Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Applied Organic Manure and Bacterial
2.3. Analytical Methods for Soil, Plant, and Organic Fertilizers
2.4. Physical Characteristic of Sunflower Seeds
2.4.1. Seed Mass Properties
2.4.2. Seed Density
2.4.3. Seed Dimensional Properties
2.4.4. Hull Content and Free Hull Percentage
2.5. Sunflower Oil Extraction
2.6. Chemical Composition of Sunflower Seeds
2.7. Sunflower Seed Oil Characteristics
2.7.1. Fatty Acid Composition (FAMEs)
2.7.2. Phenolic Compounds in Sunflower Oil
2.7.3. Tocopherol Content of Sunflower Oil
2.7.4. Chlorophyll Content of Sunflower Oil
2.7.5. Oil Color
2.8. Statistical Analysis
3. Results
3.1. Effect of Organic Waste and Biofertilizer Additions on Soil Properties
3.2. Effect of Organic Waste and Biofertilizer Additions on Sunflower Plant Parameters
3.3. Effects of Organic Waste and Biofertilizer Additions on Physical and Chemical Characteristics of Sunflower Seeds
3.4. Sunflower Seed Oil Characteristics
3.4.1. Phenolic Compounds in Sunflower Oil
3.4.2. Tocopherol and Chlorophyll Content
3.4.3. Changes of Sunflower Oil Color
3.4.4. Fatty Acid Profile of Sunflower Seed Oils under Different Nitrogen Sources
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Surmi, N.; El Dengawy, R.; Khalifa, A. Chemical and nutritional aspects of some safflower seed varieties. J. Food Process. Technol. 2016, 7, 1–5. [Google Scholar]
- Laguna, O.; Barakat, A.; Alhamada, H.; Durand, E.; Baréa, B.; Fine, F.; Villeneuve, P.; Citeau, M.; Dauguet, S.; Lecomte, J. Production of proteins and phenolic compounds enriched fractions from rapeseed and sunflower meals by dry fractionation processes. Ind. Crops Prod. 2018, 118, 160–172. [Google Scholar] [CrossRef]
- Lin, K.R.; Ping, T.C.; Yaakob, C.M.; Ming, L.O.; Kamariah, L. Physicochemical properties of Kalahari melon seed oil following extractions using solvent and aqueous enzymatic methods. Int. J. Food Sci. Technol. 2009, 44, 694–701. [Google Scholar]
- Pal, U.; Patra, R.; Sahoo, N.; Bakhara, C.; Panda, M. Effect of refining on quality and composition of sunflower oil. J. Food Sci. Technol. 2015, 52, 4613–4618. [Google Scholar] [CrossRef] [Green Version]
- Taher, M.; Javani, M.; Beyaz, R.; Yildiz, M. A new environmental friendly production method in sunflower for high seed and crude oil yields. Fresenius Environ. Bull. 2017, 26, 4004–4010. [Google Scholar]
- El–Hamidi, M.; Zaher, F.A. Production of Vegetable Oils in the World and in Egypt: An Overview. Bull. Natl. Res. Cent. 2018, 42, 19. [Google Scholar] [CrossRef]
- El–Hamidi, M.; Zaher, F.A.; Shaaban, A. Edible Oil Production in Egypt: An Overview. Curr. Sci. Int. 2020, 9, 649–655. [Google Scholar]
- Delplanque, B. The nutritional value of sunflower oils: Linoleic sunflower seeds and seeds with high oleic content. Oilseeds Fats Crops Lipids 2000, 7, 467–472. [Google Scholar]
- Forleo, M.B.; Palmieri, N.; Suardi, A.; Coaloa, D.; Pari, L. The eco-efficiency of rapeseed and sunflower cultivation in Italy. Joining environmental and economic assessment. J. Clean. Prod. 2018, 72, 3138–3153. [Google Scholar] [CrossRef]
- Agricultural Research Institute (ARI). Sunflower Oil Consumption Preference; ARI: Ilonga, Tanzania, 2008. [Google Scholar]
- DIrrigated Sunflowers; North Dakota State University: Fargo, ND, USA, 2012.
