Is the Soil-Cement Brick an Ecological Brick? An Analysis of the Life Cycle Environmental and Energy Performance of Masonry Walls
Abstract
:1. Introduction
2. Methodology
2.1. Scope
2.2. Life Cycle Inventory (LCI)
2.2.1. Soil-Cement Brick
Item | Flow Type | Value | Unit | Source |
---|---|---|---|---|
Sand | Elementary | 0.497 | kg | [39,41,42,43] |
Clay | Elementary | 0.331 | kg | |
Cement | Intermediary | 0.081 | kg | |
Water | Intermediary | 0.091 | kg | |
Electricity (sieving/crushing) | Intermediary | 0.077 | Wh | [39,41,42], [a] |
Electricity (mixing) | Intermediary | 0.462 | Wh | |
Electricity (pressing) * | Intermediary | 1.11 | Wh |
2.2.2. Ceramic Block
2.2.3. Concrete Block
2.2.4. Masonry Wall Inventory
2.3. Life Cycle Impact Assessment (LCIA)
2.4. Sensitivity Analysis
3. Results
3.1. Environmental and Energy Performance
3.2. Sensitivity Analysis
3.2.1. Hotspots
3.2.2. Finish Coating Layer
3.2.3. Transport
4. Discussion
4.1. Benchmarking
4.2. Scale-up
4.3. Multifunctionality
4.4. Research Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Item | Intermediate Flows in Ecoinvent v3.6 |
---|---|
Material | |
Portland cement | Cement, Portland {BR}| cement production, Portland | APOS, U |
BFS cement | Cement, blast furnace slag 35–70% {BR}| cement production, blast furnace slag 35–70% | APOS, U |
Cement mortar | Cement mortar {RoW}| production | APOS, U |
Concrete block | Concrete block {BR}| concrete block production | APOS, U |
Water | Tap water {BR}| market for tap water | APOS, U |
Steel welded mesh | Steel, low-alloyed, hot rolled {RoW}| production | APOS, U + Wire drawing, steel {RoW}| processing | APOS, U |
PVA glue | Vinyl acetate {RoW}| production | APOS, U |
Resin coating | Acrylic varnish, without water, in 87.5% solution state {RoW}| acrylic varnish production, product in 87.5% solution state | APOS, U |
Energy supply | |
Electricity | Electricity, low voltage {BR-North-eastern grid}| market for electricity, low voltage | APOS, U |
Diesel | Diesel, burned in building machine {GLO}| processing | APOS, U |
Wood | Wood chips, dry, measured as dry mass {RoW}| wood chips production, from industry | APOS, U |
Natural gas | Heat, central or small-scale, natural gas {RoW}| market for heat, central or small-scale, natural gas | APOS, U |
Consumable | |
Lubricating oil | Lubricating oil {RoW}| production | APOS, U |
Waste for treatment | |
Wood ash waste | Wood ash mixture, pure {RoW}| treatment of, sanitary landfill | APOS, U |
Logistics | |
Transport | Transport, freight, lorry 16–32 metric ton, euro5 {RoW}| market for transport, freight, lorry 16–32 metric ton, EURO5 | APOS, U * |
Indicator | Masonry Technology | Brick or Block Raw Materials | Brick or Block Manufacturing | Joint and Link with Column | Total |
---|---|---|---|---|---|
GWP (kg CO2 eq) | SC | 11.4 | 0.1 | 1.7 | 13.2 |
CE | 0.9 | 26.3 | 5.8 | 33.0 | |
CO | 9.1 | 0.9 | 9.9 | 19.9 | |
CED (MJ) | SC | 64.9 | 2.5 | 41.9 | 109.4 |
CE | 13.0 | 120.2 | 45.0 | 178.1 | |
CO | 71.9 | 21.1 | 76.4 | 169.4 | |
