Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential
Abstract
:1. Introduction
2. Insight on Trichoderma and Its Mechanism
2.1. Morphological Studies on Trichoderma
2.2. Molecular Studies on Trichoderma
2.2.1. Universal Marker-Based Identification
2.2.2. DNA-Fingerprinting Techniques
2.2.3. OMICS Approaches in the Service of Trichoderma Monitoring
2.2.4. Exogenous Marker Genes
3. Mechanisms of Trichoderma
3.1. Mycoparasitism
S.No. | Gene | Protein | Function | Reference |
---|---|---|---|---|
1 | endoglucanase I (EG I) | Endoglucanase | cellulose hydrolysis | [157] |
2 | erg1 | Squalene epoxidase | activation of plant defense system | [145] |
3 | tri3 | Trichothecene O-acetyltransferase TRI3 | trichodermin biosynthesis | [149] |
4 | tri4 | Cytochrome P450 monooxygenase | trichodermin biosynthesis | [149] |
5 | tri5 | Trichodiene synthase | trichothecene biosynthesis | [100] |
6 | tri6 | Trichothecene biosynthesis transcription regulator TRI6 | transcriptional activator of genes involved in harzianum A (HA) biosynthesis | [150,158] |
7 | tri11 | Trichothecene C-4 hydroxylase | trichodermin biosynthesis | [149] |
8 | tri22 | Cytochrome P450 monooxygenase | trichothecene biosynthesis | [151] |
9 | tri10 | Trancription factor | regulation of trichothecene biosynthetic genes | [152] |
10 | tri11 | Trichothecene C-4 hydroxylase | trichodermin biosynthesis | [149] |
11 | ACEI | Repressor protein | cellulase biosynthesis | [153] |
12 | AceII | Transcription factor | cellulase biosynthesis | [154,159] |
13 | CbhI | Cellobiohydrolase I | cellulase hydrolysis | [155] |
14 | cbhII | Cellobiohydrolase II | cellulase hydrolysis | [148] |
15 | bgl1 | β-glucosidase | cellulose hydrolysis | [156] |
16 | prb1 | Basic proteinase | Mycoparasitism | [157] |
17 | ech42 | Endochitinase | Mycoparasitism | [160] |
18 | chit33 | Endochitinase 33 | Mycoparasitism | [161] |
19 | chit42 | Chitinase 42 | biocontol activity against fungus | [162] |
20 | cre1 | Carbon catabolite repressor | Mycoparasitism | [163,164] |
21 | xyr1 | Xylanase regulator 1 | systemic resistance induction in plants | [165,166] |
22 | Rce1 | Transcriptional repressor protein | regulation of cellulase biosynthesis | [167,168] |
23 | nag1 | N-acetylglucosaminidase | essential for chitinase induction by chitin | [169,170] |
24 | egl1 | β-1,4-Endoglucanase | Mycoparasitism | [171] |
25 | tvsp1 | Extracellular serine protease | Mycoparasitism | [172,173] |
26 | Sm1 | Cerato-platanin protein | activation of plant defense mechanisms | [174] |
27 | Sm2 | Cerato-platanin protein | activation of plant defense system | [175,176] |
28 | SS10 | Subtilisin-like protease | Broad-spectrum antifungal activity | [177] |
29 | SA76 | Aspartic protease | Biocontrol activity against fungus | [178] |
30 | SL41 | Serine protease | biocontrol activity against fungus | [179] |
31 | Tas-acdS | ACC deaminase | Plant root growth-promotion | [180] |
32 | TgaA | G-protein α subunit | mycoparasitism against Sclerotium rolfsii | [181,182] |
33 | TmkA | mitogen-activated protein kinase | mycoparasitism against Sclerotium rolfsii | [183] |
34 | ThPG1 | Endopolygalacturonase | plant defense induction by T. harzianum | [184,185] |
35 | TvPG2 | Endopolygalacturonase | Induction of Plant Systemic Resistance | [186] |
36 | ThPTR2 | Di/tri-peptide transporter | Mycoparasitic process | [187] |
37 | tac1 | Adenylate cyclase | Growth, germination, mycoparasitism and secondary metabolism | [188] |
38 | Vel1 | VELVET protein | Regulator of biocontrol as well as morphogenetic traits in Trichoderma virens | [189] |
39 | PPT1 | 4-phosphopantetheinyl transferase | Role in antibiosis and induction of SA and camalexin-dependent plant defense responses | [190] |
40 | Taabc2 | ABC Transporter Membrane Pump | Role in antagonism and biocontrol against Pythium ultimum and Rhizoctonia solani | [191] |
41 | epl1 | Eliciting plant response-like protein | Modulation of Systemic Disease Resistance in SolanumLycopersicum | [192] |
42 | epl2 | Eliciting plant response-like protein | Trichoderma mediated promotion of plant protechion | [176] |
43 | Thctf1 | Transcription factor | Production of secondary metabolites and in the antifungal activity of T. harzianum | [193] |
44 | Pgy1 | Proline-glycine-tyrosine-rich protein | Role in antagonism against soil-borne pathogens of plants | [194] |
45 | Ecm33 | GPI-anchored cell wall protein | Role in antagonism against soil-borne pathogens of plants | [194] |
46 | Pac1 | Transcription factor | Role in antifungal activity of Trichoderma harzianum | [195] |
47 | Tvbgn3 | Beta-1,6-glucanase | Mycoparasitism | [174] |
48 | tvhydii1 | Class II hydrophobin | Mycoparasitism and plant-fungus interaction | [196] |
49 | Ste12 | Transcription factor | Mycoparasitism | [197] |
50 | LaeA | Methyltransferase protein | Trichoderma atroviride defense and parasitism | [198] |
3.2. Competition of Ecological Niche
3.3. Antibiosis
3.4. Biochemical and Molecular Defense Response Induced by Trichoderma
3.5. Regulatory Mechanisms Triggering the Defense of Trichoderma
3.6. Plant Growth Promotion
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant-Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimi, M.H.; Hashimi, R.; Ryan, Q. Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. Asian Plant Res. J. 2020, 5, 37–47. [Google Scholar] [CrossRef]
- Kohl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazini, W.C.; Galli, J.C. Reduction of insecticides applications through the adoption of integrated management tactics of Triozoida limbata (Enderlein, 1918) (Hemiptera: Triozidae) in guava tree. Rev. Bras. Frutic. 2011, 33, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef] [PubMed]
- Alfiky, A.; Weisskopf, L. Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. J. Fungi 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Safaie, N.; Shahbazi, S.; Askari, H. Enhancement of Lytic Enzymes Activity and Antagonistic Traits of Trichoderma harzianum Using γ-Radiation Induced Mutation. J. Agric. Sci. Technol. 2019, 21, 1035–1048. [Google Scholar]
- Persoon, C.H. Disposita methodical fungorum. Romers. Neues. Mag. Bot. 1794, 1, 81–128. [Google Scholar]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)–prospects and challenges. Biocontrol. Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Poveda, J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control 2021, 159, e104634. [Google Scholar] [CrossRef]
- Elad, Y. Biological Control of Foliar Pathogens by Means of Trichoderma harzianum and Potential Modes of Action. Crop Prot. 2000, 19, 709–714. [Google Scholar] [CrossRef]
- Yadav, M.; Dubey, M.K.; Upadhyay, R.S. Systemic Resistance in Chilli Pepper against Anthracnose (Caused by Colletotrichum truncatum) Induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. J. Fungi 2021, 7, 307. [Google Scholar] [CrossRef] [PubMed]
- Zin, N.A.; Badaluddin, N.A. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, A.; Dutta, P. Trchoderma Spp.: Their Impact in Crops Diseases Management. In Trichoderma—Technology and Uses; IntechOpen: London, UK, 2022. [Google Scholar]
- Zhao, Y.; Chen, X.; Cheng, J.; Xie, J.; Lin, Y.; Jiang, D.; Fu, Y.; Chen, T. Application of Trichoderma Hz36 and Hk37 as Biocontrol Agents against Clubroot Caused by Plasmodiophora brassicae. J. Fungi 2022, 8, 777. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms 2020, 8, 817. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Romano, I.; Lombardi, N.; Napolitano, M.; Colla, G.; et al. Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Miao, Y.; Liu, Q.; Ma, L.; Guo, K.; Liu, D.; Ran, W.; Shen, Q. TgSWO from Trichoderma guizhouense NJAU4742 promotes growth in cucumber plants by modifying the root morphology and the cell wall architecture. Microb. Cell Factories 2019, 18, 148. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, S.; Safaie, N.; Shahbazi, S.; Shams-Bakhsh, M.; Askari, H. The Role of Cell Wall Degrading Enzymes in Antagonistic Traits of Trichoderma virens Against Rhizoctonia solani. Iran J. Biotechnol. 2020, 18, e2333. [Google Scholar] [CrossRef] [PubMed]
- Silva, J. A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Braz. J. Microbiol. 2020, 51, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Haga, S.; Suzuki, S.; Llorens, E. Direct antagonistic activity of chitinase produced by Trichoderma sp. SANA20 as biological control agent for grey mould caused by Botrytis cinerea. Cogent Biol. 2020, 6, 1. [Google Scholar] [CrossRef]
- Schalamun, M.; Schmoll, M. Trichoderma—Genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. Front. Fungal Biol. 2022, 3, 1002161. [Google Scholar] [CrossRef]
- Wu, W.; Ogawa, F.; Ochiai, M.; Yamada, K.; Fukui, H. Common Strategies to Control Pythium Disease. Rev. Agric. Sci. 2020, 8, 58–69. [Google Scholar] [CrossRef]
- Escudero-Leyva, E.; Alfaro-Vargas, P.; Muñoz-Arrieta, R.; Charpentier-Alfaro, C.; Granados-Montero, M.D.M.; Valverde-Madrigal, K.S.; Pérez-Villanueva, M.; Méndez-Rivera, M.; Rodríguez-Rodríguez, C.E.; Chaverri, P.; et al. Tolerance and Biological Removal of Fungicides by Trichoderma Species Isolated From the Endosphere of Wild Rubiaceae Plants. Front. Agron. 2022, 3, 772170. [Google Scholar] [CrossRef]