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, J.D.; Gutie’rrez-Boem, F.H.; Lavado, R.S. Sunflower nitrogen requirement and 15N fertilizer recovery in Western Pampas, Argentina. Eur. J. Agron. 2002, 17, 73–79. [Google Scholar] [CrossRef]
- Khodaeı-Joghan, A.M.; Gholamhoseını, A.A.; Majid, F.; Habıbzadeh, A.; Sorooshzadeh, A.; Ghalavand, A. Response of sunflower to organic and chemical fertilizers in different drought stress conditions. Acta Agric. Slov. 2018, 111, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, S.; Nasr, M. Agricultural Wastes-To-Green Energy in Egypt. Adv. Biotech. Microbiol. 2018, 8, 555750. [Google Scholar]
- AL-Taey, D.K.A.; Al-Shareefi, M.J.H.; Mijwe, L.A.K.; Al-Tawaha, A.R.; Al-Tawaha, A.M. The beneficial effects of bio-fertilizers combinations and humic acid. Bulg. J. Agric. Sci. 2019, 25, 959–966. [Google Scholar]
- Samman, S.; Chow, J.W.Y.; Foster, M.J.; Ahmad, Z.I.; Phuyal, J.L.; Petocz, P. Fatty acid composition of edible oils derived from certified organic and conventional agricultural methods. Food Chem. 2008, 109, 670–674. [Google Scholar] [CrossRef]
- Cassman, K.G.; Steiner, R.; Johnson, A.E. Long term experiments and productivity indexes to evaluate the sustainability of cropping system. In Agricultural Sustainability: Economic, Environmental and Statistical Consideration; Barnett, V., Payne, R., Steiner, R., Eds.; John Wiley and Sons: Chichester, UK, 1995. [Google Scholar]
- Hamza, M.A.M.; Abd-Elhady, E.S.E. Effect of organic and inorganic fertilization on vegetative growth volatile oil of marjoram (Majorana hortensis L.) plant. J. Soil Sci. Agric. Eng. 2010, 1, 839–851. [Google Scholar] [CrossRef] [Green Version]
- Bakr, A.A. Dynamic of Some Plant Nutrients in Soil under Organic Farming Conditions. Ph.D. Thesis, Faculty of Agriculture, Assiut University, Assiut, Egypt, 2016. [Google Scholar]
- Abo–Baker, A.A. Studies on Mixed and Single Microbial Inoculations of Cultivated Plants for Improvement of Growth and Yield. Ph.D. Thesis, Faculty of Agriculture, Assiut University, Assiut, Egypt, 2003. [Google Scholar]
- Abo–Baker, A.A. Effect of Some Soil Properties on Efficiency and Activity of Phosphate Dissolving Bacteria in Some Soils of Aswan Area. (Lake Nasser Area). Master’s Thesis, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt, 1996. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA; New Delhi, India, 1973. [Google Scholar]
- Baruah, T.C.; Barthakur, H.P. A Text Book of Soil Analysis; Vikas Publishing house PVT Ltd.: New Delhi, India, 1997. [Google Scholar]
- Schlichting, E.; Blume, H.P.; Stahr, K. Bodenkundiches Praktikum, 2nd ed.; Blackwell: Berlin, Germany, 1995. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean., L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954; Circ. 939.
- Singh, K.K.; Goswami, T.K. Physical properties of cumin seed. J. Agric. Eng. Res. 1996, 64, 93–98. [Google Scholar] [CrossRef]
- Sacilik, K.; Ozturk, R.; Keskin, R. Some physical properties of hemp seed. Biosyst. Eng. 2003, 86, 191–198. [Google Scholar] [CrossRef]
- Smedes, F. Determination of total lipid using nonchlorinated solvents. Analyst 1999, 124, 1711–1718. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 13th ed.; Association of official analytical chemists: Washington, DC, USA, 1980. [Google Scholar]
