Willingness to Pay for the Public Electric Bus in Nepal: A Contingent Valuation Method Approach
Abstract
:1. Introduction
2. Literature Review
3. Survey Design and Methods
4. Results and Discussion
4.1. Basic Characteristics
4.2. Regression Analysis and Willingness to Pay
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laudari, H.K.; Aryal, K.; Bhusal, S.; Maraseni, T. What Lessons Do the First Nationally Determined Contribution (NDC) Formulation Process and Implementation Outcome Provide to the Enhanced/Updated NDC? A Reality Check from Nepal. Sci. Total Environ. 2021, 759, 143509. [Google Scholar] [CrossRef]
- Gov.np. Available online: https://www.mofe.gov.np/downloadfile/E-mobility%20Assmnt%20NDC%202020_1623998131.pdf (accessed on 15 August 2021).
- Unfccc.int. Available online: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Nepal%20Second/Second%20Nationally%20Determined%20Contribution%20(NDC)%20-%202020.pdf (accessed on 21 January 2022).
- Ministry of Physical Infrastructure and Transport (MOPIT); Nepal Ministry of the Environment (MOE); Japan United Nations Economic and Social Commission for Asia and the Pacific (UN ESCAP). National Sustainable Transport Strategy (NSTS) for Nepal (2015~2040). In Proceedings of the Ninth Regional Environmentally Sustainable Transport (EST) forum in Asia, Kathmandu, Nepal, 17–20 November 2015; Available online: https://www.uncrd.or.jp/content/documents/3377Background%20Paper%20-EST%20Plenary%20Session%202%20(No.%201).pdf (accessed on 11 December 2021).
- Gov.np. Available online: https://npc.gov.np/images/category/15th_plan_English_Version.pdf (accessed on 11 February 2022).
- Population, Total—Nepal. Worldbank.org. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=NP (accessed on 1 July 2022).
- Country Partnership Strategy 2013–2017: Sector Assessment (Summary). In Transport and Information and Communication Technology; Asian Development Bank: Mandaluyong, Philippines, 2013; Available online: https://www.adb.org/sites/default/files/linked-documents/cps-nep-2013-2017-ssa-02.pdf (accessed on 10 June 2022).
- Global Green Growth Institute. Gggi.org. Available online: https://gggi.org/site/assets/uploads/2018/07/GGGI-Nepal_Pre-Feasability-of-Electric-Buses.pdf (accessed on 8 February 2022).
- Morgan, J. Electric Vehicles: The Future We Made and the Problem of Unmaking It. Camb. J. Econ. 2020, 44, 953–977. [Google Scholar] [CrossRef]
- Osieczko, K.; Zimon, D.; Płaczek, E.; Prokopiuk, I. Factors That Influence the Expansion of Electric Delivery Vehicles and Trucks in EU Countries. J. Environ. Manag. 2021, 296, 113177. [Google Scholar] [CrossRef]
- Buekers, J.; Van Holderbeke, M.; Bierkens, J.; Int Panis, L. Health and Environmental Benefits Related to Electric Vehicle Introduction in EU Countries. Transp. Res. D Transp. Environ. 2014, 33, 26–38. [Google Scholar] [CrossRef]
- Malmgren, I. Quantifying the Societal Benefits of Electric Vehicles. World Electr. Veh. J. 2016, 8, 996–1007. [Google Scholar] [CrossRef] [Green Version]
- Rizza, V.; Torre, M.; Tratzi, P.; Fazzini, P.; Tomassetti, L.; Cozza, V.; Naso, F.; Marcozzi, D.; Petracchini, F. Effects of Deployment of Electric Vehicles on Air Quality in the Urban Area of Turin (Italy). J. Environ. Manage. 2021, 297, 113416. [Google Scholar] [CrossRef]