- Mendoza, A.M.; Zaid, R.; Lawry, R.; Hermosa, R.; Monte, E.; Horwitz, B.A.; Mukherjee, P.K. Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biol. Rev. 2018, 32, 62–85. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Mendoza-Mendoza, A.; Zeilinger, S.; Horwitz, B.A. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biol. Rev. 2022, 39, 15–33. [Google Scholar] [CrossRef]
- Kredics, L.; Chen, L.; Kedves, O.; Büchner, R.; Hatvani, L.; Allaga, H.; Nagy, V.D.; Khaled, J.M.; Alharbi, N.S.; Vágvölgyi, C. Molecular Tools for Monitoring Trichoderma in Agricultural Environments. Front. Microbiol. 2018, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Hewedy, O.A.; Abdel Lateif, K.S.; Seleiman, M.F.; Shami, A.; Albarakaty, F.M.; El-Meihy, M.R. Phylogenetic Diversity of Trichoderma Strains and Their Antagonistic Potential against Soil-Borne Pathogens under Stress Conditions. Biology 2020, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, L.K.T. Trichoderma from extreme environments: Physiology, diversity, and antagonistic activity. In Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications; Springer: Singapore, 2018; Volume 8, pp. 389–403. [Google Scholar]
- Gu, X.; Wang, R.; Sun, Q.; Wu, B.; Sun, J.-Z. Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 2020, 73, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Kwon, S.L.; Lee, H.; Jang, Y.; Park, M.S.; Lim, Y.W.; Kim, C.; Kim, J.-J. New Report of Three Unrecorded Species in Trichoderma harzianum Species Complex in Korea. Mycobiology 2018, 46, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chammem, H.; Antonielli, L.; Nesler, A.; Pindo, M.; Pertot, I. Effect of a Wood-Based Carrier of Trichoderma atroviride SC1 on the Microorganisms of the Soil. J. Fungi 2021, 7, 751. [Google Scholar] [CrossRef]
- Chauhan, A.; Modgil, M.; Rajam, M. Establishment of Agrobacterium tumefaciens—Mediated genetic transformation of apple pathogen Marssonina coronaria using marker genes under the control of CaMV 35S promoter. Microbiol. Res. 2021, 253, 126878. [Google Scholar] [CrossRef]
- Nogueira-López, G.; Padilla-Arizmendi, F.; Inwood, S.; Lyne, S.; Steyaert, J.M.; Nieto-Jacobo, M.F.; Stewart, A.; Mendoza-Mendoza, A. TrichoGate: An Improved Vector System for a Large Scale of Functional Analysis of Trichoderma Genes. Front. Microbiol. 2019, 10, 2794. [Google Scholar] [CrossRef]
- Scandella, V.; Paolicelli, R.C.; Knobloch, M. A novel protocol to detect green fluorescent protein in unfixed, snap-frozen tissue. Sci. Rep. 2020, 10, 14642. [Google Scholar] [CrossRef]
- Nichols, N.N.; Quarterman, J.C.; Frazer, S.E. Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate. Biol. Methods Protoc. 2018, 3, bpx012. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Ruiz, D.; Fuchs, A.; Missbach, K.; Schuhmacher, R.; Zeilinger, S. Influence of Different Light Regimes on the Mycoparasitic Activity and 6-Pentyl-alpha-pyrone Biosynthesis in Two Strains of Trichoderma atroviride. Pathogens 2020, 9, 860. [Google Scholar] [CrossRef]
- Speckbacher, V.; Ruzsanyi, V.; Martinez-Medina, A.; Hinterdobler, W.; Doppler, M.; Schreiner, U.; Böhmdorfer, S.; Beccaccioli, M.; Schuhmacher, R.; Reverberi, M. The lipoxygenase Lox1 is involved in light-and injury-response, conidiation, andvolatile organic compound biosynthesis in the Mycoparasitic fungus Trichoderma atroviride. Front. Microbiol. 2020, 11, 2004. [Google Scholar] [CrossRef]
- Zhang, G.-Z.; Yang, H.-T.; Zhang, X.-J.; Zhou, F.-Y.; Wu, X.-Q.; Xie, X.-Y.; Zhao, X.-Y.; Zhou, H.-Z. Five new species of Trichoderma from moist soils in China. MycoKeys 2022, 87, 133–157. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H.; Giddens, J.E.; Foster, A.A. A survey of the fungi of forest and cultivated soils of Georgia. Mycologia 1975, 49, 779–808. [Google Scholar] [CrossRef]
- Alwadai, A.S.; Perveen, K.; Alwahaibi, M. The Isolation and Characterization of Antagonist Trichoderma spp. from the Soil of Abha, Saudi Arabia. Molecules 2022, 27, 2525. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, D.E.; Calderon, M.S.; Leiva, S.; Mendoza, J.E.; Arce, M.; Oliva, M. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia 2021, 113, 1056–1072. [Google Scholar] [CrossRef] [PubMed]
- Gams, W.; Meyer, W. What exactly is Trichoderma harzianum? Mycologia 1998, 90, 904–915. [Google Scholar] [CrossRef]
- Ospina-Giraldo, M.D.; Royse, D.J.; Chen, X.; Romaine, C.P. Molecular phylogenetic analyses of biological control strains of Trichoderma harzianum and other biotypes of Trichoderma spp. associated with mushroom green mold. Phytopathology 1999, 89, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Kuhls, K.; Lieckfeldt, E.; Samuels, G.J.; Meyer, W.; Kubicek, C.P.; Borner, T. Revision of Trichoderma sec. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer regions. Mycologia 1997, 89, 442–460. [Google Scholar]
- Kindermann, J.; El-Ayouti, Y.; Samuels, G.J.; Kubicek, C.P. Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet. Biol. 1998, 24, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Matas-Baca, M.Á.; Urías García, C.; Pérez-Álvarez, S.; Flores-Córdova, M.A.; Escobedo-Bonilla, C.M.; Magallanes-Tapia, M.A.; Sánchez Chávez, E. Morphological and molecular characterization of a new autochthonous Trichoderma sp. isolate and its biocontrol efficacy against Alternaria sp. Saudi J. Biol. Sci. 2022, 29, 2620–2625. [Google Scholar] [CrossRef]
- Meyer, R.; Plaskowitz, J.S. Scanning electron microscopy of conidia and conidial matrix of Trichoderma. Mycologia 1989, 81, 312–317. [Google Scholar] [CrossRef]
- Lieckfeldt, E.; Samuels, G.J.; Helgard, H.I.; Petrini, O. A morphological and molecular perspective of Trichoderma viride: Is it one or two species? Appl. Environ. Microbiol. 1999, 65, 2418–2428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuels, G.J.; Lieckfeldt, E.; Nirenberg, H.I. Description of T. asperellum sp. nov. and comparison to T. viride. Sydowia 1999, 51, 71–88. [Google Scholar]
- Cai, F.; Druzhinina, I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [Google Scholar] [CrossRef]
- Wang, R.; Liu, C.; Jiang, X.; Tan, Z.; Li, H.; Xu, S.; Zhang, S.; Shang, Q.; Deising, H.B.; Behrens, S.-E.; et al. The Newly Identified Trichoderma harzianum Partitivirus (ThPV2) Does Not Diminish Spore Production and Biocontrol Activity of Its Host. Viruses 2022, 14, 1532. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Porras-Troncoso, M.D.; Olmedo-Monfil, V.; Herrera-Estrella, A. Trichoderma species: Versatile plant symbionts. Phytopathology 2019, 109, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Arisan-Atac, I.; Heidenreich, E.; Kubicek, C.P. Randomly amplified polymorphic DNA fingerprinting identifies subgroups of Trichoderma viride and other Trichoderma sp. capable of chestnut blight biocontrol. FEMS Microbiol. Lett. 1995, 126, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Franicevic, S.; Crowhurst, R.; Templeton, M.; Stewart, A. Differentiation of a specific Trichoderma biological control agent by restriction fragment length polymorphism (RFLP) analysis. N. Z. J. Crop Hortic. Sci. 1996, 24, 207–217. [Google Scholar] [CrossRef]
- Turoczi, G.; Fekete, C.; Kerényi, Z.; Nagy, R.; Pomázi, A.; Hornok, L. Biological and molecular characterisation of potential biocontrol strains of Trichoderma. J. Basic Microbiol. 1996, 36, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Chakraborty, U.; Saha, A.; Dey, P.; Sunar, K. Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RAPD profiles. Glob. J. Biotechnol. Biochem. 2010, 5, 55–61. [Google Scholar]
- An, X.-Y.; Cheng, G.-H.; Gao, H.-X.; Li, X.-F.; Yang, Y.; Li, D.; Li, Y. Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense. J. Fungi 2022, 8, 704. [Google Scholar] [CrossRef]
- Turner, D.; Kovacs, W.; Kuhls, K.; Lieckfeldt, E.; Peter, B.; Arisan-Atac, I.; Strauss, J.; Samuels, G.J.; Börner, T.; Kubicek, C.P. Biogeography and phenotypic variation in Trichoderma sect. Longibrachiatum and associated Hypocrea species. Mycol. Res. 1997, 101, 449–459. [Google Scholar]
- Druzhinina, I.S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The genomics of opportunistic success. Nature Reviews. Microbiology 2011, 9, 749–759. [Google Scholar]
- Kullnig-Gradinger, C.M.; Szakacs, G.; Kubicek, C.P. Phylogeny and evolution of the genus Trichoderma: A multigene approach. Mycol. Res. 2002, 106, 757–767. [Google Scholar] [CrossRef]
- Kullnig, C.M.; Krupica, T.; Woo, S.L.; Mach, R.L.; Rey, M.; Benítez, T.; Lorito, M.; Kubicek, C.P. Confusion abounds over identities of Trichoderma biocontrol isolates. Mycol. Res. 2001, 105, 769–772. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Kopchinskiy, A.G.; Komon, M.; Bissett, J.; Szakacs, G.; Kubicek, C.P. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 2005, 42, 813–828. [Google Scholar] [CrossRef]
- Kopchinskiy, A.; Komon, M.; Kubicek, C.P.; Druzhinina, I.S. TrichoBLAST: A multilocus database for Trichoderma and Hypocrea identifications. Mycol. Res. 2005, 109, 658–660. [Google Scholar] [CrossRef]
- Samuels, G.J.; Chaverri, P.; Farr, D.F.; McCray, E.B. Trichoderma Online. Systematic Mycology and Microbiology Laboratory, ARS, USDA. 2002. Available online: http://nt.ars-grin.gov/taxadescriptions/keys/TrichodermaIndex.cfm (accessed on 16 April 2010).