- Mestrallet, M.G.; Carnacini, L.; Días, M.J.; Nepote, V.; Ryan, L.; Conci, S.; Grosso, N.R. Honey Roasted Peanuts and Roasted Peanuts from Argentina. Sensorial and Chemical Analyses. Grasas Aceites 2004, 55, 401–408. [Google Scholar]
- AOAC. Official Method of Analysis; Association of Official Analytical Cereal Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Hussain, N.; Jabeen, Z.; Li, Y.L.; Chen, M.-x.; Li, Z.-l.; Guo, W.-l.; Shamsi, I.H.; Chen, X.-y.; Jiang, L.-x. Detection of tocopherol in oilseed rape (Brassica napus L.) using gas chromatography with flame ionization detector. J. Integ. Agric. 2013, 12, 803–814. [Google Scholar] [CrossRef]
- Mínguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sánchez-Gómez, A.H.; Garrido-Fernández, J. Color–Pigment Correlation in Virgin Olive Oil. J. Am. Oil Chem. Society 1991, 69, 332–336. [Google Scholar] [CrossRef]
- Dimić, E.; Turkulov, J. Quality Control in Edible Oil Technology; University of Novi Sad, Faculty of Technology: Novi Sad, Serbia, 2000; pp. 17–26, 135–137. (In Serbian) [Google Scholar]
- Hussein, A.H.A. Impact of sewage sludge as organic manure on some soil properties, growth, yield and nutrient contents of cucumber crop. J. Applied Sci. 2009, 9, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.K.; Fawy, H.A.; Abdel-Hady, E.S. Study of sewage sludge use in agriculture and its effect on plant and soil. Agric. Biol. J. N. Am. 2010, 1, 1044–1049. [Google Scholar] [CrossRef]
- Mahmoud, M.R. The role of organic wastes and potassium fertilizer in soil fertility and product and nutrient content of barley crop in sandy soils. J. Agric. Sci. Mans. Univ. 2000, 25, 5955–5962. [Google Scholar]
- Badawi, F.S.F. Studies on Bio-Organic Fertilization of Wheat under Newly Reclaimed Soils. Ph.D. Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt, 2003. [Google Scholar]
- Khalil, A.A.; Nasef, M.A.; Ghazal, F.M.; El-Emam, M.A. Effect of integrated organic manuring and bio-fertilizer growth and nutrient uptake of wheat plants grown in diverse textured soils. Egypt J. Agric. Res. 2004, 82, 221–234. [Google Scholar]
- Lucas, M.; Daviere, J.M.; Rodriguez-Falcon, M.; Pontin, M.; Iglesias-Pedraz, J.M.; Fankhauser, C.; Blazquez, M.A.; Titarenko, E.; Prat, S. A molecular framework for light and GA control of cell elongation. Nature 2008, 451, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanjundappa, G.; Shivaraj, B.; Janarjuna, S.; Sridhara, S. Effect of organic and inorganic sources of nutrients applied alone or in combination on growth and yield of sunflower (Helianthus annuus L.). Helia 2001, 24, 115–120. [Google Scholar] [CrossRef]
- Mahrous, N.M.; Ragab, A.A.; Abotaleb, H.H.; Taha, M.H.; Mariam, S. Effect of inorganic, organic and bio fertilizers on yield and yield components of sunflower under newly reclaimed soils. J. Plant Prod. 2014, 5, 427–441. [Google Scholar] [CrossRef]
- Chakraborty, A.; Chakrabarti, K.; Chakraborty, A.; Ghosh, S. Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol. Fertil. Soils. 2011, 47, 227–233. [Google Scholar] [CrossRef]
- Chien, S.H. Dissolution of phosphate rock in acid soils as influenced by nitrogen and potassium fertilizers. Soil Sci. 1979, 127, 371–376. [Google Scholar] [CrossRef]
- Shaharoona, B.; Arshad, M.; Zahir, Z.A. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol. 2006, 42, 155–159. [Google Scholar] [CrossRef]