MRS (kg Cu eq) | SC | 0.612 | 0.000 | 0.019 | 0.632 |
CE | 0.956 | 0.015 | 0.049 | 1.021 | |
CO | 0.027 | 0.001 | 0.082 | 0.110 | |
FRS (kg oil eq) | SC | 1.126 | 0.030 | 0.841 | 1.997 |
CE | 0.278 | 1.152 | 0.815 | 2.246 | |
CO | 1.344 | 0.262 | 1.384 | 2.989 | |
WF (L) | SC | 62.9 | 4.5 | 36.9 | 104.4 |
CE | 15.8 | 28.7 | 22.2 | 66.8 | |
CO | 52.2 | 20.7 | 36.9 | 109.8 |
Scenario | GWP | CED | MRS | FRS | WF | |||
---|---|---|---|---|---|---|---|---|
Total | Fossil | Biomass | ||||||
(kg CO2 eq) | (MJ) | (kg Cu eq) | (kg Oil eq) | (L) | ||||
SA | SC: manual press, PVA glue | 13.1 | 107.7 | 90.5 | 8.2 | 0.631 | 1.977 | 101.3 |
B | SC: hydraulic press, PVA glue | 13.2 | 109.4 | 91.4 | 8.5 | 0.632 | 1.997 | 104.4 |
SA | SC: hydraulic press, PVA mortar | 12.0 | 74.2 | 58.8 | 8.2 | 0.628 | 1.284 | 75.1 |
SA | CE: reforested wood | 10.2 | 178.1 | 90.2 | 67.0 | 1.021 | 2.246 | 66.8 |
B | CE: reforested and native wood | 33.0 | 178.1 | 90.2 | 67.0 | 1.021 | 2.246 | 66.8 |
SA | CE: native wood | 53.3 | 178.1 | 90.2 | 67.0 | 1.021 | 2.246 | 66.8 |
SA | CE: natural gas | 22.3 | 315.4 | 308.2 | 7.2 | 1.024 | 6.656 | 50.0 |
B | CO: clinker cement | 19.9 | 169.4 | 137.1 | 18.4 | 0.110 | 2.989 | 109.8 |
SA | CO: clinker and BFS cement | 16.7 | 156.5 | 137.1 | 18.4 | 0.213 | 2.757 | 107.6 |
Scenario | GWP | CED | MRS | FRS | WF | |
---|---|---|---|---|---|---|
(kg CO2 eq) | (MJ) | (kg Cu eq) | (kg Oil eq) | (L) | ||
B | SC: baseline | 13.2 | 109.4 | 0.632 | 1.997 | 104.4 |
SA | SC: acrylic resin | 15.6 | 150.5 | 0.832 | 2.796 | 140.4 |
SA | SC: mortar | 28.9 | 230.7 | 0.755 | 4.196 | 156.2 |
B | CE: baseline | 33.0 | 178.1 | 1.021 | 2.246 | 66.8 |
SA | CE: mortar | 64.5 | 420.7 | 1.267 | 6.644 | 170.5 |
B | CO: baseline | 19.9 | 169.4 | 0.110 | 2.989 | 109.8 |
SA | CO: mortar | 35.7 | 290.7 | 0.233 | 5.188 | 161.7 |
Indicator | SC Masonry | Transport | CE Masonry | Transport | CO Masonry | Transport | |||
---|---|---|---|---|---|---|---|---|---|
10 km | 50 km | 10 km | 50 km | 10 km | 50 km | ||||
GWP (kg CO2 eq) | 15.6 | 0.6 | 3.0 | 64.5 | 0.8 | 3.9 | 35.7 | 0.9 | 4.4 |
CED (MJ) | 150.5 | 9.6 | 47.9 | 420.7 | 12.3 | 61.3 | 290.7 | 13.9 | 69.3 |
MRS (kg Cu eq) | 0.8 | 0.0 | 0.0 | 1.3 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 |
FRS (kg oil eq) | 2.8 | 0.2 | 1.0 | 6.6 | 0.3 | 1.3 | 5.2 | 0.3 | 1.5 |
WF (L) | 140.4 | 1.1 | 5.3 | 170.5 | 1.4 | 6.8 | 161.7 | 1.5 | 7.7 |
References
- Darko, A.; Chan, A.P. Review of barriers to green building adoption. Sustain. Dev. 2017, 25, 167–179. [Google Scholar] [CrossRef]
- Torgal, F.P.; Jalali, S. A Sustentabilidade dos Materiais de Construção [The Sustainability of Building Materials], 2nd ed.; TecMinho: Braga, Portugal, 2010. [Google Scholar]
- United Nations Environment Programme (UNEP). Buildings and Climate Change: Summary for Decision-Makers. Sustainable Buildings & Climate Initiative. 2009. Available online: https://europa.eu/capacity4dev/unep/documents/buildings-and-climate-change-summary-decision-makers (accessed on 18 September 2022).