- Chaverri, P.; Castlebury, L.A.; Samuels, G.J.; Geiser, D. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phylogenet. Evol. 2003, 27, 302–313. [Google Scholar] [CrossRef]
- Dou, K.; Gao, J.X.; Zhang, C.L.; Yang, H.T.; Jiang, X.L.; Li, J.S.; Li, Y.Q.; Wang, W.; Xian, H.Q.; Li, S.G.; et al. Trichoderma biodiversity in major ecological systems of China. J. Microbiol. 2019, 57, 668–675. [Google Scholar] [CrossRef]
- Samuels, G.J.; Dodd, S.L.; Gams, W.; Castlebury, L.A.; Petrini, O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 2002, 94, 146. [Google Scholar] [CrossRef] [PubMed]
- Filizola, P.R.B.; Luna, M.A.C.; de Souza, A.F.; Coelho, I.L.; Laranjeira, D.; Campos-Takaki, G.M. Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microb. Cell Factories 2019, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Kullnig, C.; Szakacs, G.; Kubicek, C.P. Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya. Mycol. Res. 2000, 104, 1117–1125. [Google Scholar] [CrossRef]
- Felix, C.R.; Noronha, E.F.; Miller, R.N. Trichoderma: A dual function fungi and their use in the wine and beer industries. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 345–349. [Google Scholar]
- Chaverri, P.; Branco-Rocha, F.; Jaklitsch, W.; Gazis, R.; Degenkolb, T.; Samuels, G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015, 107, 558–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, M.; Du, X.; Zhang, Z.; Xu, J.; Yu, Z. Three new species of soil-inhabiting Trichoderma from southwest China. MycoKeys 2018, 44, 63. [Google Scholar] [CrossRef] [Green Version]
- Jaklitsch, W.M.; Voglmayr, H. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud. Mycol. 2015, 80, 1–87. [Google Scholar] [CrossRef] [Green Version]
- Ru, Z.; Di, W. Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. Afr. J. Biotechnol. 2012, 11, 4180–4186. [Google Scholar]
- Kumar, K.; Amaresan, N.; Bhagat, S.; Madhuri, K.; Srivastava, R. Isolation and characterization of Trichoderma spp. for antagonistic activity against root rot and foliar pathogens. Indian J. Microbiol. 2012, 52, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Bubici, G.; Kaushal, M.; Prigigallo, M.I.; Gómez-Lama Cabanás, C.; Mercado-Blanco, J. Biological control agents against fusarium wilt of banana. Front. Microbiol. 2019, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, I.L.; Druzhinina, I.S.; Atanasova, L.; Yarden, O.; Jacobs, K. The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 2018, 110, 559–583. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Ritieni, A.; Bottalico, A.; Corda, P. Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Dis. 1995, 79, 727–731. [Google Scholar] [CrossRef]
- Bissett, J. A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can. J. Bot. 1984, 62, 924–931. [Google Scholar] [CrossRef]
- Bissett, J. A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can. J. Bot. 1991, 69, 2418–2420. [Google Scholar] [CrossRef]
- Samuels, G.J. Trichoderma: A review of biology and systematics of the genus. Fungal Biol. 1996, 100, 923–935. [Google Scholar] [CrossRef]
- Dou, K.; Lu, Z.; Wu, Q.; Ni, M.; Yu, C.; Wang, M.; Li, Y.; Wang, X.; Xie, H.; Chen, J.; et al. MIST: A multilocus identification system for Trichoderma. Appl. Environ. Microbiol. 2020, 86, e01532-20. [Google Scholar] [CrossRef]
- Hermosa, M.; Grondona, I.; Iturriaga, E.T.; Diaz-Minguez, J.; Castro, C.; Monte, E.; Garcia-Acha, I. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 2000, 66, 1890–1898. [Google Scholar] [CrossRef] [Green Version]
- Manzar, N.; Singh, Y.; Kashyap, A.S.; Sahu, P.K.; Rajawat, M.V.S.; Bhowmik, A.; Sharma, P.K.; Saxena, A.K. Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolour L.) from Tarai and hill regions of India. Biol. Control 2020, 152, 104474. [Google Scholar] [CrossRef]
- Oskiera, M.; Szczech, M.; Bartoszewski, G. Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. J. Hort. Res. 2015, 23, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Schlick, A.; Kuhls, K.; Meyer, W.; Lieckfeldt, E.; Börner, T.; Messner, K. Fingerprinting reveals gamma-ray induced mutations in fungal DNA: Implications for identification of patent strains of Trichoderma harzianum. Curr. Genet. 1994, 26, 74–78. [Google Scholar] [CrossRef]
- Zimand, G.; Valinsky, L.; Elad, Y.; Chet, I.; Manulis, S. Use of the RAPD procedure for the identification of Trichoderma strains. Mycological Research 1994, 98, 531–534. [Google Scholar] [CrossRef]
- Dodd, S.L.; Hill, R.A.; Stewart, A. A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biol. Biochem. 2004, 36, 1955–1965. [Google Scholar] [CrossRef]
- Freeman, S.; Barbul, O.; David, D.R.; Nitzani, Y.; Zveibil, A.; Elad, Y. Trichoderma spp. for biocontrol of Colletotrichum acutatum and Botrytis cinerea in strawberry. Eur. J. Plant Pathol. 2004, 110, 361–370. [Google Scholar] [CrossRef]
- Fanti, S.; Barbieri, A.; Vannacci, G. Environmental Monitoring of Antagonistic Trichoderma. In Proceedings of the First FEMS Congress of European Microbiologists, Ljubljana, Slovenia, 29 June–3 July 2003; p. 390. [Google Scholar]
- Zhang, Y.; Wang, X.; Pang, G.; Cai, F.; Shen, Q. Two-step genomic sequence comparison strategy to design Trichoderma strain-specific primers for quantitative PCR. AMB Express 2019, 9, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paran, I.; Michelmore, R.W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 1993, 85, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Geistlinger, J.; Zwanzig, J.; Heckendorff, S.; Schellenberg, I. SSR markers for Trichoderma virens: Their evaluation and application to identify and quantify root-endophytic strains. Diversity 2015, 7, 360–384. [Google Scholar] [CrossRef] [Green Version]
- Perez, G.; Verdejo, V.; Gondim-Porto, C.; Orlando, J.; Caru, M. Designing a SCAR molecular marker for monitoring Trichoderma harzianum in experimental communities. J. Zhejiang Univ. Sci. 2014, 15, 966–978. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D.P.; Kukhtin, A.; Mokhiber, R.; Knickerbocker, C.; Ogles, D.; Rudy, G.; Golova, J.; Long, P.; Peacock, A. Monitoring microbial community structure and dynamics during in situ U (VI) bioremediation with a field-portable microarray analysis system. Environ. Sci. Technol. 2010, 44, 5516–5522. [Google Scholar] [CrossRef]
- Atanasova, L.; Crom, S.L.; Gruber, S.; Coulpier, F.; Seidl-Seiboth, V.; Kubicek, C.P.; Druzhinina, I.S. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom. 2013, 14, 121. [Google Scholar] [CrossRef] [Green Version]
- Hatvani, L. Mushroom Pathogenic Trichoderma Species: Occurrence, Biodiversity, Diagnosis and Extracellular Enzyme Production. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2008. [Google Scholar]
- Longa, C.M.O.; Savazzini, F.; Tosi, S.; Elad, Y.; Pertot, I. Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. J. Appl. Microbiol. 2009, 106, 1549–1557. [Google Scholar] [CrossRef]
- Savazzini, F.; Longa, C.M.O.; Pertot, I.; Gessler, C. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. J. Microbiol. Methods 2008, 73, 185–194. [Google Scholar] [CrossRef]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef]
- Vargas Gil, S.; Meriles, J.; Conforto, C.; Figoni, G.; Basanta, M.; Lovera, E.; March, G.J. Field assessment of soil biological and chemical quality in response to crop management practices. World J. Microbiol. Biotechnol. 2009, 25, 439–448. [Google Scholar] [CrossRef]
- Sherriff, C.; Whelan, M.J.; Arnold, G.M.; Lafay, J.-F.; Brygoo, Y.; Bailey, J.A. Ribosomal DNA sequence analysis reveals new species groupings in the genus Colletotrichum. Exp. Mycol. 1994, 18, 121–138. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Antón, A.; Raidl, S.; Ros, M.; Pascual, J.A. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass. Bioresour. Technol. 2010, 101, 2888–2891. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, R.; López-Mondéjar, R.; Tittarelli, F.; Ros, M.; Pascual, J.A. qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media. Bioresour. Technol. 2011, 102, 2793–2798. [Google Scholar] [CrossRef] [PubMed]
- Hagn, A.; Wallisch, S.; Radl, V.; Munch, J.C.; Schloter, M. A new cultivation independent approach to detect and monitor common Trichoderma species in soils. J. Microbiol. Methods 2007, 69, 86–92. [Google Scholar] [CrossRef]
- Meincke, R.; Weinert, N.; Radl, V.; Schloter, M.; Smalla, K.; Berg, G. Development of a molecular approach to describe the composition of Trichoderma communities. J. Microbiol. Methods 2010, 80, 63–69. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Shelest, E.; Kubicek, C.P. Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol. Lett. 2012, 337, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Skoneczny, D.; Oskiera, M.; Szczech, M.; Bartoszewski, G. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol. 2015, 60, 297–330. [Google Scholar] [CrossRef]
