Implementing Design and Operational Measures for Sustainable Mobility: Lessons from Zurich
Abstract
:1. Introduction
2. Design and Operational Measures Discouraging Private Motorized Transport
- Parking policies: limit and reduce parking spaces, high parking fee, and maximum 2 h parking;
- Speed and traffic calming policies: 30 km/h on more than 50% of roads, high density of speed cameras, and on-street parking on alternating road sides;
- Perimeter control, the Zurich model, and ZuriTraffic: congestion reduced in the inner city.
2.1. Parking Policies
2.2. Speed and Traffic Calming Policies
2.3. Perimeter Control, the Zurich Model, and ZuriTraffic
3. Design and Operational Measures Encouraging Public Transport
- Transit signal priority: full priority for public transport;
- Dedicated public transport lanes: 20% lanes for buses, bidirectional bus lanes;
- Additional signals: presignals;
- Bus and tram stops: curb-side stops.
3.1. Transit Signal Priority
3.2. Dedicated Public Transport Lanes
3.3. Additional Signals
3.4. Bus and Tram Stops
4. Design and Operational Measures Encouraging Human-Powered Mobility
- Pedestrians: short cycles, green when public transport arrives at stop, and road crossing anywhere in 30 km/h zones;
- Cyclists: speed reduction, comfort routes, and right-on-red;
- Shared micromobility: per vehicle fee, public dockless bike-sharing system.
4.1. Pedestrians
4.2. Cyclists
4.3. Shared Micromobility
5. Integrated Perspective and Future Expectations
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Litman, T.; Burwell, D. Issues in sustainable transportation. Int. J. Glob. Environ. Issues 2006, 6, 331–347. [Google Scholar] [CrossRef]
- Eurostat. Energy, Transport and Environment Statistics; European Commission: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Schipper, L.; Fabian, H.; Leather, J. Transport and Carbon Dioxide Emissions: Forecasts, Options Analysis, and Evaluation; Technical Report; Asian Development Bank: Mandaluyong, PH, USA, 2009. [Google Scholar]
- Uherek, E.; Halenka, T.; Borken-Kleefeld, J.; Balkanski, Y.; Berntsen, T.; Borrego, C.; Gauss, M.; Hoor, P.; Juda-Rezler, K.; Lelieveld, J.; et al. Transport impacts on atmosphere and climate: Land transport. Atmos. Environ. 2010, 44, 4772–4816. [Google Scholar] [CrossRef]
- Daganzo, C.F. Urban gridlock: Macroscopic modeling and mitigation approaches. Transp. Res. Part Methodol. 2007, 41, 49–62. [Google Scholar] [CrossRef]
- Dakic, I.; Ambühl, L.; Schümperlin, O.; Menendez, M. On the modeling of passenger mobility for stochastic bi-modal urban corridors. Transp. Res. Part C 2020, 113, 146–163. [Google Scholar] [CrossRef]
- Zheng, N.; Geroliminis, N. On the distribution of urban road space for multimodal congested networks. Transp. Res. Part B 2013, 57, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Loder, A.; Ambühl, L.; Menendez, M.; Axhausen, K.W. Understanding traffic capacity of urban networks. Sci. Rep. 2019, 9, 16283. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Yang, K.; Liang, H.; Menendez, M.; Guler, S.I. Providing public transport priority in the perimeter of urban networks: A bimodal strategy. Transp. Res. Part C 2019, 107, 171–192. [Google Scholar] [CrossRef]
- Roca-Riu, M.; Menendez, M.; Dakic, I.; Buehler, S.; Ortigosa, J. Urban space consumption of cars and buses: An analytical approach. Transp. B 2020, 8, 237–263. [Google Scholar] [CrossRef]
- He, H.; Menendez, M.; Ilgin Guler, S. Analytical evaluation of flexible-sharing strategies on multimodal arterials. Transp. Res. Part A Policy Pract. 2018, 114, 364–379. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, P. Empirical evidence on induced traffic. Transportation 1996, 23, 35–54. [Google Scholar] [CrossRef]