- Ditta, A.; Arshad, M.; Zahir, Z.A.; Jamil, A. Comparative efficacy of rock phosphate enriched organic fertilizer vs. mineral phosphatic fertilizer for nodulation, growth and yield of lentil. Int. J. Agric Biol. 2015, 17, 589–595. [Google Scholar] [CrossRef]
- Ditta, A.; Muhammad, J.; Imtiaz, M.; Mehmood, S.; Qian, Z.; Tu, S. Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int. J. Recycl. Org. Waste Agric. 2018, 7, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.A.; Mehmood, S.; Rizwan, M.S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 207, 1–20. [Google Scholar] [CrossRef]
- Azarmi, R.M.; Giglou, T.; Taleshmikail, R.D. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr. J. Biotechnol. 2008, 7, 2397–2401. [Google Scholar]
- Kimana, J.M.; Irika, M.; Jean Pierre, H.M. Influence of inorganic and organic nitrogen fertilizers regimes on oil content of sunflower in Morogoro, Tanzania. Int. J. Agron. Agric. Res. 2018, 12, 166–174. [Google Scholar]
- Singh, B.K.; Pathak, K.A.; Verma, A.K.; Verma, V.K.; Deka, B.C. Effects of vermicompost, fertilizer and mulch on plant growth, nodulation and pod yield of French bean (Phaseolus vulgaris L.). Veg. Crops Res. Bull. 2011, 74, 153–165. [Google Scholar] [CrossRef]
- Javaad, S.; Panwar, A. Effect of biofertilizer, vermicompost and chemical fertilizer on different biochemical parameters of Glycine max and Vigna mungo. Recent Res. Sci. Technol. 2013, 5, 40–44. [Google Scholar]
- Gunay, A. Effects of Organomineral Fertilizer Applications on Yield and Quality Parameters of Sunflower. Master’s Thesis, Ege University, Institute of Science, Soil Science and Plant Nutrition Department, Izmir, Turkey, 2014. [Google Scholar]
- Kiniry, J.R.; Jones, C.A.; Toole, J.C.O.; Blanchet, R.; Cabelguenne, M.; Sopanel, D.A. Radiation use efficiency in biomass accumulation prior to grain filling for five- grain crop species. Field Crop Res. 1989, 20, 51–64. [Google Scholar] [CrossRef]
- Malik, M.A.; Rahman, R.; Cheema, N.A.A.; Cheema, M.A. Determining a suitable rate and source of nitrogen for realizing the higher economic returns from atuman sown sunflower. Int. J. Agri. Bio. 1999, 1, 347–349. [Google Scholar]
- Lawler, D.W. Carbon and nitrogen assimilation in relation to yield mechanisms are key to understanding production systems. J. Experimenatal Bot. 2002, 53, 773–787. [Google Scholar] [CrossRef]
- Khaliq, T.; Ahmad, A.; Hussain, A.; Ali, M.A. Impact of nitrogen rate on growth, yield and radiation use efficiency of maize under varying environments. Pak. J. Agric. Sci. 2008, 45, 1–7. [Google Scholar]
- Nasim, W. Modeling the Impact of Calimate Change on Nitrogen Use Efficiency in Sunflower (Helianthus annuus L.) under Different Agro-Climatic Conditions of Punjab-Pakistan. Ph.D. Thesis, University College of Agriculture, Faisalabad, Pakistan, 2010. [Google Scholar]
- El-Aref, A.O.; Abo-El-Hamd, A.S.A.; Abd El-Monem, A.M.A. Influence of filter mud cake fertilization under low levels of nitrogen on yield and its components for two sunflower cultivars. J. Plant Prod. 2011, 2, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Hocking, P.J.; Steer, B.T. Distribution of N during growth of sunflower (Helianthus annus L.). Ann. Bott. 1983, 51, 787–799. [Google Scholar] [CrossRef]
- Gopinath, K.A.; Saha, S.; Mina, B.L.; Pande, H.; Kundu, S.; Gupta, H.S. Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. Nutr. Cycl. Agroecosyst. 2008, 82, 51–60. [Google Scholar] [CrossRef]