- Meena, S. Development of Species-Specific SCAR Markers for the Identification of Trichoderma Species. Master’s Thesis, Dharwad University of Agricultural Sciences, Dharwad, India, 2009. [Google Scholar]
- Marik, T.; Urbán, P.; Tyagi, C.; Szekeres, A.; Leitgeb, B.; Vágvölgyi, M.; Manczinger, L.; Druzhinina, I.S.; Vágvolgyi, C.; Kredics, L. Diversity profile and dynamics of peptaibols produced by green mould Trichoderma species in interactions with their hosts Agaricus bisporus and Pleurotus ostreatus. Chem. Biodivers. 2017, 14, e1700033. [Google Scholar] [CrossRef]
- Bae, Y.-S.; Knudsen, G.R. Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl. Environ. Microbiol. 2000, 66, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.-S.; Knudsen, G.R. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. Phytopathology 2001, 91, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherif, M.; Benhamou, N. Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 1990, 80, 1406–1414. [Google Scholar] [CrossRef]
- Jeffries, P. Biology and ecology of mycoparasitism. Can. J. Bot. 1995, 73, S1284–S1290. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 2006, 96, 190–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, M.; Mukherjee, P.K.; Horwitz, B.A.; Zachow, C.; Berg, G.; Zeilinger, S. Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian J. Microbiol. 2012, 52, 522–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, M.; Atanasova, L.; Jensen, D.F.; Zeilinger, S. Necrotrophic mycoparasites and their genomes. Microbiol. Spectr. 2017, 5, 1005–1026. [Google Scholar] [CrossRef]
- Nygren, K.; Dubey, M.; Zapparata, A.; Iqbal, M.; Tzelepis, G.D.; Durling, M.B.; Jensen, D.F.; Karlsson, M. The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evol Appl. 2018, 11, 931–949. [Google Scholar] [CrossRef]
- Lorito, M.; Harman, G.; Hayes, C.; Broadway, R.; Tronsmo, A.; Woo, S.; Di Pietro, A. Chitinolytic enzymes produced by Trichoderma harzianum: Antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 1993, 83, 302–307. [Google Scholar] [CrossRef]
- Gallo, A.; Mule, G.; Favilla, M.; Altomare, C. Isolation and characterisation of a trichodiene synthase homologous gene in Trichoderma harzianum. Physiol. Molec. Plant Pathol. 2004, 65, 11–20. [Google Scholar] [CrossRef]
- Djonović, S.; Vargas, W.A.; Kolomiets, M.V.; Horndeski, M.; Wiest, A.; Kenerley, C.M. A proteinaceous elicitor sm1 from the beneficial fungal Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 2007, 145, 875–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reino, J.L.; Guerrero, R.F.; Hernandez-Galan, R.; Collado, I.G. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 2008, 7, 89–123. [Google Scholar] [CrossRef]
- Tamura, A.; Kotani, H.; Naruto, S. Trichoviridin and dermadin from Trichoderma sp. TK-1. J. Antibiot. 1975, 28, 161–162. [Google Scholar] [CrossRef] [Green Version]
- Henrissat, B.; Driguez, H.; Viet, C.; Schülein, M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 1985, 3, 722–726. [Google Scholar] [CrossRef]
- Endo, A.; Hasumi, K.; Yamada, A.; Shimoda, R.; Takeshima, H. The synthesis of compactin (ML-236B) and monacolin K in fungi. J. Antibiot. 1986, 39, 1609–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, R.; Ayer, W.A.; Mebe, P.P. The metabolites of Trichoderma longibrachiatum. Part 1. Isolation of the metabolites and the structure of trichodimerol. Can. J. Chem. 1992, 70, 2526–2535. [Google Scholar] [CrossRef] [Green Version]
- Kontani, M.; Sakagami, Y.; Marumo, S. First β-1, 6-glucan biosynthesis inhibitor, bisvertinolone isolated from fungus, Acremonium strictum and its absolute stereochemistry. Tetrahedron Lett. 1994, 35, 2577–2580. [Google Scholar] [CrossRef]
- Qian-Cutrone, J.; Huang, S.; Chang, L.-P.; Pirnik, D.M.; Klohr, S.E.; Dalterio, R.A.; Hugill, R.; Lowe, S.; Alam, M.; Kadow, K.F. Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J. Antibiot. 1996, 49, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Mazzucco, C.E.; Warr, G. Trichodimerol (BMS-182123) inhibits lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J. Leukoc. Biol. 1996, 60, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.A.; Varela, R.M.; Simonet, A.M.; Cutler, H.G.; Cutler, S.J.; Eden, M.A.; Hill, R.A. Bioactive Carotanes from Trichoderma v irens. J. Nat. Prod. 2000, 63, 1197–1200. [Google Scholar] [CrossRef]
- Evidente, A.; Cabras, A.; Maddau, L.; Serra, S.; Andolfi, A.; Motta, A. Viridepyronone, a new antifungal 6-substituted 2 h-pyran-2-one produced by Trichoderma viride. J. Agric. Food Chem. 2003, 51, 6957–6960. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Ouyang, J.; Xiao, X.H.; Gao, W.Y.; Liu, Y. Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin. J. Chem. 2006, 24, 45–50. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López-Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009, 149, 1579–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Beltrán-Peña, E.; Herrera-Estrella, A.; López-Bucio, J. Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal. Behav. 2011, 6, 1554–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubicek, C.; Herrera, E.; Seidl, S.; Martinez, D. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Boil. 2011, 12, R40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.; Ruocco, M.; Woo, S.; Lorito, M. Trichoderma secondary metabolites that affect plant metabolism. Nat. Prod. Commun. 2012, 7, 1545–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-R.; Lo, C.-T.; Liu, S.-Y.; Peng, K.-C. Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J. Agric. Food Chem. 2012, 60, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Malmierca, M.G.; Cardoza, R.E.; Alexander, N.J.; McCormick, S.P.; Collado, I.G.; Hermosa, R.; Monte, E.; Gutiérrez, S. Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genet. Biol. 2013, 53, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Orr, K.; Knudsen, G. Use of green fluorescent protein and image analysis to quantify proliferation of Trichoderma harzianum in nonsterile soil. Phytopathology 2004, 94, 1383–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migheli, Q.; Herrera-Estrella, A.; Avataneo, M.; Gullino, M.L. Fate of transformed Trichoderma harzianum in the phylloplane of tomato plants. Mol. Ecol. 1994, 3, 153–159. [Google Scholar] [CrossRef]
- Meng, J.; Wang, B.; Cheng, W. Study on the secondary metabolites of Thichoderma sturnisporum. Chin. J. Mar. Drugs 2017, 36, 27–31. [Google Scholar]
- Shentu, X.; Yao, J.; Yuan, X.; He, L.; Sun, F.; Ochi, K.; Yu, X. Tri11, tri3, and tri4 genes are required for trichodermin biosynthesis of Trichoderma brevicompactum. AMB Express 2018, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindo, L.; McCormick, S.P.; Cardoza, R.E.; Brown, D.W.; Kim, H.-S.; Alexander, N.J.; Proctor, R.H.; Gutiérrez, S. Effect of deletion of a trichothecene toxin regulatory gene on the secondary metabolism transcriptome of the saprotrophic fungus Trichoderma arundinaceum. Fungal Genet. Biol. 2018, 119, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; McCormick, S.P.; Kim, H.-S.; Cardoza, R.E.; Stanley, A.M.; Lindo, L.; Kelly, A.; Brown, D.W.; Lee, T.; Vaughan, M.M. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog. 2018, 14, e1006946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindo, L.; McCormick, S.P.; Cardoza, R.E.; Kim, H.-S.; Brown, D.W.; Alexander, N.J.; Proctor, R.H.; Gutiérrez, S. Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genet. Biol. 2019, 122, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Aro, N.; Ilmén, M.; Saloheimo, A.; Penttilä, M. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol. 2003, 69, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aro, N.; Saloheimo, A.; Ilmén, M.; Penttilä, M. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 2001, 276, 24309–24314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitz, H.J.; Witte, K.; Wartenberg, A. Amorphous-cellulose dispersing activity of cellobiohydrolase I of trichoderma reesei, suggestion for an interpretation of the C1-effect. Acta Biotechnol. 1990, 10, 277–282. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, L.; Xia, L. High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem. 2018, 70, 55–60. [Google Scholar] [CrossRef]
- Geremia, R.A.; Goldman, G.H.; Jacobs, D.; Ardrtes, W.; Vila, S.B.; Van Montagu, M.; Herrera-Estrella, A. Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol. Microbiol. 1993, 8, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Jensen, D.F. A tool for monitoring Trichoderma harzianum: II. The use of a GUS transformant for ecological studies in the rhizosphere. Phytopathology 1995, 85, 1436–1440. [Google Scholar] [CrossRef]