- Goodwin, P.; Noland, R.B. Building new roads really does create extra traffic: A response to Prakash et al. Appl. Econ. 2003, 35, 1451–1457. [Google Scholar] [CrossRef]
- Weis, C.; Axhausen, K.W. Induced travel demand: Evidence from a pseudo panel data based structural equations model. Res. Transp. Econ. 2009, 25, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Richardson, B.C. Toward a policy on a sustainable transportation system. Transp. Res. Rec. 1999, 27–34. [Google Scholar] [CrossRef]
- Jepson, E.J. Sustainability and Planning: Diverse Concepts and Close Associations. J. Plan. Lit. 2001, 15, 499–510. [Google Scholar] [CrossRef]
- Balsas, C. Cities, Automobiles, and Sustainability. Urban Aff. Rev. 2001, 36, 429–432. [Google Scholar] [CrossRef]
- Dinh, D.D.; Kubota, H. Profile-speed data-based models to estimate operating speeds for urban residential streets with a 30km/h speed limit. IATSS Res. 2013, 36, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Arcadis. Sustainable Cities Mobility Index; Technical Report; Arcadis: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Urban Mobility Index. HERE Urban Mobility Index. 2018. Available online: https://mappinglondon.co.uk/2018/here-urban-mobility-index/ (accessed on 15 September 2021).
- Mercer. Quality of Living City Ranking|Mercer; Mercer: New York, NY, USA, 2018. [Google Scholar]
- Omio. Inner-City Mobility in European Cities; Technical Report; Omio: Berlin, Germany, 2019. [Google Scholar]
- IMD. Smart City Index 2020 by IMD Business School; Technical Report; IMD: New Delhi, India, 2020.
- Ilgin Guler, S.; Menendez, M. Analytical formulation and empirical evaluation of pre-signals for bus priority. Transp. Res. Part B 2014, 64, 41–53. [Google Scholar] [CrossRef]
- McCahill, C.; Garrick, N. Parking supply and urban impacts. Transp. Sustain. 2014, 5, 33–55. [Google Scholar] [CrossRef]
- Ott, R. The Zurich experience. In Proceedings of the Alternatives to Congestion Charging: Proceedings of a Seminar Held by the Transport Policy Committee, London, UK, 31 January 2002; pp. 73–85. [Google Scholar]
- Carrasco, N. Quantifying reliability of transit service in Zurich, Switzerland. Transp. Res. Rec. 2012, 114–125. [Google Scholar] [CrossRef]
- Mägerle, J.; Maggi, R. Zurich transport policy: Or the importance of being rich. Built Environ. 1999, 25, 129–137. [Google Scholar]
- Petersen, T. Watching the Swiss: A network approach to rural and exurban public transport. Transp. Policy 2016, 52, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Nash, A.; Corman, F.; Sauter-Servaes, T. Public transport priority in 2020 Lessons from Zurich. In Proceedings of the 8th Transport Research Arena TRA 2020, Helsinki, Finland, 27–30 April 2020; pp. 12–19. [Google Scholar]
- Fitzroy, F.; Smith, I. Priority Overpricing: Lessons From Zurich on the Redundancy of Road Pricing. J. Transp. Econ. Policy 1993, 27, 209–214. [Google Scholar]
- City of Zurich. Treibhausgasbilanz-Stadt Zürich. 2020. Available online: https://www.stadt-zuerich.ch/gud/de/index/umwelt_energie/energie-in-zahlen/2000-watt-indikatoren/treibhausgasbilanz.html (accessed on 15 September 2021).
- Swissinfo. Government Wants to Double Use of Public Transport by 2050; Swissinfo: Bern, Switzerland, 2021. [Google Scholar]
- Buehler, R.; Pucher, J.; Gerike, R.; Götschi, T. Reducing car dependence in the heart of Europe: Lessons from Germany, Austria, and Switzerland. Transp. Rev. 2017, 37, 4–28. [Google Scholar] [CrossRef]
- Nash, A. Implementing Zurich’s transit priority program. Transp. Res. Rec. 2003, 59–65. [Google Scholar] [CrossRef]
- Garrick, N.W. A Swiss Lesson in Enlightened Street Design. 2019. Available online: https://www.reddit.com/r/hackernews/comments/ddc0bn/a_swiss_lesson_in_enlightened_street_design/ (accessed on 15 September 2021).