- Challa, R.; Kamath, D.; Anctil, A. Well-to-Wheel Greenhouse Gas Emissions of Electric versus Combustion Vehicles from 2018 to 2030 in the US. J. Environ. Manag. 2022, 308, 114592. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Fernández, R. A More Realistic Approach to Electric Vehicle Contribution to Greenhouse Gas Emissions in the City. J. Clean. Prod. 2018, 172, 949–959. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.; Huang, K.; Zhang, Z.; Li, X. The Inharmonious Mechanism of CO2, NOx, SO2, and PM2.5 Electric Vehicle Emission Reductions in Northern China. J. Environ. Manag. 2020, 274, 111236. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Hybrid Electric Vehicles and Their Challenges: A Review. Renew. Sustain. Energy Rev. 2014, 29, 135–150. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Mali, B.; Shrestha, A.; Chapagain, A.; Bishwokarma, R.; Kumar, P.; Gonzalez-Longatt, F. Challenges in the Penetration of Electric Vehicles in Developing Countries with a Focus on Nepal. Renew. Energy Focus 2022, 40, 1–12. [Google Scholar] [CrossRef]
- Grijalva, E.R.; López Martínez, J.M. Analysis of the Reduction of CO2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study. Energies 2019, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Lajunen, A.; Lipman, T. Lifecycle Cost Assessment and Carbon Dioxide Emissions of Diesel, Natural Gas, Hybrid Electric, Fuel Cell Hybrid and Electric Transit Buses. Energy 2016, 106, 329–342. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, Y.; Zhou, B.; Wang, R.; Ke, W.; Zhang, S.; Hao, J. Real-World Performance of Battery Electric Buses and Their Life-Cycle Benefits with Respect to Energy Consumption and Carbon Dioxide Emissions. Energy 2016, 96, 603–613. [Google Scholar] [CrossRef]
- Emes, M.R.; Smith, A.; Tyler, N.A.; Bucknall, R.W.G.; Westcott, P.A.; Broatch, S. Modelling the Costs and Benefits of Hybrid Buses from a ‘Whole-Life’ Perspective. In Proceedings of the 7th Annual Conference on Systems Engineering Research 2009 (CSER 2009), Loughborough, UK, 20–23 April 2009. [Google Scholar]
- Adheesh, S.R.; Vasisht, M.S.; Ramasesha, S.K. Air-Pollution and Economics: Diesel Bus versus Electric Bus. Curr. Sci. 2016, 110, 858–862. [Google Scholar]
- Varga, B.O.; Mariasiu, F.; Miclea, C.D.; Szabo, I.; Sirca, A.A.; Nicolae, V. Direct and Indirect Environmental Aspects of an Electric Bus Fleet under Service. Energies 2020, 13, 336. [Google Scholar] [CrossRef] [Green Version]
- Aber, J. Electric Bus Analysis for New York City Transit; Columbia University: New York, NY, USA, 2016. [Google Scholar]
- Transportenvironment.org. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/Electric-buses-arrive-on-time-1.pdf (accessed on 8 February 2022).
- Li, X.; Gorguinpour, C.; Sclar, R.; Castellanos, S.; Park, J. How to Enable Electric Bus Adoption in Cities Worldwide A Guiding Report for City Transit Agencies and Bus Operating Entities. Wrirosscities.org. Available online: https://wrirosscities.org/sites/default/files/how-to-enable-electric-bus-adoption-cities-worldwide.pdf (accessed on 11 December 2021).
- Kwon, Y.; Kim, S.; Kim, H.; Byun, J. What Attributes Do Passengers Value in Electrified Buses? Energies 2020, 13, 2646. [Google Scholar] [CrossRef]
- Cooper, E.; Kenney, E.; Velasquez, J.M.; Li, X. Costs and Emissions Appraisal Tool for Transit Buses. Amazonaws.com. Available online: https://wriorg.s3.amazonaws.com/s3fs-public/costs-emissions-appraisal-tool-transit-buses.pdf?_ga=2.153840504.1989315013.1554690110-29079707.1530758621. (accessed on 1 July 2022).
- Kim, K.H.; Park, S.; Park, S.; Yun, I. Study of the WTP Estimation for Introduction of Medium-Sized Low Floor Electric Bus. J. Korea Inst. Intell. Transp. Syst. 2018, 17, 17–30. [Google Scholar] [CrossRef]
- Olsson, O.; Grauers, A.; Pettersson, S. Method to Analyze Cost Effectiveness of Different Electric Bus Systems. Diva-portal.org. Available online: https://www.diva-portal.org/smash/get/diva2:1159796/FULLTEXT01.pdf (accessed on 26 November 2021).
- Nepal, C.B.S. National Census 2021. Gov.np. Available online: https://censusnepal.cbs.gov.np (accessed on 11 June 2022).