- Li, X.-H.; Yang, H.-J.; Roy, B.; Park, E.Y.; Jiang, L.-J.; Wang, D.; Miao, Y.-G. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 2010, 165, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Gutierrez, A.; Olmedo, V.; Inbar, J.; Chet, I.; Herrera-Estrella, A. The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol. Gen. Genet. 1998, 260, 218–225. [Google Scholar] [CrossRef] [PubMed]
- De las Mercedes Dana, M.; Limón, M.C.; Mejías, R.; Mach, R.L.; Benítez, T.; Pintor-Toro, J.A.; Kubicek, C.P. Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr. Genet. 2001, 38, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Ataei, A.; Zamani, M.; Motallebi, M.; Haghbeen, K.; Ziaei, M.; Jourabchi, E. Increased antifungal activity of Chit42 from Trichoderma atroviride by addition of a chitin binding domain. Trop. Plant Pathol. 2016, 41, 350–356. [Google Scholar] [CrossRef]
- Lorito, M.; Mach, R.L.; Sposato, P.; Strauss, J.; Peterbauer, C.K.; Kubicek, C.P. Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proc. Natl. Acad. Sci. USA 1996, 93, 14868–14872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Z.; Jing, R.; Wu, Y.; Guo, Y.; Geng, Y.; Ji, J.; Qin, L.; Zheng, C. Trichodermadiones A and B from the solid culture of Trichoderma atroviride S361, an endophytic fungus in Cephalotaxus fortunei. Fitoterapia 2018, 127, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Reithner, B.; Mach-Aigner, A.R.; Herrera-Estrella, A.; Mach, R.L. Trichoderma atroviride transcriptional regulator Xyr1 supports the induction of systemic resistance in plants. Appl. Environ. Microbiol. 2014, 80, 5274–5281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrocka, J.; Małolepsza, U. Diversity in plant systemic resistance induced by Trichoderma. Biol. Control 2013, 67, 149–156. [Google Scholar] [CrossRef]
- Jiang, X.; Du, J.; He, R.; Zhang, Z.; Qi, F.; Huang, J.; Qin, L. Improved Production of Majority Cellulases in Trichoderma reesei by Integration of cbh1 Gene From Chaetomium thermophilum. Front. Microbiol. 2020, 11, 1633. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zheng, F.; Wang, L.; Zhao, G.; Chen, G.; Zhang, W.; Liu, W. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol. Microbiol. 2017, 105, 65–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Mondejar, R.; Bernal-Vicente, A.; Ros, M.; Tittarelli, F.; Canali, S.; Intrigiolo, F.; Pascual, J.A. Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresour. Technol. 2010, 101, 3718–3723. [Google Scholar] [CrossRef] [PubMed]
- Brunner, K.; Peterbauer, C.K.; Mach, R.L.; Lorito, M.; Zeilinger, S.; Kubicek, C.P. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr. Genet. 2003, 43, 289–295. [Google Scholar] [PubMed]
- Migheli, Q.; González-Candelas, L.; Dealessi, L.; Camponogara, A.; Ramón-Vidal, D. Transformants of Trichoderma longibrachiatum Overexpressing the β-1,4-Endoglucanase Gene egl1 Show Enhanced Biocontrol of Pythium ultimum on Cucumber. Phytopathology 1998, 88, 673–677. [Google Scholar] [CrossRef] [Green Version]
- Rosado, I.; Rey, M.; Codón, A.C.; Govantes, J.; Moreno-Mateos, M.; Benítez, T. QID74 cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet. Biol. 2007, 44, 950–964. [Google Scholar] [CrossRef]
- Pozo, M.J.; Baek, J.-M.; Garcıa, J.M.; Kenerley, C.M. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet. Biol. 2004, 41, 336–348. [Google Scholar] [CrossRef]
- Djonović, S.; Pozo, M.J.; Dangott, L.J.; Howell, C.R.; Kenerley, C.M. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant-Microbe Interact. 2006, 19, 838–853. [Google Scholar] [CrossRef] [Green Version]
- Heil, M.; Bostock, R.M. Induced Systemic Resistance (ISR) Against Pathogens in the Context of Induced Plant Defences. Ann. Bot. 2002, 89, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Gaderer, R.; Lamdan, N.L.; Frischmann, A.; Sulyok, M.; Krska, R.; Horwitz, B.A.; Seidl-Seiboth, V. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol. 2015, 15, 2. [Google Scholar] [CrossRef]
- Yan, L.; Qian, Y. Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum. FEMS Microbiol. Lett. 2009, 290, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, Q. Cloning and heterologous expression of aspartic protease SA76 related to biocontrol in Trichoderma harzianum. FEMS Microbiol. Lett. 2007, 277, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-X.; Liu, X.-M.; Nin, L.-F.; Shi, L.; Chen, S.-R. Serine protease and ovarian paracrine factors in regulation of ovulation. Front. Biosci. 2013, 18, 650–664. [Google Scholar] [CrossRef] [Green Version]
- Viterbo, A.; Landau, U.; Kim, S.; Chernin, L.; Chet, I. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol. Lett. 2010, 305, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento Silva, R.; Steindorf, A.S.; Ulhoa, C.J.; Felix, C.R. Involvement of G-alpha protein GNA3 in production of cell wall-degrading enzymes by Trichoderma reesei (Hypocrea jecorina) during mycoparasitism against Pythium ultimum. Biotechnol. Lett. 2009, 31, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Sampath Kumar, A.; Kranthi, S.; Mukherjee, P. Biocontrol potential of three novel Trichoderma strains: Isolation, evaluation and formulation. 3 Biotech 2014, 4, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.K.; Latha, J.; Hadar, R.; Horwitz, B.A. TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot. Cell 2003, 2, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morán-Diez, E.; Hermosa, R.; Ambrosino, P.; Cardoza, R.E.; Gutiérrez, S.; Lorito, M.; Monte, E. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum—Plant beneficial interaction. Mol. Plant-Microbe Interact. 2009, 22, 1021–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, M.; Mukherjee, P.K.; Kale, S.P. cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 2007, 153, 1734–1742. [Google Scholar] [CrossRef] [Green Version]
- Sarrocco, S.; Matarese, F.; Baroncelli, R.; Vannacci, G.; Seidl-Seiboth, V.; Kubicek, C.P.; Vergara, M. The constitutive endopolygalacturonase TvPG2 regulates the induction of plant systemic resistance by Trichoderma virens. Phytopathology 2017, 107, 537–544. [Google Scholar] [CrossRef]
- Vizcaíno, J.; Cardoza, R.; Hauser, M.; Hermosa, R.; Rey, M.; Llobell, A.; Becker, J.; Gutiérrez, S.; Monte, E. ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet. Biol. 2006, 43, 234–246. [Google Scholar] [CrossRef]
- Abbas, A.; Mubeen, M.; Zheng, H.; Sohail, M.A.; Shakeel, Q.; Solanki, M.K.; Iftikhar, Y.; Sharma, S.; Kashyap, B.K.; Hussain, S.; et al. Trichoderma spp. Genes Involved in the Biocontrol Activity Against Rhizoctonia solani. Front. Microbiol. 2022, 13, 884469. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kenerley, C.M. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl. Environ. Microbiol. 2010, 76, 2345–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velázquez-Robledo, R.; Contreras-Cornejo, H.; Macias-Rodriguez, L.; Hernández-Morales, A.; Aguirre, J.; Casas-Flores, S.; López-Bucio, J.; Herrera-Estrella, A. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol. Plant-Microbe Interact. 2011, 24, 1459–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruocco, M.; Lanzuise, S.; Vinale, F.; Marra, R.; Turrà, D.; Woo, S.L.; Lorito, M. Identification of a new biocontrol gene in Trichoderma atroviride: The role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol. Plant-Microbe Interact. 2009, 22, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Salas-Marina, M.A.; Isordia-Jasso, M.I.; Islas-Osuna, M.A.; Delgado-Sánchez, P.; Jiménez-Bremont, J.F.; Rodríguez-Kessler, M.; Rosales-Saavedra, M.T.; Herrera-Estrella, A.; Casas-Flores, S. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Front. Plant Sci. 2015, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Rubio, M.B.; Hermosa, R.; Reino, J.L.; Collado, I.G.; Monte, E. Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet. Biol. 2009, 46, 17–27. [Google Scholar] [CrossRef]
- Bansal, R.; Mukherjee, M.; Horwitz, B.A.; Mukherjee, P.K. Regulation of conidiation and antagonistic properties of the soil-borne plant beneficial fungus Trichoderma virens by a novel proline-, glycine-, tyrosine-rich protein and a GPI-anchored cell wall protein. Curr. Genet. 2019, 65, 953–964. [Google Scholar] [CrossRef]
- Moreno-Mateos, M.A.; Delgado-Jarana, J.; Codon, A.C.; Benítez, T. pH and Pac1 control development and antifungal activity in Trichoderma harzianum. Fungal Genet. Biol. 2007, 44, 1355–1367. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Alemán-Duarte, M.I.; Delaye, L.; Herrera-Estrella, A.; Olmedo-Monfil, V. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet. 2017, 18, 16. [Google Scholar] [CrossRef]
- Gruber, S.; Zeilinger, S. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride. PLoS ONE 2014, 9, e111636. [Google Scholar]
