey | 0.75% | Grey | 0.75% | |
Black and white | 3% | Black and white | 3% | |
Hoofs | Black | 79.50% | Black | 80% |
White | 10% | White | 12.50% | |
Brown | 2% | Brown | 4% | |
Grey | 1% | Grey | 1.50% | |
Right leg black and left leg white | 6.50% | Right leg black and left leg white | 1.50% | |
Only right Leg white and all black | 1% | Only right leg white and all black | 0.50% | |
Facial Description | ||||
Forehead width | 24.5 cm | 18 cm | ||
General description | Poll prominent | 94% | Poll prominent | 90% |
Convex head | 100% | Convex head | 100% | |
Ear Length | 13.5 cm | 11.5 cm | ||
Ear Orientation | Horizontal dropping | 99% | Horizontal dropping | 99% |
1% | 1% | |||
Horns | ||||
Colour | Black | 99% | Black | 99.5% |
Other | 1% | Other | 0.5% | |
Size | 31.5 cm | 21 cm | ||
Shape | S-shaped | 9.5% | S-shaped | 6.5% |
Straight | 17% | Straight | 8.5% | |
Curved | 73.5% | Curved | 85% | |
Orientation | Lateral pointing tip | 10.86% | ||
Inward pointing tip | 11.44% | |||
Upward pointing tip | 12.82% | |||
Downward pointing tip | 8.94% | |||
Forward pointing tip | 39.11% | |||
Backward pointing tip | 16.83% | |||
Udder | ||||
Shape | NA | Bowl | 27.5% | |
Round | 29.5% | |||
Trough | 43% | |||
Udder size | NA | Large | 15.5% | |
Medium | 70% | |||
Small | 14.5% | |||
Teat shape | NA | Cylindrical | 87% | |
Funnel | 4.5% | |||
Pear | 13.5% |
Body Measurements | Male (Mean ± S.D.) | Female (Mean ± S.D.) |
---|---|---|
Chest girth (cm) | 169.5 ± 10.6 | 143 ± 8.68 |
Body length (cm) | 159.5 ± 22.15 | 135 ± 5.6 |
Height at withers (cm) | 111 ± 5.75 | 94 ± 5.9 |
Region | N | Mean ± S.E. (in kg) | p-Value |
---|---|---|---|
Tawang | 30 | 0.974 ± 0.006 | 0.034 * |
West Kameng | 30 | 1.041 ± 0.030 | |
Total | 60 | 1.007 ± 0.016 |
Dairy Performance Parameters | Mean ± S.D. |
---|---|
Daily milk yield (kg) | 1.01 ± 1.14 |
Peak milk yield (kg) | 129 ± 0.15 |
Days to reach peak yield (months) | 2.5 |
Lactation length (months) | 6 ± 0.5 |
Lactation milk yield (kg) | 185 ± 24 |
Fat% | 7.45 ± 1.25 |
SNF% | 11.5 ± 1.83 |
Productive life span (months) | 142 ± 13.5 |
Dry period (days) | 355 ± 23 |
Percentage of animals in different lactations | 19 |
Hair/Fibre Characteristics | Male | Female | ||
---|---|---|---|---|
Hair Production (Coarse Hairs) | ||||
Age at clipping (months) | 12–18 | 12–18 | ||
Weight of clipping (kg) | 1.65 ± 0.5 | 1.15 ± 0.5 | ||
Hair fibre proportions | Long | 1.5% | Long | 0.75% |
Medium | 94.25% | Medium | 94.5% | |
Short | 4.25% | Short | 4.75% | |
Hair diameter (microns) | 50–100 | 50–100 | ||
Hair texture | Straight | 82.5% | Straight | 86.5% |
Curly | 17.5% | Curly | 13.5% | |
Down Fibre (Undercoat Production) | ||||
Age at clipping (months) | 12–18 | 12–18 | ||
Weight of clipping (kg) | 0.5 ± 0.15 | 0.45 ± 0.15 | ||
Hair length (mm) | Short | (35–50) | Short | (35–50) |
Hair diameter (microns) | 16–20 | 16–20 |
Parameters | Male (Mean ± S.D.) | Female (Mean ± S.D.) | ||
---|---|---|---|---|
Birth weight (kg) | 13.8 ± 0.71 | 13.23 ± 0.63 | ||
Pre-weaning weight (kg) | 54.62 ± 1.50 | 48.5 ± 1.48 | ||