- Haab, T.; Lewis, L.; Whitehead, J. State of the Art of Contingent Valuation. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2000. [Google Scholar] [CrossRef]
- Perni, Á.; Barreiro-Hurlé, J.; Martínez-Paz, J.M. Contingent Valuation Estimates for Environmental Goods: Validity and Reliability. Ecol. Econ. 2021, 189, 107144. [Google Scholar] [CrossRef]
- Howe, C.W.; Lee, B.J.; Bennett, L.L. Design and analysis of contingent valuation surveys using the nested tobit model. Rev. Econ. Stat. 1994, 76, 385. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.; Wang, C.; Hameeda, S.; Wang, X. Households’ Willingness to Accept Improved Ecosystem Services and Influencing Factors: Application of Contingent Valuation Method in Bashang Plateau, Hebei Province, China. J. Environ. Manag. 2020, 255, 109925. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method; Resources for the Future: Washington, DC, USA, 1989. [Google Scholar]
- O’Garra, T.; Mourato, S.; Garrity, L.; Schmidt, P.; Beerenwinkel, A.; Altmann, M.; Hart, D.; Graesel, C.; Whitehouse, S. Is the Public Willing to Pay for Hydrogen Buses? A Comparative Study of Preferences in Four Cities. Energy Policy 2007, 35, 3630–3642. [Google Scholar] [CrossRef]
- Hackbarth, A.; Madlener, R. Willingness-To-Pay for Alternative Fuel Vehicle Characteristics: A Stated Choice Study for Germany. Transp. Res. Part A: Policy Pract. 2016, 85, 89–111. [Google Scholar] [CrossRef]
- Bansal, P.; Kockelman, K.M.; Singh, A. Assessing Public Opinions of and Interest in New Vehicle Technologies: An Austin Perspective. Transp. Res. Part C: Emerg. Technol. 2016, 67, 1–14. [Google Scholar] [CrossRef]
- Lin, B.; Tan, R. Are People Willing to Pay More for New Energy Bus Fares? Energy 2017, 130, 365–372. [Google Scholar] [CrossRef]
- Ramos-Real, F.J.; Ramírez-Díaz, A.; Marrero, G.A.; Perez, Y. Willingness to Pay for Electric Vehicles in Island Regions: The Case of Tenerife (Canary Islands). Renew. Sustain. Energy Rev. 2018, 98, 140–149. [Google Scholar] [CrossRef]
- Nazari, F.; Rahimi, E.; Mohammadian, A. Simultaneous Estimation of Battery Electric Vehicle Adoption with Endogenous Willingness to Pay. eTransportation 2019, 1, 100008. [Google Scholar] [CrossRef]
- Cunningham, M.L.; Regan, M.A.; Ledger, S.A.; Bennett, J.M. To Buy or Not to Buy? Predicting Willingness to Pay for Automated Vehicles Based on Public Opinion. Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 418–438. [Google Scholar] [CrossRef]
- Chee, P.N.E.; Susilo, Y.O.; Wong, Y.D.; Pernestål, A. Which Factors Affect Willingness-To-Pay for Automated Vehicle Services? Evidence from Public Road Deployment in Stockholm, Sweden. Eur. Transp. Res. Rev. 2020, 12, 20. [Google Scholar] [CrossRef]
- Cartenì, A. The Acceptability Value of Autonomous Vehicles: A Quantitative Analysis of the Willingness to Pay for Shared Autonomous Vehicles (SAVs) Mobility Services. Transp. Res. Interdiscip. Perspect. 2020, 8, 100224. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, J. Willingness to Pay for Heavy-Duty Hydrogen Fuel Cell Trucks and Factors Affecting the Purchase Choices in China. Int. J. Hydrog. Energy 2022, 47, 24619–24634. [Google Scholar] [CrossRef]
- Weigl, K.; Eisele, D.; Riener, A. Estimated Years until the Acceptance and Adoption of Automated Vehicles and the Willingness to Pay for Them in Germany: Focus on Age and Gender. Int. J. Transp. Sci. Technol. 2022, 11, 216–228. [Google Scholar] [CrossRef]
- Herbes, C.; Friege, C.; Baldo, D.; Mueller, K.-M. Willingness to Pay Lip Service? Applying a Neuroscience-Based Method to WTP for Green Electricity. Energy Policy 2015, 87, 562–572. [Google Scholar] [CrossRef]