- Aghcheh, R.K.; Druzhinina, I.S.; Kubicek, C.P. The putative protein methyltransferase LAE1 of Trichoderma atroviride is a key regulator of asexual development and mycoparasitism. PLoS ONE 2013, 8, e67144. [Google Scholar] [CrossRef] [PubMed]
- Monfil, V.O.; Casas-Flores, S. Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 429–453. [Google Scholar]
- Ahmad, J.S.; Baker, R. Rhizosphere competence of Trichoderma harzianum. Phytopathology 1987, 77, 182–189. [Google Scholar] [CrossRef]
- Benítez, T.; Rincón, A.M.; Limón, M.C.; Codon, A.C. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 2004, 7, 249–260. [Google Scholar] [PubMed]
- Palmieri, D.; Ianiri, G.; Del Grosso, C.; Barone, G.; De Curtis, F.; Castoria, R.; Lima, G. Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Hemming, B.C. Microbial-iron interactions in the plant rhizosphere. An overview. J. Plant Nutr. 1986, 9, 505–521. [Google Scholar] [CrossRef]
- Neilands, J.; Leong, S.A. Siderophores in relation to plant growth and disease. Annu. Rev. Plant Physiol. 1986, 37, 187–208. [Google Scholar] [CrossRef]
- Tjamos, E.C.; Papavizas, G.C.; Cook, R.J. Biological Control of Plant Diseases: Progress and Challenges for the Future; Springer: New York, NY, USA, 1992. [Google Scholar]
- De Santiago, A.; García-López, A.M.; Quintero, J.M.; Avilés, M.; Delgado, A. Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biol. Biochem. 2013, 57, 598–605. [Google Scholar] [CrossRef]
- Altomare, C.; Tringovska, I. Beneficial soil microorganisms, an ecological alternative for soil fertility management. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2011; pp. 161–214. [Google Scholar]
- Adams, P.; Lynch, J.; De Leij, F. Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor. J. Appl. Microbiol. 2007, 103, 2240–2247. [Google Scholar] [CrossRef]
- Leong, J. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 1986, 24, 187–209. [Google Scholar] [CrossRef]
- Yedidia, I.; Shrivasta, A.K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement concentration and increased growth of cucumber plants. Plant Soil 2001, 235, 235–242. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Bertora, C.; Pepe, O.; Giancarlo, M.; Grignani, C.; Fagnano, M. Changes in soil mineral N content and abundances of bacterial communities involved in N reactions under laboratory conditions as predictors of soil N availability to maize under field conditions. Biol. Fertil. Soils 2016, 52, 523–537. [Google Scholar] [CrossRef]
- Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 1971, 57, 25-IN3. [Google Scholar] [CrossRef]
- Lumsden, R.; Lewis, J.; Locke, J. Managing soilborne plant pathogens with fungal antagonists. In Pest Management: Biologically Based Technologies; Government Printing Office: Washington, DC, USA, 1993; pp. 196–203. [Google Scholar]
- Vey, A.; Hoagland, R.E.; Butt, T.M.; Jackson, C.W.; Magan, N. Toxic Metabolites of Fungal Biocontrol Agents; CABI International: Wallingford, UK, 2001. [Google Scholar]
- Gębarowska, E.; Pytlarz-Kozicka, M.; Nöfer, J.; Łyczko, J.; Adamski, M.; Szumny, A. The effect of Trichoderma spp. on the composition of volatile secondary metabolites and biometric parameters of coriander (Coriandrum sativum L.). J. Food Qual. 2019, 2019, 5687032. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-F.; Li, G.-H.; Zhang, K.-Q. Non-volatile metabolites from Trichoderma spp. Metabolites 2019, 9, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, C.; Stipanovic, R.; Lumsden, R. Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci. Technol. 1993, 3, 435–441. [Google Scholar] [CrossRef]
- Song, X.-Y.; Shen, Q.-T.; Xie, S.-T.; Chen, X.-L.; Sun, C.-Y.; Zhang, Y.-Z. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol. Lett. 2006, 260, 119–125. [Google Scholar]
- Vinale, F.; Marra, R.; Scala, F.; Ghisalberti, E.; Lorito, M.; Sivasithamparam, K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 2006, 43, 143–148. [Google Scholar] [CrossRef]
- Hanson, L.E.; Howell, C.R. Biocontrol efficacy and other characteristics of protoplast fusants between Trichoderma koningii and T. virens. Mycol. Res. 2002, 106, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Garnica-Vergara, A.; Barrera-Ortiz, S.; Muñoz-Parra, E.; Raya-González, J.; Méndez-Bravo, A.; Macías-Rodríguez, L.; Ruiz-Herrera, L.F.; López-Bucio, J. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 2016, 209, 1496–1512. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Howell, C.; Hanson, L.; Stipanovic, R.; Puckhaber, L. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 2000, 90, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Cardoza, R.-E.; Hermosa, M.-R.; Vizcaíno, J.-A.; Sanz, L.; Monte, E.; Gutiérrez, S. Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. In Microorganism for Industrial Enzymes and Biocontrol; Research Signpost: Kerala, India, 2005; pp. 1–22. [Google Scholar]
- Kawada, M.; Yoshimoto, Y.; Kumagai, H.; Someno, T.; Momose, I.; Kawamura, N.; Isshiki, K.; Ikeda, D. PP2A inhibitors, harzianic acid and related compounds produced by fungus strain F-1531. J. Antibiot. 2004, 57, 235–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, S.R.; Cutler, H.G.; Jacyno, J.M.; Hill, R.A. Biological activity of 6-pentyl-2 H-pyran-2-one and its analogs. J. Agric. Food Chem. 1997, 45, 2774–2776. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; López-Bucio, J.S.; López-Bucio, J. Enhanced plant immunity using Trichoderma. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 495–504. [Google Scholar]
- Mukherjee, P.K.; Horwitz, B.A.; Kenerley, C.M. Secondary metabolism in Trichoderma—A genomic perspective. Microbiology 2012, 158, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, H.G.; Himmelsbach, D.S.; Arrendale, R.F.; Cole, P.D.; Cox, R.H. Koninginin A: A novel plant growth regulator from Trichoderma koningii. Agric. Biol. Chem. 1989, 53, 2605–2611. [Google Scholar]
- Crutcher, F.K.; Parich, A.; Schuhmacher, R.; Mukherjee, P.K.; Zeilinger, S.; Kenerley, C.M. A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet. Biol. 2013, 56, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Alfaro-Cuevas, R.; López-Bucio, J. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol. Plant-Microbe Interact. 2014, 27, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.-L.; Chen, X.-L.; Wang, L.-X.; Gong, Z.-T.; Li, S.; Li, C.-L.; Xie, B.-B.; Zhang, W.; Shi, M.; Li, C. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J. Exp. Bot. 2016, 67, 2191–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Chávez, J.; Raja, H.A.; Graf, T.N.; Gallagher, J.M.; Metri, P.; Xue, D.; Pearce, C.J.; Oberlies, N.H. Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: Validation of their authenticity via in situ chemical analysis. RSC Adv. 2017, 7, 45733–45741. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-P.; Miao, F.-P.; Fang, S.-T.; Yin, X.-L.; Ji, N.-Y. Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Mar. Drugs 2018, 16, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Z.; Wang, X.; Kong, F.-D.; Huang, H.-M.; Zhao, Y.-N.; Liu, M.; Wang, Z.-P.; Han, J. Overexpression of Global Regulator Talae1 Leads to the Discovery of New Antifungal Polyketides from Endophytic Fungus Trichoderma afroharzianum. Front. Microbiol. 2020, 11, 622785. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z. Chemical Structures and Biological Activities of Secondary Metabolites from Five Marine-Alga-Epiphytic Fungi; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences: Yantai, China, 2018. [Google Scholar]
- Ji, Z.; Ma, D.; Miao, F. Chemical constituents from Trichoderma longibrachiatum, an endophytic fungus derived from marine green alga codium fragile. J. Shenyang Univ. 2014, 26, 277–280. [Google Scholar]
- Xuan, Q.-C.; Huang, R.; Chen, Y.-W.; Miao, C.-P.; Ma, K.-X.; Wang, T.; Wu, S.-H. Cyclonerol derivatives from Trichoderma longibrachiatum YM311505. Nat. Prod. Commun. 2014, 9, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zolotarskaya, O.Y.; Nair, S.S.; Ehrhardt, C.J.; Ohman, D.E.; Wynne, K.J.; Yadavalli, V.K. Real-time observation of antimicrobial polycation effects on Escherichia coli: Adapting the carpet model for membrane disruption to quaternary copolyoxetanes. Langmuir 2016, 32, 2975–2984. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wu, Z.; Tan, D.; Yang, J.; Zhou, Q.; Zeng, F.; Zhang, M.; Bie, Q.; Chen, C.; Xue, Y. Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 2017, 123, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Wang, H.; Li, L.; Chen, A.J.; Chen, L.; Chen, H.; Zhang, H.; Liu, X.; Zou, Z. Trichoderones A and B: Two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur. J. Org. Chem. 2012, 2012, 2516–2519. [Google Scholar] [CrossRef]