12-month weight (kg) | 110.25 ± 2.28 | 98 ± 2.46 | ||
24-month weight (kg) | 208.65 ± 3.45 | 169.5 ± 3.57 | ||
Weight at first mating (kg) | NA | 228 ± 5.90 | ||
Weight at first calving (kg) | NA | 234.24 ± 6.80 | ||
Adult weight (kg) | Summer | Winter | Summer | Winter |
416 ± 24.75 | 315 ± 12.48 | 261.5 ± 12.46 | 206.00 ± 12.00 |
Adult Male | Adult Female | ||
---|---|---|---|
Age at first mounting Age at first mating | 24 months 34–36 months | Age at 1st oestrous | 34–36 months |
Oestrous cycle duration | 21 days | ||
Oestrous duration | 12 h | ||
Age at 1st mating | 34–36 months | ||
Age at 1st calving | 43–45 months | ||
The interval from calving to conception | 90–100 days | ||
Calving interval | 510 days | ||
Gestation length | 263 days | ||
No of calving | 8–9 | ||
Twinning percentage | 0.25–0.5% | ||
Dystocia percentage | 7.5% | ||
Placental retention | 12% | ||
Abortions | 8.5% | ||
Stillbirths | 5% | ||
Post gestational mortality | 4% |
Housing | At Farmers’ Household | During Migration |
---|---|---|
Open | 85.5% | 100% |
Closed | 14.5% | |
Kutcha | 97% | 100% |
Pucca | 3% | |
Separate | 97% | 100% |
Part of the residence | 3% | |
Kutcha floor | 57% | 100% |
Pucca floor | 43% | |
Full-walled | 75% | 100% |
Half-walled | 25% | |
Well ventilated: yes/no | No | No |
Very clean sanitary condition of the stall: yes/no | No | No |
Pucca drain for urine to drain out: yes/no | No | No |
Feed | Components |
---|---|
Seeds/grains | Maize, rice, wheat |
Others | Atta, rice polish, wheat bran |
Feeding: mixing with fodder/alone | Both mixing and alone |
Cakes/concentrate | No |
Feeding: soaked/cooked/raw | Raw and soaked |
Fodder | Constituents | |
---|---|---|
Green Fodder | Dry Fodder | |
Grown | ||
Yes | 82% | |
No | 18% | 100% |
Winter availability | ||
Yes | 16.5% | |
No | 65% | 100% |
Summer availability | ||
Yes | 82% | |
No | 18% | 100% |
Chaffed/unchaffed | Chaffed | Unchaffed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.J.; Kour, A.; Deori, S.; Begum, S.S.; Pukhrambam, M.; Maiti, S.; Sivalingam, J.; Paul, V.; Sarkar, M. Characterization of Arunachali Yak: A Roadmap for Pastoral Sustainability of Yaks in India. Sustainability 2022, 14, 12655. https://doi.org/10.3390/su141912655
Das PJ, Kour A, Deori S, Begum SS, Pukhrambam M, Maiti S, Sivalingam J, Paul V, Sarkar M. Characterization of Arunachali Yak: A Roadmap for Pastoral Sustainability of Yaks in India. Sustainability. 2022; 14(19):12655. https://doi.org/10.3390/su141912655
Chicago/Turabian StyleDas, Pranab Jyoti, Aneet Kour, Sourabh Deori, Safeeda Sultana Begum, Martina Pukhrambam, Sanjit Maiti, Jayakumar Sivalingam, Vijay Paul, and Mihir Sarkar. 2022. "Characterization of Arunachali Yak: A Roadmap for Pastoral Sustainability of Yaks in India" Sustainability 14, no. 19: 12655. https://doi.org/10.3390/su141912655
APA StyleDas, P. J., Kour, A., Deori, S., Begum, S. S., Pukhrambam, M., Maiti, S., Sivalingam, J., Paul, V., & Sarkar, M. (2022). Characterization of Arunachali Yak: A Roadmap for Pastoral Sustainability of Yaks in India. Sustainability, 14(19), 12655. https://doi.org/10.3390/su141912655