- Maman, N.; Mason, S. Poultry manure and inorganic fertilizer to improve pearl millet yield in Niger. Afr. J. Plant Sci. 2013, 7, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Ndukwe, O.O.; Muoneke, C.O.; Baiyeri, K.P.; Tenkouano, A. Growth and yield responses of plantain genotypes as influenced by organic and inorganic fertilizers. J. Plant Nutr. 2011, 34, 700–716. [Google Scholar] [CrossRef]
- Angelova, V.; Ivanova, R.; Pevicharova, G.; Ivanov, K. Effect of organic amendments on heavy metals uptake by potato plants. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 84–87. [Google Scholar]
- Naveed, M.; Tanvir, B.; Wang, X.; Brtnicky, M.; Ditta, A.; Kucerik, J.; Subhani, Z.; Nazir, M.Z.; Radziemska, M.; Saeed, Q.; et al. Co-composted biochar enhances growth, physiological, and phytostabilization efficiency of Brassica napus and reduces associated health risks under chromium stress. Front. Plant Sci. 2021, 12, 775785. [Google Scholar] [CrossRef]
- Montemurro, F.; Giorgio, D.D. Quality and nitrogen use efficiency of sunflower grown at different nitrogen levels under Mediterranean conditions. J. Plant Nutr. 2005, 28, 335–350. [Google Scholar] [CrossRef]
- Ramulu Krishnamurthy, N.; Jayadeva, H.M.; Venkatesha, M.M.; Ravi Kumar, H.S. Seed yield and nutrients uptake of sunflower (Helianthus annuus L.) as influenced by different levels of nutrients under irrigated condition of eastern dry zone of Karnataka, India. Plant Arch. 2011, 11, 1061–1066. [Google Scholar]
- Hoching, P.J. Effect of sowing time on nitrate and total nitrogen con-centrations in field-grown canola (Brassica napus L.), and implications for plant analysis. J. Plant Nutr. 2001, 24, 43–59. [Google Scholar] [CrossRef]
- Montagu, K.D.; Goh, K.M. Effects of forms and rates of organic and inorganic nitrogen fertilizerson the yield and some quality indices of tomateos (Lycopersicon esculentum Miller). Crop Hort. Sci. 1990, 18, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Haukioja, E.; Ossipov, V.; Koricheva, J.; Honkanen, T.; Larsson, S.; Lempa, K. Biosyntheticorigin of carbon-based secondary compounds: Cause of variable responses of woody plants to fertilization. Chemoecology 1998, 8, 133–139. [Google Scholar] [CrossRef]
- Bloom, A.J. Ammonium and nitrate as nitrogen sources for plant growth. ISI Atlas Sci. 1998, 1, 55–59. [Google Scholar]
- Wagner, S.C. Biological nitrogen fixation. Nat. Educ. Knowl. 2011, 2, 14. [Google Scholar]
- Havaux, M.; Eymery, F.; Porfirova, S.; Rey, P.; Dörmann, P. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 2005, 17, 3451–3469. [Google Scholar] [CrossRef] [Green Version]
- Collin, V.C.; Eymery, F.; Genty, B.; Rey, P.; Havaux, M. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ. 2008, 31, 244–257. [Google Scholar] [CrossRef]
- Ischebeck, T.; Zbierzak, A.M.; Kanwischer, M.; Dörmann, P. A salvage pathway for phytol metabolism in Arabidopsis. J. Biol. Chem. 2006, 281, 2470–2477. [Google Scholar] [CrossRef] [Green Version]
- Valentin, H.E.; Lincoln, K.; Moshiri, F.; Jensen, P.K.; Qi, Q.; Venkatesh, T.V.; Karunanandaa, B.; Baszis, S.R.; Norris, S.R.; Savidge, B.; et al. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 2006, 18, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Peisker, C.; Düggelin, T.; Rentsch, D.; Matile, P. Phytol and the breakdown of chlorophyll in senescent leaves. J. Plant Physiol. 1989, 135, 428–432. [Google Scholar] [CrossRef]