- Liang, X.-R.; Miao, F.-P.; Song, Y.-P.; Guo, Z.-Y.; Ji, N.-Y. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27. Nat. Prod. Res. 2016, 30, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Lin, X.; Tian, Y.; Liang, R.; Wang, J.; Yang, B.; Zhou, X.; Kaliyaperumal, K.; Luo, X.; Tu, Z. Three new polyketides from the marine sponge-derived fungus Trichoderma sp. SCSIO41004. Nat. Prod. Res. 2018, 32, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Iida, A.; Sanekata, M.; Fujita, T.; Tanaka, H.; Enoki, A.; Fuse, G.; Kanai, M.; Rudewicz, P.J.; Tachikawa, E. Fungal metabolites. XVI. Structures of new peptaibols, trichokindins I-VII, from the fungus Trichoderma harzianum. Chem. Pharm. Bull. 1994, 42, 1070–1075. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-W.; Song, R.-Q.; Yang, L.-B.; Deng, X. Isolation, purification, and structural identification of an antifungal compound from a Trichoderma strain. J. Microbiol. Biotechnol. 2015, 25, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Zhang, S.-Q.; Lin, Y.-X.; Wang, X.-F.; Ding, W.-J.; Li, C.-Y. Study on metabolites with antifungal activity against plant pathogens of an endophytic fungus Trichoderma sp. 09 from Myoporum bontioides A. Gray. Guangdong Agric. Sci. 2013, 40, 62–65. [Google Scholar]
- Wu, B.; Oesker, V.; Wiese, J.; Schmaljohann, R.; Imhoff, J.F. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar. Drugs 2014, 12, 1208–1219. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-H.; Zheng, L.-J.; Liu, F.-F.; Dang, L.-Z.; Li, L.; Huang, R.; Zhang, K.-Q. New cyclopentenones from strain Trichoderma sp. YLF-3. Nat. Prod. Res. 2009, 23, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-c.; Chen, G.-Y.; Li, X.-Z.; Hu, M.; Wang, B.-Y.; Ruan, B.-H.; Zhou, H.; Zhao, L.-X.; Zhou, J.; Ding, Z.-T. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat. Prod. Res. 2017, 31, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D.M.; Thomma, B.P.; Nelson, B.D. Sclerotinia sclerotiorum (lib.) de Bray: Biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Herrera-Estrella, A.H.; Horwitz, B.A.; Lorito, M. Special issue: Trichoderma-from basic biology to biotechnology. Microbiology 2012, 158, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Marina, M.A.; Silva-Flores, M.A.; Uresti-Rivera, E.E.; Castro-Longoria, E.; Herrera-Estrella, A.; Casas-Flores, S. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur. J. Plant Pathol. 2011, 131, 15–26. [Google Scholar] [CrossRef]
- Risoli, S.; Cotrozzi, L.; Sarrocco, S.; Nuzzaci, M.; Pellegrini, E.; Vitti, A. Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis. Plants 2022, 11, 180. [Google Scholar] [CrossRef]
- Shoresh, M.; Mastouri, F.; Harman, G.E. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriram, N.; Kalayarasan, S.; Sudhandiran, G. Epigallocatechin-3-gallate exhibits anti-fibrotic effect by attenuating bleomycin-induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in rat model pulmonary fibrosis. Chem. Biol. Interact. 2009, 180, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, J.; Snochowska, M.; Gajewska, E.; Pietrowska, E.; Szczech, M.; Malolepsza, U. Activation of defense responses in cucumber and tomato plants by selected polish Trichoderma strains. Veg. Crops Res. Bull. 2011, 75, 105–116. [Google Scholar] [CrossRef]
- Schwessinger, B.; Zipfel, C. News from the frontline: Recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 2008, 11, 389–395. [Google Scholar] [CrossRef]
- Zeilinger, S.; Omann, M. Trichoderma biocontrol: Signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul. Syst. Biol. 2007, 1, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Mendoza, A.; Pozo, M.J.; Grzegorski, D.; Martínez, P.; García, J.M.; Olmedo-Monfi, V.; Cortés, C.; Kenerley, C.; Herrera-Estrella, A. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 2003, 100, 15965–15970. [Google Scholar] [CrossRef]
- Mendoza-Mendoza, A.; Rosales-Saavedra, T.; Cortés, C.; Castellanos-Juárez, V.; Martínez, P.; Herrera-Estrella, A. The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology 2007, 153, 2137–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reithner, B.; Schuhmacher, R.; Stoppacher, N.; Pucher, M.; Brunner, K.; Zeilinger, S. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol. 2007, 44, 1123–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reithner, B.; Brunner, K.; Schuhmacher, R.; Peissl, I.; Seidl, V.; Krska, R.; Zeilinger, S. The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet. Biol. 2005, 42, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Ramírez, V.; Omero, C.; Chet, I.; Horwitz, B.A.; Herrera-Estrella, A. Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot. Cell 2002, 1, 594–605. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Latha, J.; Hadar, R.; Horwitz, B.A. Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl. Environ. Microbiol. 2004, 70, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Zeilinger, S.; Reithner, B.; Scala, V.; Peissl, I.; Lorito, M.; Mach, R.L. Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl. Environ. Microbiol. 2005, 71, 1591–1597. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.N.; da Silva, S.P.; Brandão, R.L.; Ulhoa, C.J. Regulation of N-acetyl-β-D-glucosaminidase produced by Trichoderma harzianum: Evidence that cAMP controls its expression. Res. Microbiol. 2004, 155, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.-B.; Yu, S.-F.; Wang, C.-L.; Wang, L. cAMP Signalling Pathway in Biocontrol Fungi. Curr. Issues Mol. Biol. 2022, 44, 2622–2634. [Google Scholar] [CrossRef] [PubMed]
- Scherm, B.; Schmoll, M.; Balmas, V.; Kubicek, C.P.; Migheli, Q. Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach. Curr. Genet. 2009, 55, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Nagy, V.; Seidl, V.; Szakacs, G.; Komon-Zelazowska, M.; Kubicek, C.P.; Druzhinina, I.S. Application of DNA bar codes for screening of industrially important fungi: The haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation. Appl. Environ. Microbiol. 2007, 73, 7048–7058. [Google Scholar] [CrossRef]
- Harman, G.E. Trichoderma-not just for biocontrol anymore. Phytoparasitica 2011, 39, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Zamioudis, C.; Pieterse, C.M.J. Modulation of host immunity by benefi cial microbes. Mol. Plant Microbe. Interact. 2012, 25, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azarmi, R.; Hajieghrari, B.; Gigloul, A. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. Afr. J. Biotechnol. 2011, 10, 5850–5855. [Google Scholar]
- Doni, F.; Isahak, A.; Zain, C.R.C.M.; Yusoff, W.M.W. Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 2014, 4, 45. [Google Scholar] [CrossRef]
- Vinale, F.; Arjona Girona, I.; Nigro, M.; Mazzei, P.; Piccolo, A.; Ruocco, M.; Woo, S.; Ruano Rosa, D.; Lopez Herrera, C.; Lorito, M. Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum. J. Nat. Prod. 2012, 75, 103–106. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, Y.; Ge, W.; Jia, Z.; Song, S.; Zhang, L.; Huang, Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genom. 2019, 20, 144. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Medina, A.; Alguacil, M.D.M.; Pascual, J.; Van Wees, S.C. Phytohormone profles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J. Chem. Ecol. 2014, 40, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Carvajal, L.; Orduz, S.; Bissett, J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Control. 2009, 51, 409–416. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Arasu, V.S.; Kathiresan, K. Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat. Bot. 2012, 104, 101–105. [Google Scholar] [CrossRef]
- Joshi, B.B.; Bhatt, R.P.; Bahukhandi, D. Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. J. Environ. Biol. 2010, 31, 921–928. [Google Scholar] [PubMed]
- Umashankar, N.; Venkateshamurthy, P.; Krishnamurthy, R.; Raveendra, H.R.; SatishI, K.M. Effect of microbial inoculants on the growth of silver oak (Grevillea robusta) in nursery condition. Int. J. Environ. Sci. Dev. 2012, 3, 72–76. [Google Scholar] [CrossRef]
- Mastouri, F.; Björkman, T.; Harman, G.E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010, 100, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.A.; Cheng, C.H.; Lo, C.T.; Liu, S.Y.; Lee, J.W.; Peng, K.H. A novel L-amino acid oxidase from Trichoderma harzianum EST 323 associated with antagonism of R. solani. J. Agric. Food Chem. 2011, 59, 4519–4526. [Google Scholar] [CrossRef]
Serial Number | Compound (Secondary Metabolites) | Biological Activity | Produced By | References |
---|---|---|---|---|
1. | Trichorzianin TA Trichorzianin TB | Antifungal | T. harzianum | [224] |
1. | Trichorzins TVB I, II, IV | Antifungal | T. virens | [224] |