- Streimikiene, D.; Balezentis, T.; Alisauskaite-Seskiene, I.; Stankuniene, G.; Simanaviciene, Z. A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector. Energies 2019, 12, 1481. [Google Scholar] [CrossRef] [Green Version]
- Venkatachalam, L. The Contingent Valuation Method: A Review. Environ. Impact Assess. Rev. 2004, 24, 89–124. [Google Scholar] [CrossRef]
- Ciriacy-Wantrup, S.V. Capital Returns from Soil-Conservation Practices. J. Farm Econ. 1947, 29, 1181. [Google Scholar] [CrossRef]
- Danne, M.; Meier-Sauthoff, S.; Musshoff, O. Analyzing German Consumers’ Willingness to Pay for Green Electricity Tariff Attributes: A Discrete Choice Experiment. Energy Sustain. Soc. 2021, 11, 15. [Google Scholar] [CrossRef]
- Oerlemans, L.A.G.; Chan, K.-Y.; Volschenk, J. Willingness to Pay for Green Electricity: A Review of the Contingent Valuation Literature and Its Sources of Error. Renew. Sustain. Energy Rev. 2016, 66, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Soon, J.-J.; Ahmad, S.-A. Willingly or Grudgingly? A Meta-Analysis on the Willingness-to-Pay for Renewable Energy Use. Renew. Sustain. Energy Rev. 2015, 44, 877–887. [Google Scholar] [CrossRef]
- Afroz, R.; Masud, M.M. Using a Contingent Valuation Approach for Improved Solid Waste Management Facility: Evidence from Kuala Lumpur, Malaysia. Waste Manag. 2011, 31, 800–808. [Google Scholar] [CrossRef]
- Damigos, D.; Kaliampakos, D.; Menegaki, M. How Much Are People Willing to Pay for Efficient Waste Management Schemes? A Benefit Transfer Application. Waste Manag. Res. 2016, 34, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zuo, J.; Guo, H.; He, G.; Liu, H. Willingness to Pay for Higher Construction Waste Landfill Charge: A Comparative Study in Shenzhen and Qingdao, China. Waste Manag. 2018, 81, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Wang, Z.; Li, J. Residents’ Behaviors, Attitudes, and Willingness to Pay for Recycling e-Waste in Macau. J. Environ. Manag. 2012, 106, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Damalas, C.A. Farmers’ Willingness to Pay for Less Health Risks by Pesticide Use: A Case Study from the Cotton Belt of Punjab, Pakistan. Sci. Total Environ. 2015, 530–531, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, J.; Wang, R.; Yang, Y.; Chen, R.; Maddock, J.E.; Lu, Y. Analysis of Residents’ Willingness to Pay to Reduce Air Pollution to Improve Children’s Health in Community and Hospital Settings in Shanghai, China. Sci. Total Environ. 2015, 533, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jin, J.; He, R.; Gong, H.; Tian, Y. Farmers’ Willingness to Pay for Health Risk Reductions of Pesticide Use in China: A Contingent Valuation Study. Int. J. Environ. Res. Public Health 2018, 15, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrolia, D.R.; Kim, T.-G. Preventing Land Loss in Coastal Louisiana: Estimates of WTP and WTA. J. Environ. Manag. 2011, 92, 859–865. [Google Scholar] [CrossRef]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA Panel on Contingent Valuation. Fed. Reg 1993, 58, 4601–4614. [Google Scholar]
- Haab, T.C.; Mcconnell, K.E. Valuing Environmental and Natural Resources: The Econometrics of Non-Market Valua-Tion; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Carson, R.T.; Flores, N.E.; Meade, N.F. Contingent valuation: Controversies and evidence. Environ. Resour. Econ. 2001, 19, 173–210. [Google Scholar] [CrossRef]
- Sajise, A.J.; Samson, J.N.; Quiao, L.; Sibal, J.; Raitzer David, A.; Harder, D. Contingent Valuation of Nonmarket Benefits in Project Economic Analysis: A Guide to Good Practice; Asian Development Bank: Mandaluyong, Philippines, 2021. [Google Scholar] [CrossRef]