- Javadabadi, M.T.; Kristiansen, D.L.; Redie, M.B.; Baghban, M.H. Sustainable Concrete: A Review. Int. J. Struct. Civ. Eng. Res. 2019, 8, 126–132. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renew. Sustain. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Yu, C.W. Building envelope with variable thermal performance: Opportunities and challenges. Indoor Built Environ. 2018, 27, 729–733. [Google Scholar] [CrossRef]
- Kumar, G.; Raheja, G. Design determinants of building envelope for sustainable built environment: A review. Int. J. Built Environ. Sustain. 2016, 3. [Google Scholar] [CrossRef]
- Hasik, V.; Escott, E.; Bates, R.; Carlisle, S.; Faircloth, B.; Bilec, M.M. Comparative whole-building life cycle assessment of renovation and new construction. Build. Environ. 2019, 161, 106218. [Google Scholar] [CrossRef]
- Evanglista, P.P.A. Environmental Performance in Civil Construction: Parameters for the Application of Life Cycle Assessment in Brazilian Residential Buildings. 2017. Available online: http://www.cienam.ufba.br/publicacoes/desempenho-ambiental-na-construcao-civil-parametros-para-aplicacao-da-avaliacao-do-ciclo (accessed on 18 September 2022).
- Paulsen, J.S.; Sposto, R.M. A life cycle energy analysis of social housing in Brazil: Case study for the program “MY HOUSE MY LIFE”. Energy Build. 2013, 57, 95–102. [Google Scholar] [CrossRef]
- Mohamad, G. Construções em Alvenaria Estrutural: Materiais, Projeto e Desempenho [Constructions in Structural Masonry: Materials, design and performance]; Editora Blucher: São Paulo, Brazil, 2021. [Google Scholar]
- Salzer, C.; Wallbaum, H.; Ostermeyer, Y.; Kono, J. Environmental performance of social housing in emerging economies: Life cycle assessment of conventional and alternative construction methods in the Philippines. Int. J. Life Cycle Assess. 2017, 22, 1785–1801. [Google Scholar] [CrossRef] [Green Version]
- Ramalho, M.A.; Corrêa, M.R. Projeto de Edifícios de Alvenaria Estrutural; Pini: São Paulo, Brazil, 2003. [Google Scholar]
- Tao, G.; Pan, Y.; Qiao, Z.; Jiang, C. Utilization of sandy soil as the primary raw material in production of unfired bricks. Adv. Mater. Sci. Eng. 2018, 2018, 7320298. [Google Scholar] [CrossRef] [Green Version]
- Acchar, W.; Marques, S.K. Ecological Soil-Cement Bricks from Waste Materials; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Motta, J.C.S.S.; Morais, P.W.P.; Rocha, G.N.; Tavares, J.D.C.; Gonçalves, G.C.; Chagas, M.A.; Mageste, J.L.; Lucas, T.D.P.B. Tijolo de solo-cimento: Análise das características físicas e viabilidade econômica de técnicas construtivas sustentáveis [Soil-cement brick: Analysis of physical and economic feasibility of sustainable construction techniques]. E-Xacta 2014, 7, 13–26. [Google Scholar] [CrossRef]
- Ahmad, Z.; Othman, S.Z.; Yunus, B.; Mohamed, A. Behaviour of masonry wall constructed using interlocking soil cement bricks. World Acad. Sci. Eng. Technol. 2011, 60, 1263–1269. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.310.5400&rep=rep1&type=pdf (accessed on 18 September 2022).