- City of Zurich. Urban Traffic Programme-Stadtverkehr 2025: 2012 Report. Technical Report. 2013. Available online: https://www.stadt-zuerich.ch/ted/de/index/taz/publikationen_u_broschueren/urban-traffic-programm—report-2012.html (accessed on 15 September 2021).
- City of Zurich. Kennzahlen der Verkehrsentwicklung. 2019. Available online: https://www.stadt-zuerich.ch/ted/de/index/taz/verkehr/webartikel/webartikel_kennzahlen_verkehrsentwicklung.html (accessed on 15 September 2021).
- Dönier, G.; Bernhard, J.; Brendel, S.; Raymann, L. Adaptive Traffic Flow Management; Technical Report; ETH Zurich: Zürich, Switzerland, 2013. [Google Scholar]
- TomTom. Traffic Congestion Ranking|TomTom Traffic Index 2020; TomTom: Amsterdam, The Netherlands, 2020. [Google Scholar]
- TomTom. Traffic Congestion Ranking|Tomtom Traffic Index 2012; TomTom: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ambühl, L.; Loder, A.; Menendez, M.; Axhausen, K.W. A case study of Zurich’s two-layered perimeter control. In Proceedings of the 7th Transport Research Arena, IVT, Sitges, Spain, 3–7 September 2018. [Google Scholar] [CrossRef]
- Rosenthal, E. Europe Stifles Drivers in Favor of Mass Transit and Walking—The New York Times. 2011. Available online: https://www.reddit.com/r/TrueReddit/comments/ia1uh/europe_stifles_drivers_in_favor_of_mass_transit/ (accessed on 15 September 2021).
- Shoup, D.C. The High Cost of Free Parking; Routledge: London, UK, 2005. [Google Scholar]
- Shoup, D. Pricing Curb Parking. Transp. Res. Part A Policy Pract. 2021, 154, 399–412. [Google Scholar] [CrossRef]
- McCahill, C.T.; Garrick, N.; Atkinson-Palombo, C.; Polinski, A. Effects of parking provision on automobile use in cities: Inferring causality. Transp. Res. Rec. 2016, 2543, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Jakob, M.; Menendez, M. Parking Pricing vs. Congestion Pricing: A Macroscopic Analysis of their Impact on Traffic. Transp. A Transp. Sci. 2020, 17, 1–29. [Google Scholar] [CrossRef]
- Cao, J.; Menendez, M.; Waraich, R. Impacts of the urban parking system on cruising traffic and policy development: The case of Zurich downtown area, Switzerland. Transportation 2019, 46, 883–908. [Google Scholar] [CrossRef] [Green Version]
- Kodransky, M.; Hermann, G. Europe’s parking U-turn: From accommodation to regulation. Inst. Transp. Dev. Policy 2011, 84. [Google Scholar]
- Jakob, M.; Menendez, M. Macroscopic Modeling of On-Street and Garage Parking: Impact on Traffic Performance. J. Adv. Transp. 2019, 2019. [Google Scholar] [CrossRef]
- Jakob, M.; Menendez, M.; Cao, J. A dynamic macroscopic parking pricing and decision model. Transp. B 2020, 8, 307–331. [Google Scholar] [CrossRef]
- Parkopedia. Global Parking Index. Technical Report September. 2019. Available online: https://cdn2.hubspot.net/hubfs/5540406/Whitepapers_research reports/Parkopedia-Global-Parking-Index-2019_Final_V2.pdf (accessed on 15 September 2021).