- Rise, M.; Cojocaru, M.; Gottlieb, H.E.; Goldschmidt, E.E. Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol. 1989, 89, 1028–1030. [Google Scholar] [CrossRef]
- Dörmann, P. Functional diversity of tocochromanols in plants. Planta 2007, 225, 269–276. [Google Scholar] [CrossRef]
- Dimić, E.; Premović, T.; Takači, A. Effects of the contents of impurities and seed hulls on the quality of cold-pressed sunflower oil. Czech J. Food Sci. 2012, 30, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Li, W.P.; Shi, H.B.; Zhu, K.; Zheng, Q.; Xu, Z. The quality of sunflower seed oil changes in response to nitrogen fertilizer. Agron. J. 2017, 109, 2499–2507. [Google Scholar] [CrossRef] [Green Version]
- Boydak, E.; Karaaslan, D.; Turkoglu, H. The effect of different nitrogen and irrigation levels on fatty acid composition of peanut oils. Turk. J. Field Crops 2010, 15, 29–33. [Google Scholar]
- Steer, B.T.; Seiler, G.J. Changes in fatty acid composition of sunflower (Helianthus annuus L.) seeds in response to time of nitrogen application, supply rates and defoliation. J. Sci. Food Agric. 1990, 51, 11–26. [Google Scholar] [CrossRef]
- Wolswinkel, P. Assimilate transport in developing seeds of sunflower (Helianrhus annuus L). J. Plant Physiol. 1987, 127, 1–10. [Google Scholar] [CrossRef]
- Tremolieres, A.; Dubacq, J.P.; Drapier, D. Unsaturated fatty acids in maturing seeds of sunflower and rape: Regulation by temperature and light intensity. Phytochemistry 1982, 21, 41–45. [Google Scholar] [CrossRef]
- Stumpf, P.K. (Ed.) Biosynthesis of saturated and unsaturated fatty acids. In The Biochemistry of Plants, Volume 4. Lipids: Structure and Function; Academic Press: New York, NY, USA, 1980; pp. 177–204. [Google Scholar]
Property | Value |
---|---|
Particle size distribution: | |
% sand | 40.7 ± 0.502 |
% silt | 28.9 ± 0.187 |
% clay | 30.4 ± 0.415 |
Texture class | Clay loam |
Soil pH (1:1) in water | 7.98 ± 0.038 |
ECe (dS/m) | 3.01 ± 0.029 |
Calcium carbonates (%) | 8.02 ± 0.038 |
CEC (cmol/kg) | 17.5 ± 0.217 |
Organic carbon (g/Kg) | 14 ± 0.048 |
Available nitrogen (mg/kg) | 19.43 ± 0.392 |
Available −P (mg/kg) | 11.2 ± 0.043 |
Available −K (mg/kg) | 201 ± 1.871 |
Property | Compost Coupled with Biofertilizer | Filter Mud Cake |
---|---|---|
pH (1:1) in water | 7.12 | 6.5 |
EC (1:10) (dS/m) | 2.85 | 5.5 |
Organic carbon% | 15.1 | 38.1 |
N% | 0.9 | 2.4 |
P% | 0.69 | 2.6 |
K% | 1.49 | 0.35 |
C/N ratio | 16.78 | 15.88 |
Treatments | Soil pH | Soil EC | CaCO3 (%) |
---|---|---|---|
Inorganic | 7.87 ± 0.025 a | 3.98 ± 0.04 c | 7.97 ± 0.031 a |
CCB | 7.70 ± 0.015 c | 4.77 ± 0.05 a | 7.78 ± 0.022 b |
FMC | 7.75 ± 0.030 b | 4.12 ± 0.09 b | 7.81 ± 0.015 b |
Treatments | Fresh W | Dry Weight g | Plant Hight cm | Disk Fresh Weight g | Disk Dry Weight g | Disk Diameter | Stalk Yield g/Pot | Oil Yield g/Pot | Seed Yield g/Pot | % N | K ppm | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Kernels | Leaves | Kernels | ||||||||||
Inorganic | 96.8 ± 7.99 a | 41.0 ± 5.43 a | 341.8 ± 11.01 a | 392.5 ± 15.60 a | 288.6 ± 12.91 a | 20.3 ± 2 a | 9.390 ± 0.34 c | 2.626 ± 0.07 c | 6.60 ± 0.16 c | 0.9 ± 0.007 b | 0.2 ± 0.006 a | 225.3 ± 7.57 a | 36.8 ± 6.36 b |
CCB | 64.9 ± 5.38 b | 28.6 ± 4.63 b | 314.3 ± 7.02 b | 266.0 ± 15.60 b | 175.5 ± 20.88 b | 20.5 ± 2.08 a | 11.795 ± 0.56 a | 3.988 ± 0.15 a | 8.963 ± 0.21 a | 0.8 ± 0.062 b | 0.2 ± 0.017 a | 230.2 ± 10.31 a | 43.1 ± 0.835 a |