- Venkatarama Reddy, B.V.; Lal, R.; Nanjunda Rao, K.S. Optimum soil grading for the soil-cement blocks. J. Mater. Civ. Eng. 2007, 19, 139–148. [Google Scholar] [CrossRef]
- Ola, S.A.; Mbata, A. Durability of soil-cement for building purposes—Rain erosion resistance test. Constr. Build. Mater. 1990, 4, 182–187. [Google Scholar] [CrossRef]
- Sabino, T.P.F.; Coelho, N.P.F.; Andrade, N.C.; Metzker, S.L.O.; Viana, Q.S.; Mendes, J.F.; Mendes, R.F. Lignocellulosic materials as soil–cement brick reinforcement. Environ. Sci. Pollut. Res. 2022, 29, 21769–21788. [Google Scholar] [CrossRef]
- Restelli, R.E.; Paiva, A.F.D.; Lima Lamezon, D.A.D.; Lima, E.P.D.; Schenatto, F.J.A. Assessment of CO2 Emission in the Soil–Cement Brick Industry: A Case Study in Southwest Paraná. In Proceedings of the International Joint Conference on Industrial Engineering and Operations Management, Rio de Janeiro, Brazil, 22–24 February 2021; Springer: Cham, Switzerland, 2021; pp. 359–371. [Google Scholar] [CrossRef]
- Barros, M.M.; de Oliveira, M.F.L.; da Conceição Ribeiro, R.C.; Bastos, D.C.; de Oliveira, M.G. Ecological bricks from dimension stone waste and polyester resin. Constr. Build. Mater. 2020, 232, 117252. [Google Scholar] [CrossRef]
- European Commission (EC). International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle—Detailed guidance; Publications Office of the European Union: Luxembourg, 2010.
- Mpakati-Gama, E.C.; Brown, A.; Sloan, B. Embodied energy and carbon analysis of urban residential buildings in Malawi. Int. J. Constr. Manag. 2016, 16, 1–12. [Google Scholar] [CrossRef]
- Caldas, L.R.; Toledo Filho, R.D. Avaliação ambiental do sistema construtivo de alvenaria de blocos de solo-cimento considerando diferentes especificações de projeto. Gestão Tecnol. Proj. 2021, 16, 149–172. [Google Scholar] [CrossRef]
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Brazilian Standard NBR 8491; Soil-Cement Brick—Requirements. Brazilian Association of Technical Standards (ABNT): Rio de Janeiro, Brazil, 2012.
- Brazilian Standard NBR 15270-1; Ceramic Components—Clay Blocks and Bricks for Masonry—Part 1: Requirements. Brazilian Association of Technical Standards (ABNT): Rio de Janeiro, Brazil, 2017.
- Brazilian Standard NBR 6136; Hollow Concrete Block for Masonry—Requirements. Brazilian Association of Technical Standards (ABNT): Rio de Janeiro, Brazil, 2016.
- CEF. Caixa Econômica Federal [Federal Savings Bank] SINAPI: Sistema Nacional de Pesquisa de Custos e Índices da Construção Civil [National System of Costs Survey and Indexes of Construction]. 2021. Available online: https://www.caixa.gov.br/poder-publico/modernizacao-gestao/sinapi/Paginas/default.aspx (accessed on 18 September 2022).
- Brazilian Standard NBR 15575; Residential Buildings—Performance. Part 1: General Requirements. Brazilian Association of Technical Standards (ABNT): Rio de Janeiro, Brazil, 2013.
- Campos, R.F.F.; Weber, E.; Borga, T. Análise da Eficiência do Tijolo Ecológico Solo-Cimento na Construção Civil [Analysis of the Efficiency of Ecological Brick Solo-Cement in Civil Construction]. In IGNIS Periódico Científico de Arquitetura e Urbanismo Engenharias e Tecnologia de Informação; Caçador, Santa Catarina. 2017. Available online: https://45.238.172.12/index.php/ignis/article/view/1178 (accessed on 18 September 2022).
- Cherubini Ceramic Industry. Ceramic Products. 2021. Available online: http://www.ceramicacherubini.com.br/produtos.html (accessed on 27 April 2021).
- Danenberg Ceramic Industry. Ceramic Products. 2021. Available online: http://olariadanenberg.com.br/?page_id=14 (accessed on 18 September 2022).
- Incargel Ceramic Industry. Ceramic Products. 2021. Available online: http://www.incargel.com.br/produto/bloco-de-vedacao (accessed on 18 September 2022).