- Bateman, I.; Carson, R.; Day, B.; Hanemann, M.; Hanley, N.; Tannis, H.; Jones-Lee, M.; Loomes, G. Economic Valuation with Stated Preference Techniques; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Champ, P.A.; Boyle, K.J.; Brown, T.C. (Eds.) A Primer on Nonmarket Valuation; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Bakhshi, H.; Fujiwara, D.; Lawton, R.; Mourato, S.; Dolan, P. Measuring Economic Value in Cultural Institutions; Arts and Humanities Research Council: Swindon, UK, 2015. [Google Scholar]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary Guidance for Stated Preference Studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef] [Green Version]
- McCoyd, J.L.M.; Kerson, T.S. Conducting Intensive Interviews Using Email. Qual. Soc. Work. Res. Pract. 2006, 5, 389–406. [Google Scholar] [CrossRef]
- Müller, A.; Olschewski, R.; Unterberger, C.; Knoke, T. The Valuation of Forest Ecosystem Services as a Tool for Management Planning - A Choice Experiment. J. Environ. Manag. 2020, 271, 111008. [Google Scholar] [CrossRef] [PubMed]
Direct Benefit | Indirect Benefit |
---|---|
Reduced fuel cost The comfort of use (less noise and vibration, cleanness, spaciousness) 1 | Environmental cost reduction benefit (air pollutant and noise 1 reduction) Economic effects of related industries 1 Urban quality enhancement effects |
Source | Technology/ Study Country | Respondents (n)/ Willing to Pay (%) | Influential Factors * |
---|---|---|---|
O’Garra et al. (2007) [39] | Hydrogen bus/Germany | 344/80.5 | Age (−), Income (+), Frequency of bus use (−), Gender 1 (−) |
England | 282/89.4 | Age (−), Income (+), Frequency of bus use (−), Attitude toward solving environmental problems (+) | |
Luxembourg | 300/72.7 | Age (−) | |
Australia | 146/82.9 | Education (+), Attitude toward solving environmental problems (+) | |
Hackbarth and Madlener (2015) [40] | Alternative fuel bus/Germany | 711/- | Age (−), Environmental awareness (+), Education (−), Daily mileage (+), Technical interest (+) |
Bansal et al. (2016) [41] | Automated vehicle/United States | 347/20 | Income (+), Urban residency (+), Technology−savvy male (+), Experience in crashes (+) |
Lin and Tan (2017) [42] | New energy bus/China | 950/78.9 | Age (−), Income (+), Attitude toward air quality improvement (+) |
Kim et al. (2018) [31] | Electric bus/Korea | 560/56.2 | No significant factor was found. |
Ramos-Real et al. (2018) [43] | Electric vehicle/Spain | 250/63.2 | Age (+), Income (+), Education (+), Gender 1 (−), Average distance traveled per week (+), Level of use of information and communication technologies (+), Level of environmental awareness (+) |
Nazari et al. (2019) [44] | Electric vehicle/United States | 1249/- | Education (+), Driving frequency (−), Carsharing frequency (−), Ridesharing frequency (+), Residential energy (+), |
Cunningham et al. (2019) [45] | Automated vehicle/Australia and New Zealand | 6133/- | Age (−), Gender (−) |
Chee et al. (2020) [46] | Automated vehicle/Sweden | 584/66 | Income (+), Riding experience (+) |
Cartenì (2020) [47] | Automated vehicle/Italy | 3140/ | Gender (+), Experience (+) |
Yan and Zhao (2022) [48] | Heavy-duty hydrogen fuel cell truck/China | 396/13.9 | Income (−), Education (+), Environmental awareness (+) |
Weigl et al. (2022) [49] | Automated vehicle/Germany | 725/59–67 | Age (−) |
Category | Pilot Test (n = 25) | Main Test (n = 500) | |||
---|---|---|---|---|---|
Number | Percentage (%) | Number | Percentage (%) | ||
Age | The 20 s | 11 | 44 | 131 | 26.2 |
The 30 s | 7 | 28 | 143 | 28.6 | |