- Cao, J.; Menendez, M. Quantification of potential cruising time savings through intelligent parking services. Transp. Res. Part A Policy Pract. 2018, 116, 151–165. [Google Scholar] [CrossRef]
- Christensen, J. Effects Of Changes in Speed Limits on Traffic Accidents on Danish Roads. In Proceedings of the OECD Symposium: The Effects of Speed Limits on Traffic Accidents and Transport Energy Use, New York, NY, USA, 6–8 October 1981. [Google Scholar]
- Lee, C.; Hellinga, B.; Saccomanno, F. Evaluation of variable speed limits to improve traffic safety. Transp. Res. Part C Emerg. Technol. 2006, 14, 213–228. [Google Scholar] [CrossRef]
- Vadeby, A.; Forsman, B. Traffic safety effects of new speed limits in Sweden. Accid. Anal. Prev. 2018, 114, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.E.; Garrick, N.W.; Hansen, G. Reassessing on-street parking. Transp. Res. Rec. 2008, 2046, 45–52. [Google Scholar] [CrossRef]
- Geroliminis, N.; Haddad, J.; Ramezani, M. Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: A model predictive approach. IEEE Trans. Intell. Transp. Syst. 2013, 14, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Amt für Verkehr Kanton Zürich. Gesamtverkehrsmodell des Kantons Zürich; Amt für Verkehr Kanton Zürich: Zürich, Switzerland, 2015. [Google Scholar]
- Ortigosa, J.; Menendez, M.; Tapia, H. Study on the number and location of measurement points for an MFD perimeter control scheme: A case study of Zurich. EURO J. Transp. Logist. 2014, 3, 245–266. [Google Scholar] [CrossRef]
- Ambühl, L.; Loder, A.; Leclercq, L.; Menendez, M. Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year. Transp. Res. Part C Emerg. Technol. 2021, 126, 103065. [Google Scholar] [CrossRef]
- Dönier, G.; Bernhard, J.; Brendel, S.; Raymann, L. The Zurich Model; Technical Report; ETH Zurich: Zürich, Switzerland, 2012. [Google Scholar]
- Cervero, R. The Transit Metropolis: A Global Inquiry; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Killias, M.; Scheidegger, D.; Nordenson, P. The Effects of Increasing the Certainty of Punishment: A Field Experiment on Public Transportation. Eur. J. Criminol. 2009, 6, 387–400. [Google Scholar] [CrossRef]
- Guler, S.I.; Menendez, M. Methodology for estimating capacity and vehicle delays at unsignalized multimodal intersections. Int. J. Transp. Sci. Technol. 2016, 5, 257–267. [Google Scholar] [CrossRef]
- Arnet, K.; Guler, S.I.; Menendez, M. Effects of Multimodal Operations on Urban Roadways. Transp. Res. Rec. 2015, 2533, 1–7. [Google Scholar] [CrossRef]
- Genser, A.; Ambühl, L.; Yang, K.; Menendez, M.; Kouvelas, A. Time-to-Green predictions: A framework to enhance SPaT messages using machine learning. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, Rhodes, Greece, 20–23 September 2020; p. 9294548. [Google Scholar] [CrossRef]
- Xuan, Y.; Argote, J.; Daganzo, C.F. Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis. Transp. Res. Part B Methodol. 2011, 45, 1831–1845. [Google Scholar] [CrossRef]
- Orth, H.; Weidmann, U.; Dorbritz, R. Development of measurement system for public transport performance. Transp. Res. Rec. 2012, 2274, 135–143. [Google Scholar] [CrossRef]