- Saturno Ceramic Industry. Ceramic Products. 2021. Available online: http://www.ceramicasaturno.com.br/produtos.asp (accessed on 18 September 2022).
- Mega Blocos Concrete Block Industry. Concrete Products. 2021. Available online: https://megablocos.ind.br/novosite/blocos-estruturais/ (accessed on 18 September 2022).
- IEP. Methodist Church Institute of Education of Piracicaba. Cartilha: Produção de Tijolos de Solo-Cimento [Booklet: Production of Soil-Cement Bricks]. 2016. Available online: http://editora.metodista.br/publicacoes/cartilha-producao-de-tijolos-de-solo-cimento (accessed on 18 September 2022).
- Pisani, M.A.J. Um material de construção de baixo impacto ambiental: O tijolo de solo-cimento [A low environmental impact building material: The soil-cement brick]. Sinerg. São Paulo 2005, 6, 53–59. Available online: http://www.aedificandi.com.br/aedificandi/N%C3%BAmero%201/1_artigo_tijolos_solo_cimento.pdf (accessed on 18 September 2022).
- Verde Equipamentos. Ecological Brick Products. 2021. Available online: https://verdeequipamentos.com.br/tijolo-ecologico/ (accessed on 18 September 2022).
- Ecomáquinas. Ecological Brick Products. 2021. Available online: https://www.ecomaquinas.com.br/en/como-produzir/ (accessed on 18 September 2022).
- Campos, A.; Nascimento, J.B.D.; Brito, L.T. Comportamento estrutural de tijolos de solo-cimento utilizando diferentes fontes de água e métodos de cura [Structural behavior of soil-cement bricks using different sources of water and healing methods]. Interações 2019, 20, 283–296. [Google Scholar] [CrossRef]
- de Souza, D.M.; Lafontaine, M.; Charron-Doucet, F.; Chappert, B.; Kicak, K.; Duarte, F.; Lima, L. Comparative life cycle assessment of ceramic brick, concrete brick and cast-in-place reinforced concrete exterior walls. J. Clean. Prod. 2016, 137, 70–82. [Google Scholar] [CrossRef]
- Machado, M.F.; Gomes, L.J.; de Mello, A.A. Caracterização do consumo de lenha pela atividade de cerâmica no Estado de Sergipe [Firewood consumption in the ceramic activity in Sergipe State, Brazil]. Floresta 2010, 40. [Google Scholar] [CrossRef]
- Moreno Ruiz, E.; Valsasina, L.; FitzGerald, D.; Brunner, F.; Symeonidis, A.; Bourgault, G.; Wernet, G. Documentation of Changes Implemented in Ecoinvent Database v3.6. 2019. Available online: https://ecoinvent.org/wp-content/uploads/2021/09/change_report_v3_6_20190912.pdf (accessed on 18 September 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Salgado, J.C.P. Técnicas e Práticas Construtivas para Edificação [Construction Techniques and Practices for Buildings], 3rd ed.; Érica: São Paulo, Brazil, 2014. [Google Scholar]
- Gerdau Steel Products. Steel Welded Mesh Products. 2021. Available online: https://mais.gerdau.com.br/cotacao/construcao/construcao-civil/tela-soldada-nervurada/ (accessed on 18 September 2022).
- Da Silva, N.G.; Campiteli, V.C. Influência dos Finos e da cal nas Propriedades das Argamassas [Influence of Fines and Lime on Mortar Properties]. In XI Encontro Nacional de Tecnologia no Ambiente Construído. 2006. Available online: http://paginapessoal.utfpr.edu.br/ngsilva/links-2/noticias/ENTAC2006_Finos.pdf (accessed on 18 September 2022).