FMC | 48.5 ± 6.49 c | 21.9 ± 2.81 c | 306.8 ± 6.02 b | 226.7 ± 15.60 c | 121.3 ± 10.49 c | 19.9 ± 0.76 a | 10.01 ± 0.42 b | 3.625 ± 0.11 b | 7.387 ± 0.34 b | 1.0 ± 0.055 a | 0.2 ± 0.013 a | 212.9 ± 9.92 a | 43.7 ± 1.02 a |
Treatments | 100 Seeds Weight g | Hull Content % | Free Hull % | Bulk Density | Dimensional Properties of Sunflower Seeds | |||
---|---|---|---|---|---|---|---|---|
Length L/mm | Width W/mm | Thickness T/mm | Mass M/g | |||||
Inorganic | 6.26 ± 0.156 a | 33.71 ± 1.05 a | 58.28 ± 0.885 c | 317.00 ± 1 a | 0.9580 ± 0.056 a | 0.3700 ±0.078 a | 0.1740 ± 0.043 a | 0.0732 ± 0.013 a |
CCB | 5.73 ± 0.092 a | 28.93 ± 1.57 a | 67.65 ± 0.951 a | 312.00 ± 1 a | 0.8790 ± 0.063 b | 0.3600 ± 0.041 a | 0.1470 ±0.042 b | 0.0712 ± 0.011 a |
FMC | 5.66 ± 0.16 a | 30.33 ± 1.06 a | 63.77 ± 0.615 b | 301.50 ± 1.1 b | 0.9080 ± 0.092 b | 0.3150 ± 0.058 b | 0.0980 ± 0.031 c | 0.0597 ± 0.010 b |
Gross Chemical Composition of Sunflower Seeds (%) | |||||
---|---|---|---|---|---|
Treatments | Moisture | Ash | Fat | Protein | Carbohydrates |
Inorganic | 3.04 ± 0.005 a | 3.63 ± 0.03 a | 39.80 ± 0.77 b | 18.20 ± 0.23 a | 38.37 ± 0.65 a |
Compost (CCB) | 2.47 ± 0.05 b | 3.80 ±0.11 a | 41.15 ± 0.35 ab | 18.09 ± 0.22 a | 36. 96 ± 0.72 b |
FMC | 2.33 ±0.09 b | 3.70 ±0.11 a | 44.20 ± 0.75 a | 17.71 ± 0.35 a | 34.39 ± 0.55 c |
Sunflower Seed Oil Characteristics | |||||
---|---|---|---|---|---|
Treatments | Phenolic Compounds (mg/100 g) | Chlorophyll (mg/Kg) | Transparency (%) | Alpha α-Tocopherol | Gamma γ-Tocopherol |
Inorganic | 36.06 ± 0.345 a | 1.36 ±0.047 a | 26.06 ± 0.62 b | 485.69 ±3.83 b | 10.09 ±0.24 b |
CCB | 32.73 ±0.843 b | 0.13 ±0.008 b | 36.38 ±0.38 a | 558.09 ±3.54 a | 13.24 ±0.07 a |
FMC | 30.62 ±0.202 b | 0.06 ±0.001 b | 36.41 ±0.14 a | 500.21 ±2.03 b | 14.00 ±0.22 a |
Treatments | Inorganic | CCB | FMC | |
---|---|---|---|---|
Fatty Acids | ||||
C14:0 | 0.055 ± 0.023 a | 0.045 ± 0.022 a | 0.045 ± 0.015 a | |
C16:0 | 5.70 ± 0.584 a | 5.59 ± 0.030 a | 5.34 ± 0.682 a | |
C16:1 | 0.15 ± 0.0 a | 0.14 ± 0.021 a | 0.13 ± 0.025 a | |
C17:0 | 0.04 ± 0.012 a | 0.03 ± 0.009 ab | 0.025 ± 0.017 b | |
C17:1 | 0.035 ± 0.006 a | 0.030 ± 0.00 a | 0.030 ± 0.010 a | |
C18:0 | 2.82 ± 0.02 a | 2.53 ± 0.025 b | 2.86 ± 0.020 a | |
C18:1 | 58.83 ± 0.015 a | 54.78 ± 0.015 c | 58.58 ± 0.020 b | |
C18:2 | 31.56 ± 0.032 b | 35.64 ± 0.025 a | 31.59 ± 0.010 b | |
C18:3 | 0.05 ± 0.02 a | 0.03 ± 0.010 a | 0.03 ± 0.010 a | |
C20:0 | 0.21 ± 0.02 a | 0.19 ± 0.030 a | 0.21 ± 0.050 a | |
C20:1 | 0.20 ± 0.015 a | 0.14 ± 0.031 a | 0.17 ± 0.040 a | |
C22:0 | 0.71 ± 0.021 a | 0.04 ± 0.017 b | 0.58 ± 0.145 a | |
C16:0 + C18.0 + C18.1 + C22.0/(C18:2 + C18:3) | 2.16 | 1.76 | 2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzamel, N.M.; Taha, E.M.M.; Bakr, A.A.A.; Loutfy, N. Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils. Sustainability 2022, 14, 12928. https://doi.org/10.3390/su141912928
Alzamel NM, Taha EMM, Bakr AAA, Loutfy N. Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils. Sustainability. 2022; 14(19):12928. https://doi.org/10.3390/su141912928
Chicago/Turabian StyleAlzamel, Nurah M., Eman M. M. Taha, Abeer A. A. Bakr, and Naglaa Loutfy. 2022. "Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils" Sustainability 14, no. 19: 12928. https://doi.org/10.3390/su141912928