- Ortigosa, J.; Menendez, M.; Gayah, V.V. Analysis of Network Exit Functions for Various Urban Grid Network Configurations. Transp. Res. Rec. 2015, 2491, 12–21. [Google Scholar] [CrossRef]
- Loder, A.; Ambühl, L.; Menendez, M.; Axhausen, K.W. Empirics of multi-modal traffic networks–Using the 3D macroscopic fundamental diagram. Transp. Res. Part C Emerg. Technol. 2017, 82, 88–101. [Google Scholar] [CrossRef]
- Guler, S.I.; Cassidy, M.J. Strategies for sharing bottleneck capacity among buses and cars. Transp. Res. Part B Methodol. 2012, 46, 1334–1345. [Google Scholar] [CrossRef] [Green Version]
- Buehlmann, F.; Laube, M.; Hächler, C.; Sigrist, K. Oeffnung der Busstreifen für Weitere Verkehrsteilnehmende; Technical Report 1445; Astra: Cambridge, UK, 2013. [Google Scholar]
- Astra. Möglichkeiten und Grenzen von Elektronischen Busspuren; Technical Report; Astra: Cambridge, UK, 2012. [Google Scholar]
- Guler, S.; Menendez, M. Evaluation of Presignals at Oversaturated Signalized Intersections. Transp. Res. Rec. 2014, 2418, 11–19. [Google Scholar] [CrossRef]
- Guler, S.I.; Menendez, M. Pre-signals for bus priority: Basic guidelines for implementation. Public Transp. 2015, 7, 339–354. [Google Scholar] [CrossRef]
- He, H.; Guler, S.I.; Menendez, M. Adaptive control algorithm to provide bus priority with a pre-signal. Transp. Res. Part C Emerg. Technol. 2016, 64, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Guler, S.I.; Gayah, V.V.; Menendez, M. Bus priority at signalized intersections with single-lane approaches: A novel pre-signal strategy. Transp. Res. Part C Emerg. Technol. 2016, 63, 51–70. [Google Scholar] [CrossRef]
- Viegas, J.; Lu, B. Widening the scope for bus priority with intermittent bus lanes. Transp. Plan. Technol. 2001, 24, 87–110. [Google Scholar] [CrossRef]
- Lüthy, N. Systemwide effects of bus stops: Bus bays vs. curbside bus stops. In Proceedings of the 95th Annual Meeting of the Transportation Research Board (TRB 2016), Washington, DC, USA, 10–14 January 2016; pp. 16–96. [Google Scholar]
- Hamilton-Baillie, B. Shared space: Reconciling people, places and traffic. Built Environ. 2008, 34, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Kaparias, I.; Bell, M.G.H.; Dong, W.; Sastrawinata, A.; Singh, A.; Wang, X.; Mount, B. Analysis of Pedestrian–Vehicle Traffic Conflicts in Street Designs with Elements of Shared Space. Transp. Res. Rec. 2013, 2393, 21–30. [Google Scholar] [CrossRef]
- Wargo, B.; Garrick, N. Shared Space: Could Less Formal Streets be Better for Both Pedestrians and Vehicles? J. Transp. Health 2016, 3, S74. [Google Scholar] [CrossRef]
- Marshall, W.E.; Ferenchak, N.N. Why cities with high bicycling rates are safer for all road users. J. Transp. Health 2019, 13, 100539. [Google Scholar] [CrossRef]
- City of Zurich. Masterplan Velo. 2012. Available online: https://www.stadt-zuerich.ch/ted/de/index/taz/publikationen_u_broschueren/masterplan_velo.html (accessed on 15 September 2021).
- City of Zurich. Sicher Velofahren. 2021. Available online: https://www.stadt-zuerich.ch/sichervelofahren# (accessed on 15 September 2021).