- Viapol Chemicals for Construction. PVA Resin Adhesive Emulsion. 2013. Available online: https://www.viapol.com.br/produtos/aditivos-e-adi%C3%A7%C3%B5es/aditivo-para-argamassa/adesivo/viafix/ (accessed on 18 September 2022).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Bauer, C.; Doka, G.; Dones, R.; Hischier, R.; Hellweg, S.; Humbert, S.; Köllner, T.; et al. Implementation of Life Cycle Impact Assessment Methods. 2007. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/028/41028089.pdf?r=1&r=1 (accessed on 18 September 2022).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Schwob, M.R.V.; Henriques, M., Jr.; Szklo, A. Technical potential for developing natural gas use in the Brazilian red ceramic industry. Appl. Energy 2009, 86, 1524–1531. [Google Scholar] [CrossRef]
- Brazilian Standard NBR 16697; Portland Cement—Requirements. Brazilian Association of Technical Standards (ABNT): Rio de Janeiro, Brazil, 2018.
- Brazilian Portland Cement Association (ABCP). Brasil é Referência Mundial em Alvenaria Estrutural [Brazil is a World Reference in Structural Masonry]. 2013. Available online: https://abcp.org.br/brasil-e-referencia-mundial-em-alvenaria-estrutural/ (accessed on 18 September 2022).
- Ferreira, G.M.G.; Cecchin, D.; Valadão, I.C.R.P.; da Silva, T.R.; Carmo, D.D.F.D.; Hüther, C.M.; Ferreira, F.; de Azevedo, A.R.G. Evaluation of the Technological Properties of Soil–Cement Bricks with Incorporation of Coconut Fiber Powder. Eng 2022, 3, 311–324. [Google Scholar] [CrossRef]
- Metzker, S.L.O.; Sabino, T.P.F.; Mendes, J.F.; Ribeiro, A.G.C.; Mendes, R.F. Soil-Cement Bricks Development Using Polymeric Waste. Environ. Sci. Pollut. Res. 2022, 29, 21034–21048. [Google Scholar] [CrossRef]
- Nascimento, E.S.S.; de Souza, P.C.; de Oliveira, H.A.; Júnior, C.M.M.; de Oliveira Almeida, V.G.; de Melo, F.M.C. Soil-cement brick with granite cutting residue reuse. J. Clean. Prod. 2021, 321, 129002. [Google Scholar] [CrossRef]
- Kongkajun, N.; Laitila, E.A.; Ineure, P.; Prakaypan, W.; Cherdhirunkorn, B.; Chakartnarodom, P. Soil-cement bricks produced from local clay brick waste and soft sludge from fiber cement production. Case Stud. Constr. Mater. 2020, 13, e00448. [Google Scholar] [CrossRef]
- Vilela, A.P.; Eugênio, T.M.C.; de Oliveira, F.F.; Mendes, J.F.; Ribeiro, A.G.C.; Brandão, L.E.V.D.S.; Mendes, R.F. Technological properties of soil-cement bricks produced with iron ore mining waste. Constr. Build. Mater. 2020, 262, 120883. [Google Scholar] [CrossRef]
- Reis, F.M.D.; Ribeiro, R.P.; Reis, M.J. Physical-mechanical properties of soil-cement bricks with the addition of the fine fraction from the quartzite mining tailings (State of Minas Gerais–Brazil). Bull. Eng. Geol. Environ. 2020, 79, 3741–3750. [Google Scholar] [CrossRef]
- Barbosa, M.F.L.; Pironcelli, A.B.S.; Silva, C.A.; Junior, A.C.; Cereda, M.P.; Magalhães Filho, F.J.C. Rice husk and water treatment plant sludge incorporated into soil–cement brick. Asian J. Civ. Eng. 2019, 20, 563–570. [Google Scholar] [CrossRef]
- Leonel, R.F.; Folgueras, M.V.; Dalla Valentina, L.V.O.; Prim, S.R.; Prates, G.A.; Caraschi, J.C. Characterization of soil-cement bricks with incorporation of used foundry sand. Cerâmica 2017, 63, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.P.; Holanda, J.N.F. Recycling of water treatment plant waste for production of soil-cement bricks. Procedia Mater. Sci. 2015, 8, 197–202. [Google Scholar] [CrossRef]