The 40s | 4 | 16 | 125 | 25 | |
≥the 50 s | 3 | 12 | 101 | 20.2 | |
Gender | Male | 21 | 84 | 276 | 55.2 |
Female | 4 | 16 | 224 | 44.8 | |
Household | Member | 13 | 52 | 170 | 34 |
Head | 12 | 48 | 330 | 66 | |
Main transportation | Private car | 21 | 4.2 | ||
Motorcycle | 19 | 76 | 247 | 49.4 | |
Bus | 6 | 24 | 222 | 44.4 | |
Taxi | 3 | 0.6 | |||
Foot | 5 | 1 | |||
Marriage status | Not married | 8 | 68 | 12 | 2.4 |
Married Formally/Informally | 17 | 52 | 455 | 91 | |
Separated/Divorced | 19 | 3.8 | |||
Unknown | 14 | 2.8 | |||
Work | Student | 3 | 0.6 | ||
White-collar | 13 | 52 | 314 | 62.8 | |
Blue-collar | 9 | 36 | 127 | 25.4 | |
Self-employed | 1 | 4 | 5 | 1 | |
Farmer | 1 | 4 | 14 | 2.8 | |
Housewife | 25 | 5 | |||
Not employed | 1 | 4 | 12 | 2.4 | |
Education | Non—Primary | 1 | 4 | 24 | 10.4 |
Secondary | 4 | 16 | 187 | 37.4 | |
Higher Secondary—Diploma | 9 | 36 | 206 | 41.2 | |
BA—MA | 8 | 32 | 55 | 11 | |
Not answered | 3 | 12 | |||
Monthly income | <30,000 | 10 | 40 | 288 | 57.6 |
(NPR) | ≥30,000, <50,000 | 11 | 44 | 144 | 28.8 |
≥50,000 | 4 | 16 | 68 | 13.6 |
Variable | Description | Mean | Standard Deviation |
---|---|---|---|
p3 | Gender of the respondent male = 1; female = 2 | 1.45 | 0.49 |
p4 | Age of the respondent | 38.22 | 11.63 |
q5 | The average usage of the main transportation per week [1, 3]; [3, 4]; [5, 6]; [7, 8] | 5.60 | 2.30 |
q7 | Boarding experience of electric buses yes = 1; no = 2; uncertain = 3 | 2.45 | 0.68 |
q9_7 | Willingness to ride electric buses for free Scale from 1 to 7 | 5.30 | 1.58 |
q13 | Educational background of the respondent non = 1; primary = 2; lower secondary = 3; secondary = 4; higher secondary = 5; undergraduate = 6; bachelor = 7; post graduate and above = 8 | 4.52 | 1.59 |
q14 | The average monthly gross income of a household in NPR ≤10,000 = 1; [10,000, 20,000] = 2; [20,000, 30,000] = 3; [30,000, 40,000] = 4; [40,000, 50,000] = 5; [50,000, 100,000] = 6; >100,000 = 7 | 3.48 | 1.53 |
Test | Chi-Square | Degree of Freedom | Pr > ChiSq |
---|---|---|---|
Likelihood Ratio | 121.96 | 7 | <0.0001 |
Wald | 84.3 | 7 | <0.0001 |
Parameter | Estimate Value | Standard Error (ASE) | Wald Chi-Square | Sign | p-Value |
---|---|---|---|---|---|
Intercept | −2.3883 | 1.2105 | 3.8926 | − | 0.0485 |
p3 | 0.3277 | 0.2804 | 1.3658 | + | 0.2425 |
p4 | −0.0280 | 0.0120 | 5.4444 | − | 0.0193 |
q5 | 0.1503 | 0.0583 | 6.6463 | + | 0.0099 |
q7 | 0.2464 | 0.1876 | 1.7251 | + | 0.1890 |
q9_7 | 0.7694 | 0.0899 | 73.246 | + | <0.0001 |
q13 | −0.1176 | 0.0868 | 1.8355 | − | 0.1754 |
q14 | −0.0924 | 0.0860 | 1.1543 | − | 0.2825 |
LR Chi-Square | 121.96 | ||||
LR p-value | <0.0001 | ||||
Wald Chi-Square | 84.3 | ||||
Wald p-value | <0.0001 | ||||
Degree of Freedom | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.-H.; Kim, J.; Lee, W.; Han, S. Willingness to Pay for the Public Electric Bus in Nepal: A Contingent Valuation Method Approach. Sustainability 2022, 14, 12830. https://doi.org/10.3390/su141912830
Son J-H, Kim J, Lee W, Han S. Willingness to Pay for the Public Electric Bus in Nepal: A Contingent Valuation Method Approach. Sustainability. 2022; 14(19):12830. https://doi.org/10.3390/su141912830
Chicago/Turabian StyleSon, Ji-Hee, Jeawon Kim, Wona Lee, and Songhee Han. 2022. "Willingness to Pay for the Public Electric Bus in Nepal: A Contingent Valuation Method Approach" Sustainability 14, no. 19: 12830. https://doi.org/10.3390/su141912830
APA StyleSon, J.-H., Kim, J., Lee, W., & Han, S. (2022). Willingness to Pay for the Public Electric Bus in Nepal: A Contingent Valuation Method Approach. Sustainability, 14(19), 12830. https://doi.org/10.3390/su141912830