2. | Harzianopyridone | Antifungal, Plant growth Regulator | T. harzianum | [225] |
3. | HarzianolideDehydroharzianolide | Antifungal | T. harzianum | [224] |
4. | 6-pentyl-α-pyrone | Antifungal, Antimicrobial, Plant growth Regulator | T. harzianum T. koningii T. viride | [224] |
5. | 6-pentyl-2H-pyran-2-one | Antifungal, anti-nematode and plant growth-promoting in tomato and Arabidopsis thaliana | T. atroviride T. harzianum T. koningii T. viride | [221] |
6. | 6-pent-1-enyl-α-pyrone | Antifungal | T. harzianum T. viride | [226] |
7. | Massoilactone- δ-decenolactone | Antifungal | Trichoderma spp. | [224] |
8. | Koninginin E, B, A | Antifungal, Plant growth Regulator | T. harzianum T. koningii | [227] |
9. | Koniginin D Hydroxykoninginin B Seco-koninginin | Antifungal, Plant growth Regulator | T. harzianum | [224] |
10. | Koninginin C | Antifungal, Plant growth Regulator | T. koningii | [28] |
11. | 3,4-dihydroxycarotene | Antifungal | T. virens | [224] |
12. | Lignoren | Antifungal Antibacterial | T. lignorum | [224] |
13. | Trichodermin | Antifungal Antitrichomonal Mycotoxin | T. polysporum T. sporulosum T. virens T. reesei | [224] |
14. | Harzianum A | Antifungal | T. harzianum | [224] |
15. | Mycotoxin T2 | Antifungal Mycotoxin | T. lignorum | [224] |
16. | Ergokonin A | Antifungal | T. koningii T. viride T. longibrachiatum | [141] |
17. | Ergokonin B | Antifungal | T. koningii T. viride | [224] |
18. | Viridin | Antibiotic Inhibitor Fungal Spore germination Phytotoxic | T. viride T. virens T. koningii | [224] |
19. | Dermadin (U21, 963) | Antimicrobial | T. koningii T. viride | [130] |
20. | Cellulases | Degrade cellulose during root colonization to penetrate the plant tissue | T. reesei | [153] |
21. | Compactin | Act as Cholestrol lowering agent | T. longibrachiatum T. pseudokoningii | [132] |
22. | 5-Hydroxyvertinolide | Fungal antagonist | T. longibrachiatum | [133] |
23. | Gliovirin | Antimicrobial | T. virens | [217] |
24. | Bisvertinolone | Antifungal | T. longibrachiatum | [134] |
25. | Fleephilone | Inhibitory action against Virion | T. harzianum | [135] |
26. | Harziphilone | Cytotoxicity against murine tumor cell line M-109 | T. harzianum | [135] |
27. | Trichodimerol | Inhibit tumor necrosis factor in human monocytes. | T. longibrachiatum | [136] |
28. | Trichocaranes A,B,D | Growth inhibitor of etiolated wheat coleoptiles | T. virens | [137] |
29. | Viridepyronone | Fungal antagonist | T. viride | [138] |
30. | T22azaphilone | Antifungal | T. harzianum | [219] |
31. | T39butenolide | Antifungal | T. harzianum | [219] |
32. | Emodin | Antimicrobial and antineoplastic agent | T. viride | [139] |
33. | Trichosetin | Antibiotic | T. harzianum | [141] |
34. | Trichoderma mide B | Displays cytotoxicity against HCT-116 human colon Carcinoma | T. virens | [141] |
35. | Wortmannolone | Inhibitor of the phosphatidylinsitol 3-kinase | T. virens | [141] |
36. | Virone | Inhibitor of the phosphatidylinsitol 3-kinase | T. virens | [141] |
37. | Heptelidic acid | Activity against Plasmodium Falciparum | T. virens T. viride | [141] |
38. | Indole-3-acetic acid (IAA) | Growth and development Regulator | T. atroviride T. virens | [140] |
39. | Indole-3-acetaldehyde | Control root growth in Arabidopsis thaliana | T. atroviride T. virens | [140] |
40. | Indole-3 Carboxaldehyde | Induces adventitious root formation in Arabidopsis thaliana | T. atroviride T. virens | [141] |
41. | Ferricrocin | Required in the competition of iron in the rhizosphere | T. atroviride T. virens, T. reesei | [142] |
42. | Gliotoxin | Required in the competition of iron in the rhizosphere | T. hamatum T. viride T. virens | [228] |
43. | Cyclonerodiol | Antifungal | T. harzianum T. koningii | [153] |
44. | Pachybasin | Antifungal | T. harzianum | [144] |
45. | Trichovirin II | Induction of resistance in cucumber plants | T. virens | [228] |
46. | Alamethicin | Induction of plant defense in lima and pathogen resistance | T. viride | [228] |
47. | Coprogen B | Solubilize iron unavailable for the plan | Trichoderma spp. | [143] |
48. | Harzianic acid | Antimicrobial, plant growth Regulator | T. arundinaceum, T. harzianum | [145] |
49. | cis- and trans-ß-ocimene | Induce expression of JA defense responses-related genes in Arabidopsis. Thaliana | T. virens | [229] |
50. | ß-Myrcene | Regulates the expression of genes (abiotic and biotic stresses) | T. virens | [230] |
51. | Abscisic acid (ABA) | Regulates stomatal aperture in Arabidopsis thaliana | T. atroviride, T. virens | [231] |
52. | Ethylene (ET) | Regulates cell differentiation and defense responses | T. atroviride | [227] |
53. | Trichokonin VI | Inhibits primary root growth in Arabidopsis thaliana | T. longibrachiatum | [232] |
54. | Glu(OMe)18-alamethicin F50 (2) | Anti-tumor | T. arundinaceum | [233] |
55. | trichobrevin BIII-D | Anti-tumor | T. arundinaceum | [233] |
56. | bisabolan-1,10,11-triol | Antibacterial Growth inhibitoring | T. asperellum | [234] |
57. | 12-nor-11-acetoxybisabolen-3,6,7-triol | Antibacterial Growth inhibitoring | T. asperellum | [234] |
58. | Dechlorotrichodenone-C | Antibacterial Growth inhibitoring | T. asperellum | [234] |
59. | 3-hydroxytrichodenone C | Antibacterial Growth Inhibitoring | T. asperellum | [234] |
60. | 3β , 5α, 9α-trihydroxyergosta-7,22-dien- 6-one | Antifungal | T. asperellum T. harzianum Trichoderma spp. | [235] |
61. | Isoechinulin A | Antimicroalgal | T. koningiopsis | [236] |
62. | Echinuline | Antimicroalgal | T. koningiopsis | [236] |
63. | Fructigenine A | Antimicroalgal | T. koningiopsis | [236] |
64. | Cyclopenol | Antibacterial | T. koningiopsis | [236] |
65. | Wickerol A | Nematicidal | T. koningiopsis | [236] |
66. | Sorbicillin | Antibacterial | T. longibrachiatum | [237] |
67. | 10,11-dihydrocyclonerotriol | Antifungal | T. longibrachiatum | [238] |
68. | Sohirnone A | Antifungal | T. longibrachiatum | [238] |
69. | Trichokonin A | Antiviral Anti-tumor Antimicrobial Plant resistance | T. longibrachiatum | [239] |
70. | Atrichodermone A,B,C | Cytotoxic Anti-inflammatory | T. atroviride | [240] |
71. | Cerebroside A, D | Antibacteria | T. saturnisporum Trichoderma spp. | [239] |
72. | Lignoren | Antibacterial | T. atroviride S361 T. citrinoviride T. lignorum | [235] |
73. | Catenioblin C | Antifungal | T. atroviride T. longibrachiatum | [241] |
74. | Trichocarotin E,H | Antimicroalgal | T. virens | [237] |
75. | Trichocitrin | Antimicroalgal | T. citrinoviride | [242] |
76. | Nafuredin | Antimicroalgal Antibacterial | T. citrinoviride Trichodermasp | [235] |
77. | Chromone | Antifungal | T. virens | [237] |
78. | Aspochalasin D, J, I | Cytotoxic | T. gamsii | [241] |
79. | Epicycloneodiol oxide | Antibacterial | T. harzianum T. koningiopsis | [235] |
80. | cycloneodiol oxide | Antibacterial | T. harzianum T. koningiopsis | [235] |
81. | ZSU-H85 A | Antiviral | Trichoderma spp. | [243] |
82. | Trichokindin I, II, III, IV, V,VI, VII | Bioinducer | T. harzianum | [244] |
83. | 2,5-cyclohexadiene-1,4-dione-2,6-bis(1,1-dimethylethyl) | Antifungal | Trichoderma spp. T-33 | [245] |
84. | N-2′-hydroxy-3′E-octadecenoyl-1-o- β-D-glucopyranosyl-9-methyl-4E,8E-sphingadiene | Antifungal | Trichoderma spp. 09 | [246] |
85. | Tyrosol | Anti-tumor Hyperplasia-inhibitory | T. harzianum T. spirale | [235] |
86. | Trichoderma ketone A | Antifungal | T. koningi | [235] |
87. | Pyridoxatin | Antibiotic | Trichoderma spp. MF106 | [247] |
88. | 3-(3-oxocyclopent-1-enyl)propanoic acid | Antibacterial | Trichoderma spp. YLF-3 | [248] |
89. | Oxosorbicillinol | DPPH-radical-scavenging | Trichoderma spp. USF-2690 | [56] |
90. | α-acetylorcinol | Growth inhibitoring | Trichoderma spp. Jing-8 | [249] |
91. | Daidzein | Antibacterial | Trichoderma spp. YM311505 | [238] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzar, N.; Kashyap, A.S.; Goutam, R.S.; Rajawat, M.V.S.; Sharma, P.K.; Sharma, S.K.; Singh, H.V. Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustainability 2022, 14, 12786. https://doi.org/10.3390/su141912786
Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, Sharma SK, Singh HV. Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustainability. 2022; 14(19):12786. https://doi.org/10.3390/su141912786
Chicago/Turabian StyleManzar, Nazia, Abhijeet Shankar Kashyap, Ravi Shankar Goutam, Mahendra Vikram Singh Rajawat, Pawan Kumar Sharma, Sushil Kumar Sharma, and Harsh Vardhan Singh. 2022. "Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential" Sustainability 14, no. 19: 12786. https://doi.org/10.3390/su141912786
APA StyleManzar, N., Kashyap, A. S., Goutam, R. S., Rajawat, M. V. S., Sharma, P. K., Sharma, S. K., & Singh, H. V. (2022). Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustainability, 14(19), 12786. https://doi.org/10.3390/su141912786