Parameter | Soil-Cement Brick | Ceramic Block | Concrete Block |
---|---|---|---|
Mass (kg) | 2.8 [33] | 1.9 [34,35,36,37] | 8.7 [38] |
Dimensions (length × height × width cm3) | 24 × 7 × 12 [28] | 14 × 19 × 9 [29] | 29 × 19 × 14 [30] |
Shape, number of holes | Hollow prismatic self-locking, 2 holes [28] | Hollow prismatic, 6 holes [29] | Hollow prismatic, 2 holes [30] |
Composition | Sandy clay soil, cement, and water [15,39] | Clay and water [29] | Gravel, sand, cement, and water [30] |
Number of bricks or blocks in 1.0 m2 of wall | 60 [28,33] | 37 [31] | 17 [31] |
Joint | PVA glue (polyvinyl acetate), or PVA mortar [40] | Cement/sand mortar | Cement/sand mortar |
Function | Non-structural masonry [28] | Non-structural masonry [29] | Non-structural masonry [30] |
Link with columns | Steel welded mesh | Steel welded mesh | Steel welded mesh |
Item | Value | Unit | Source |
---|---|---|---|
Soil-cement | |||
Brick | 169 | kg | [28,33] |
PVA glue or PVA mortar * | 0.57 | kg | [31] |
Steel welded mesh | 150 | g | [31,48,49] |
Ceramic | |||
Block | 70.3 | kg | [29,31,34,35,36,37] |
Cement/sand mortar | 23.3 | kg | [31,50] |
Steel welded mesh | 52.7 | g | [31,49] |
Concrete | |||
Block | 148 | kg | [30,31,38] |
Cement/sand mortar | 40.0 | kg | [31,50] |
Steel welded mesh | 57.4 | g | [31,49] |
Masonry Wall Technology | GWP | CED | MRS | FRS | WF |
---|---|---|---|---|---|
(kg CO2 eq) | (MJ) | (kg Cu eq) | (kg Oil eq) | (L) | |
Soil-cement | 13.2 | 109 | 0.63 | 2.00 | 104 |
Ceramic | 33.0 | 178 | 1.02 | 2.25 | 66.8 |
Concrete | 19.9 | 169 | 0.11 | 2.99 | 110 |
Indicator | Soil-Cement vs. Ceramic | Soil-Cement vs. Concrete | ||||
---|---|---|---|---|---|---|
Low-St. | Medium-St. | High-St. | Low-St. | Medium-St. | High-St. | |
GWP (106 kg CO2 eq) | 1.4 | 2.3 | 3.2 | 0.56 | 0.95 | 1.3 |
CED (106 MJ) | 7.6 | 13 | 18 | 4.0 | 6.8 | 9.5 |
MRS (106 kg Cu eq) | 0.012 | 0.020 | 0.029 | −0.017 | −0.028 | −0.039 |
FRS (106 kg oil eq) | 0.11 | 0.18 | 0.26 | 0.069 | 0.12 | 0.16 |
WF (106 L) | 0.84 | 1.4 | 2.0 | 0.60 | 1.0 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leão, A.S.; Araujo, M.C.; de Jesus, T.B.; Almeida, E.d.S. Is the Soil-Cement Brick an Ecological Brick? An Analysis of the Life Cycle Environmental and Energy Performance of Masonry Walls. Sustainability 2022, 14, 12735. https://doi.org/10.3390/su141912735
Leão AS, Araujo MC, de Jesus TB, Almeida EdS. Is the Soil-Cement Brick an Ecological Brick? An Analysis of the Life Cycle Environmental and Energy Performance of Masonry Walls. Sustainability. 2022; 14(19):12735. https://doi.org/10.3390/su141912735
Chicago/Turabian StyleLeão, Adriano Souza, Monique Cerqueira Araujo, Thiago Barbosa de Jesus, and Edna dos Santos Almeida. 2022. "Is the Soil-Cement Brick an Ecological Brick? An Analysis of the Life Cycle Environmental and Energy Performance of Masonry Walls" Sustainability 14, no. 19: 12735. https://doi.org/10.3390/su141912735
APA StyleLeão, A. S., Araujo, M. C., de Jesus, T. B., & Almeida, E. d. S. (2022). Is the Soil-Cement Brick an Ecological Brick? An Analysis of the Life Cycle Environmental and Energy Performance of Masonry Walls. Sustainability, 14(19), 12735. https://doi.org/10.3390/su141912735