- Reck, D.J.; Haitao, H.; Guidon, S.; Axhausen, K.W. Explaining shared micromobility usage, competition and mode choice by modelling empirical data from Zurich, Switzerland. Transp. Res. Part C Emerg. Technol. 2021, 124, 102947. [Google Scholar] [CrossRef]
- NZZ. Fahrradverleih Zürich: Plötzlich stört das grüne Velo; NZZ: Zürich, Switzerland, 2019. [Google Scholar]
- Afrin, T.; Yodo, N. A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability 2020, 12, 4660. [Google Scholar] [CrossRef]
- Boltze, M.; Tuan, V.A. Approaches to achieve sustainability in traffic management. Procedia Eng. 2016, 142, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.; Miller, E.; Shalaby, A.; MacLean, H.; Coleman, J. The four pillars of sustainable urban transportation. Transp. Rev. 2005, 25, 393–414. [Google Scholar] [CrossRef]
- Branston, D.M. Urban Traffic Speeds—I: A Comparison of Proposed Expressions Relating Journey Speed to Distance from a Town Center. Transp. Sci. 1974, 8, 35–49. [Google Scholar] [CrossRef]
- Cao, J.; Menendez, M.; Nikias, V. The effects of on-street parking on the service rate of nearby intersections. J. Adv. Transp. 2015, 50, 406–420. [Google Scholar] [CrossRef]
- Zheng, N.; Geroliminis, N. Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing. Transp. Res. Part B Methodol. 2016, 83, 36–58. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Guler, S.I.; Menendez, M. Providing Bus Priority Using Adaptive Pre-signals. In Proceedings of the 94th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 January 2015. [Google Scholar]
- Xie, X.; Chiabaut, N.; Leclercq, L. Improving Bus Transit in Cities with Appropriate Dynamic Lane Allocating Strategies. Procedia Soc. Behav. Sci. 2012, 48, 1472–1481. [Google Scholar] [CrossRef] [Green Version]
- Seman, L.O.; Koehler, L.A.; Camponogara, E.; Kraus, W. Integrated headway and bus priority control in transit corridors with bidirectional lane segments. Transp. Res. Part C Emerg. Technol. 2020, 111, 114–134. [Google Scholar] [CrossRef]
- Heimgartner, C.; Menendez, M. Challenges for Better Understanding and Simulating Urban Traffic: The Zurich Experience. In Proceedings of the 3rd International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2013, Dresden, Germany, 16–17 June 2013. [Google Scholar]
- Wu, K.; Guler, S.I.; Gayah, V.V. Estimating the Impacts of Bus Stops and Transit Signal Priority on Intersection Operations. Transp. Res. Rec. 2017, 2622, 70–83. [Google Scholar] [CrossRef]
- Volland, B.; Gessler, R.; Püntener, T.W. On the Way to the 2000—Watt Society. 2011. Available online: https://ourworld.unu.edu/en/2000-watt-society (accessed on 15 September 2021).
- City of Zurich. Strategies 2035—City of Zurich. 2019. Available online: https://www.stadt-zuerich.ch/prd/en/index/stadtentwicklung/strategies-2035.html (accessed on 15 September 2021).
Year | Index | Subject | Rank | Source |
---|---|---|---|---|
2017 | Arcadis | sustainable cities mobility | 2 | [19] |
2018 | Here | public transport, transport efficiency, and traffic flow | 1 | [20] |
2018 | Mercer | quality of living | 2 | [21] |
2019 | Omio | public transport, sharing economy transportation, cost of transportation | 1 | [22] |
2020 | IMD | smart city | 2 | [23] |
Design and Operations Measure | Indicators According to Litman and Burwell | Details in | More Efficient Systems | More Space for other Modes | Mode Change | Summary |
---|---|---|---|---|---|---|
macroscopic control | climate change emissions, resource efficiency | [5,42,61] | ++ | + | 0 | “Cars are allowed, but not congestion” |
30 km/h limit | transport diversity, nonmotorized planning, noise pollution, safety | [54,55,56,84,92] | ||||
constant number of parking | nonmotorized planning, land-use impact | [25,44,48,93,94] | ||||
presignals | transport diversity, nonmotorized planning | [24,78,95] | + | + | + | “Modes are separated where necessary” |
use of turning lane | transport diversity, nonmotorized planning | [72,78,96] | ||||
bidirectional bus lanes | transport diversity, resource efficiency, land-use impact | [97] | ||||
short traffic signal cycles | transport diversity, community liveability | [98] | + | + | ++ | “Pedestrians and public transport always go first” |
absolute priority for public transport | transport diversity, resource efficiency | [71,99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menendez, M.; Ambühl, L. Implementing Design and Operational Measures for Sustainable Mobility: Lessons from Zurich. Sustainability 2022, 14, 625. https://doi.org/10.3390/su14020625
Menendez M, Ambühl L. Implementing Design and Operational Measures for Sustainable Mobility: Lessons from Zurich. Sustainability. 2022; 14(2):625. https://doi.org/10.3390/su14020625
Chicago/Turabian StyleMenendez, Monica, and Lukas Ambühl. 2022. "Implementing Design and Operational Measures for Sustainable Mobility: Lessons from Zurich" Sustainability 14, no. 2: 625. https://doi.org/10.3390/su14020625